<u>Co;</u> P	SPEC No. M S - J 0 9 5 0 3 ISSUE: May. 22. 1997
SPECI	FICATIONS
Product Type	1 M SRAM
LH51BV	1000HY-70LL
Model No. (LH51B0HY)
CUSTOMERS ACCEPTANCE DATE: BAY:	PRSENTED <u>BY: Muyuntale</u> T. KUZUMOTO
	Dept. General Manager REVIEWED BY: PREPARED BY: X Louidani K. Kamei
	Engineering Dept.2 Memory IC Engineering Center Tenri Integrated Circuits.Group SHARP CORPORATION

LH51B0HY

- Handle this document carefully for it contains material protected by international copyright law. Any reproduction, full or in part, of this material is prohibited without the express written permission of the company.
- When using the products covered herein, please observe the conditions written herein and the precautions outlined in the following paragraphs. In no event shall the company be liable for any damages resulting from failure to strictly adhere to these conditions and precautions.
 - The products covered herein are designed and manufactured for the following application areas. When using the products covered herein for the equipment listed in Paragraph (2), even for the following application areas, be sure to observe the precautions given in Paragraph (2). Never use the products for the equipment listed in Paragraph (3).
 - Office electronics
 - Instrumentation and measuring equipment
 - Machine tools
 - Audiovisual equipment
 - Home appliances
 - · Communication equipment other than for trunk lines
 - (2) Those contemplating using the products covered herein for the following equipment which demands high reliability, should first contact a sales representative of the company and then accept responsibility for incorporating into the design fail-sale operation, redundancy, and other appropriate measures for ensuring reliability and safety of the equipment and the overall system.
 - Control and safety devices for airplanes, trains, automobiles, and other transportation equipment
 - Mainframe computers
 - Traffic control systems
 - Gas leak detectors and automatic cutoff devices
 - · Rescue and security equipment
 - Other safety devices and safety equipment, etc.
 - (3) Do not use the products covered herein for the following equipment which demands extremely high performance in terms of functionality, reliability, or accuracy.
 - Aerospace equipment
 - · Communications equipment for trunk lines
 - · Control equipment for the nuclear power industry
 - Medical equipment related to life support, etc.

(4)Please direct all queries and comments regarding the interpretation of the above three Paragraphs to a sales representative of the company.

Please direct all queries regarding the products covered herein to a sales representative of the company.

Contents

1.	Description	2
2.	Pin Configuration · · · · · · · · · · · · · · · · · · ·	2
3.	Truth Table	3
4.	Block Diagram	3
5.	Absolute Maximum Ratings	4
6.	Recommended DC Operating Conditions	4
	DC Electrical Characteristics	4
		5
9.	Data Retention Characteristics	6
10.	Pin Capacitance	6
11.	Timing Chart	7

[Note]

This document contains initial characterization limits that are subject to change upon full characterization of production devices.

L H 5 1 B 0 H Y

1. Description The L H 5 1 B V 1 0 0 0 H Y - 7 0 L L is a static RAM organized as 1 3 1, 0 7 2 \times 8 bit with provides low-power standby mode. It is fabricated using silicon-gate CMOS process technology. Features 70 ns (Max.) OAccess Time 30 mA (Max.) O0perating current 5 mA (Max. trc. twc=1 μ s) OStandby current $60 \mu A$ (Max.) OData retention current 1.0 μ A (Max. V CCDR = 3 V, Ta = 2 5 °C) OSingle power supply 2.7 V to 3.6 V Operating temperature -40℃to+85℃ OFully static operation OThree-state output ONot designed or rated as radiation hardened O32 pin CSP (FBGA032-P-0610) plastic package $\bigcirc P$ -type bulk silicon 2. Pin Configuration 2 3 6 7 8 1 4 5 (A2) (A3) (NC $|A4\rangle$ A5 Α (A1) (I/OÌ) (A0) (A12) (1/02) A6 A7 B С GND (1/03) (A16) (A14) D (I/O5 VCC 1/04 (A15) E (I/O8) Í/06 /WE 1/07 (A13) CE2 F (/OE) (CE1) A10) (A8) (A11) A9 (Top View) Function Pin Name Address inputs Ao to Ai6 Chip enable 1 CE1 Chip enable 2 C E 2 WE Write enable Output enable ΟE I /O 1 to I /O 8 Data inputs/outputs Power supply Vcc Ground $G \ N \ D$ ΝC Non connection

LH51B0HY

5. Absolute Maximum Ratings

Parameter	Symbol	Ratings	Unit
Supply voltage(*1)	Vcc	-0.5 to $+4.6$	V
Input voltage (*1)	VIN	-0.5(*2) to Vcc+0.3	V
Operating temperature	Topr	-40 to +85	Ĉ
Storage temperature	Tstg	-65 to $+150$	°C

Note) *1. The maximum applicable voltage on any pin with respect to GND.
*2. Undershoot of -3. 0V is allowed width of pulse bellow 50ns.

6. Recommended DC Operating Conditions

-			(Ta= ·	-40℃to+	85°)
Parameter	Symbol	Min.	Typ.	Max.	Unit
Supply voltage	Vcc	2.7	3.0	3.6	V
Input voltage	Vін	2.2	_	Vcc+0.3	V
	VIL	-0.3 (*3)		0.4	V

Note) *3. Undershoot of -3.0V is allowed width of pulse below 50ns.

7. DC Electrical Characteristics

 $(Ta = -4 \ 0 \ C \ to \ +8 \ 5 \ C \ , Vcc = \ 2 \ . \ 7 \ V \ to \ 3 \ . \ 6 \ V)$

Parameter	Symbol	Conditions		Min.	Typ. (*4)	Max.	Unit
Input leakage	ILI	V _{IN} =OV to Vcc					
current				-1.0		1.0	μΑ
Output	ILO	CE1=VIH or CE2=VII. or					
leakage		OE=VIN or WE=VIL		-1.0		1.0	μΑ
current		V _{1/0} =OV to Vcc					
Operating	Iccı	CE1=VIL, VIN=VIL or VIII	tevele				
supply		CE2=V10. I 1/0=OmA	=Min			3 0	mA
current	I CC 2	$\overline{CE_1}=V_{1L}, V_{1N}=V_{1L}$ or V_{1H}	tevele				
curr curr		CE2=V1H, I1/0=OmA	=1.0 µ S			5	mA
Standby	Іѕв	$\overline{\text{CE}_{1},\text{CE}_{2}} \ge V_{cc} - 0.2 \text{V or}$					
current		$CE_2 \leq 0.2V$			0.6	6 0	μ A
	I SB1	CE1=VIH or CE2=VIL				1.0	mA
Output	Vol	I of $= 2.0 \text{ mA}$, $Vcc \ge 3V$				0.4	V
voltage		$I_{0L} = 0.1 \text{ mA}$				0.2	V
	Vон	$I_{OH} = -2.0 \text{ mA}$, $Vcc \ge 3V$		2.4			V
		$I_{OH} = -0.1 \text{ mA}$		Vec - 0.2	-		V

Read cycle

8. AC Electrical Characteristics

AC Test Conditions

Input pulse level	0.4V to 2.4V
Input rise and fall time	5 n s
Input and Output timing Ref. level	1.5 V
Output load	$1 T T L + C_{L} (1 0 0 p F) (* 5)$

Note) *****5. Including scope and jig capacitance.

	$(T_a = -4)$	0 °C	to + 8	35°C,	$V_{cc} =$	2.	7 V	to
--	--------------	------	--------	-------	------------	----	-----	----

Parameter	Symbol	Min.	Max.	Unit	
Read cycle time	trc	70		ns	
Address access time	t a a		70	ns	
CE1 access time	t ACE1		70	ns	
CE2 access time	t ACE2		70	ns	
Output enable to output valid	toe		4 0	ns	
Output hold from address change	tон	1 0		ns	
CE1 Low to output active	t L Z 1	5		ns	
CE ₂ High to output active	t L Z 2	5		ns	
OE Low to output active -	tolz	0		ns	
CE: High to output in High impedance	tHZI		30	ns	
CE: Low to output in High impedance	t H Z 2		30	ns	
OE High to output in High impedance	tонz		3 0	ns	

Write cycle

 $(T_a = -4 \ 0 \ C \ to \ +8 \ 5 \ C \ , Vcc = \ 2 \ . \ 7 \ V \ to \ 3 \ . \ 6 \ V \)$

Parameter	Symbol	Min.	Max.	Unit	
Write cycle time	twc	70		ns	
Chip enable to end of write	tcw	60		ns	
Address valid to end of write	t aw	60		ns	
Address setup time	tas	0		ns	
Write pulse width	twp	55		ns	
Write recovery time	twr	0		ns	
Input data setup time	tow	30		ns	
Input data hold time	t dh	0		ns	
WE High to output active	tow	5		ns	
WE Low to output in High impedance	twz		30	ns	
OE High to output in High impedance	tонz		30	ns	

Note) *6. Active output to High impedance and High impedance to output active tests specified for a ± 200 mV transition from steady state levels into the test load.

3.6V)

9. Data Retention Characteristics

				$(T_a = \cdot$	-40°C	to + 8	5°C)
Parameter	Symbol	Conditions		Min.	Typ. (*7)	Max.	Unit
Data Retention	VCCDR	$C E_2 \leq 0.2 V$ or					
supply voltage		$\overline{CE}_1 \ge V_{CCDR} - 0.2$	V (* 8)	2.0		3.6	V
Data Retention	ICCDR	$V_{CCDR} = 3 V$	T a = 2 5 ℃		0.5	1.0	μΑ
supply current		C E 2 ≤ 0.2 or	T a = 4 0 °C			3.0	μΑ
		$\overline{CE}_1 \ge V_{CCDR} - 0.2$	V (*8)			50	μΑ
Chip enable	tcdr						
setup time				0			m s
Chip enable	tr						
hold time				5			m s

Note) **★**7.Typical values at Ta=25℃.

*****8. $C E_2 \ge V_{CCDR} - 0.2 V$ or $C E_2 \le 0.2 V$

10.Pin Capacitance

 $(T_a = 2 5 \degree C, f = 1 M H z)$

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit	
Input capacitance	CIN	$V_{IN} = 0 V$			8	рF	* 9
I/O capacitance	C 1 /0	$V_{I/0} = 0 V$			10	рF	* 9

Note) *9. This parameter is sampled and not production tested.

.

LH51B0HY

STATIC SRAM RAM Random Access Memory Low Power CSP