LH51BV1000J CMOS 1M (128K \times 8) Static Ram ### **FEATURES** • Access time: 70 ns (MAX.) Current consumption: Operating: 30 mA (MAX.) 5 mA (MAX.) (t_{RC} , t_{WC} = 1 μ s) Standby: 60 μA (MAX.) • Data Retention: 1.0 μ A (MAX.) (V_{CCDR} = 3 V, T_A = 25°C) • Single power supply: 2.7 V to 3.6 V • Operating temperature: -25°C to +85°C • Fully-static operation Three-state output Not designed or rated as radiation hardened Package: 32-pin 6 × 10 mm CSP • N-type bulk silicon ## **DESCRIPTION** The LH51BV1000JY is a static RAM organized as $131,072 \times 8$ bits which provides low power standby mode. It is fabricated using silicon-gate CMOS process technology. ## **PIN CONNECTIONS** Figure 1. Pin Connections for CSP Package Figure 2. LH51BV1000JY Block Diagram ## PIN DESCRIPTION | SIGNAL | PIN NAME | |----------------------------------|----------------| | A ₀ – A ₁₆ | Address inputs | | CE ₁ | Chip enable 1 | | CE ₂ | Chip enable 2 | | WE | Write enable | | OE | Output enable | | SIGNAL | PIN NAME | |-------------------------------------|-------------------------| | I/O ₁ – I/O ₈ | Data inputs and outputs | | V _{CC} | Power supply | | GND | Ground | | NC | No connection | # **TRUTH TABLE** | CE ₁ | CE ₂ | WE | ŌĒ | MODE | I/O ₁ - I/O ₈ | SUPPLY CURRENT | |-----------------|-----------------|----|----|----------------|-------------------------------------|-----------------------------| | Н | | _ | _ | Standby | High impedance | Standby (I _{SB}) | | | L | | _ | Standby | High impedance | Standyby (I _{SB}) | | L | Н | L | | Write | Data input | Active (I _{CC}) | | L | Н | Н | L | Read | Data output | Active (I _{CC}) | | L | Н | Н | Н | Output disable | High impedance | Active (I _{CC}) | ## NOTE: 1. — = Don't care, L = Low, H = High # **ABSOLUTE MAXIMUM RATINGS** | PARAMETER | SYMBOL | RATING | UNIT | NOTE | |-----------------------|------------------|--------------------------|------|------| | Supply voltage | Vcc | -0.5 to +4.6 | V | 1 | | Input voltage | V _{IN} | -0.5 to $V_{CC} + 0.3$ | V | 1, 2 | | Operating temperature | T _{OPR} | −25 to +85 | °C | _ | | Storage temperature | T _{STG} | -65 to +150 | °C | _ | #### NOTE - 1. The maximum applicable voltage on any pin with respect to GND. - 2. Undershoot of -3.0 V is allowed width of pulse below 50 ns. # RECOMMENDED OPERATING CONDITIONS ($T_A = -25^{\circ}C$ to +85°C) | PARAMETER | SYMBOL | MIN. | TYP. | MAX. | UNIT | NOTE | |----------------|-----------------|------|------|-----------------------|------|------| | Supply voltage | V _{CC} | 2.7 | 3.0 | 3.6 | V | | | Input voltage | V _{IH} | 2.2 | | V _{CC} + 0.3 | V | | | input voltage | VIL | -0.3 | _ | 0.4 | V | 1 | #### NOTE: # DC ELECTRICALCHARACTERISTICS ($T_A = -25^{\circ}C$ to $+85^{\circ}C$, $V_{CC} = 2.7$ V to 3.6 V) | PARAMETER | SYMBOL | CONDITIONS | | MIN. | TYP. ¹ | MAX. | UNIT | | |------------------------|--|---|-----------------------------|-----------------------|-------------------|------|------|--| | Input leakage current | ILI | V _{IN} = 0 V to V _{CC} | | -1.0 | _ | 1.0 | μΑ | | | Output leakage current | ILO | - <u> </u> | -1.0 | _ | 1.0 | μΑ | | | | Operating supply | | $\overline{CE_1} = V_{IL}$, $V_{IN} = V_{IL}$ or V_{IH}
$CE_2 = V_{IH}$, $I_{I/O} = 0$ mA | tcycle = MIN. | _ | _ | 30 | mA | | | current | put leakage ent I_{LO} $CE_1 = V_I$ $OE = V_I$ $V_{I/O}$ $CE_1 = V_{IL}, V_{IN} = V_I$ $CE_2 = V_{IH}, I_{I/O}$ $CE_1 = V_{IL}, V_{IN} = V_I$ $CE_2 = V_{IH}, I_{I/O}$ $CE_2 = V_{IH}, I_{I/O}$ $CE_1 = V_{IL}, V_{IN} V_{IL},$ | $\overline{CE}_1 = V_{IL}$, $V_{IN} = V_{IL}$ or V_{IH}
$CE_2 = V_{IH}$, $I_{I/O} = 0$ mA | t _{CYCLE} = 1.0 μs | _ | | 5 | ША | | | Standby current | I _{SB} | $\overline{\text{CE}}_1$, $\overline{\text{CE}}_2 \ge V_{CC} - 0.2 \text{ V or CE}$ | ₂ ≤ 0.2 V | _ | 0.6 | 60 | μΑ | | | Standby Current | I _{SB1} | $\begin{array}{c} \overline{CE_1} = V_{IH} \text{ or } \overline{CE_2} = V_{IL} \text{ or} \\ \overline{OE} = V_{IH} \text{ or } \overline{WE} = V_{IL} \\ V_{I/O} = 0 \text{ V to } V_{CC} \\ \hline \overline{CE_1} = V_{IL}, V_{IN} = V_{IL} \text{ or } V_{IH} \\ \overline{CE_2} = V_{IH}, I_{I/O} = 0 \text{ mA} \\ \hline \overline{CE_1} = V_{IL}, V_{IN} = V_{IL} \text{ or } V_{IH} \\ \hline \overline{CE_1} = V_{IL}, V_{IN} = V_{IL} \text{ or } V_{IH} \\ \hline \end{array}$ | | | 1.0 | mA | | | | Var | | I_{OL} = 2.0 mA, $V_{CC} \ge 3 \text{ V}$ | | | | 0.4 | | | | Output voltage | VOL | $I_{OL} = -0.1 \text{ mA}$ | | | | 0.2 | V | | | | V _{OH} | $I_{OH} = -2.0 \text{ mA}, \ V_{CC} \ge 3 \text{ V}$ | | 2.4 | _ | _ | • | | | | VOH | $I_{OH} = -0.1 \text{ mA}$ | | V _{CC} - 0.2 | _ | | | | #### NOTE: # AC ELECTRICAL CHARACTERISTICS AC Test Conditions | PARAMETER | MODE | NOTE | |------------------------------------|---------------------------------|------| | Input pulse level | 0.4 V to 2.4 V | _ | | Input rise and fall time | 5 ns | | | Input and output timing ref. level | 1.5 V | | | Output load | 1 TTL + C _L (100 pF) | 1 | #### NOTE: ^{1.} Undershoot of -3.0 V is allowed width of pulse below 50 ns. ¹ Typical values at V_{CC} = 5.0 V, T_A = 25°C ^{1.} Including scope and jig capacitance. # READ CYCLE ($T_A = -25^{\circ}C$ to $+85^{\circ}C$, $V_{CC} = 2.7$ V to 3.6 V) | PARAMETER | SYMBOL | MIN. | MAX. | UNIT | NOTE | |--|-------------------|------|------|------|------| | Read cycle time | t _{RC} | 70 | | ns | | | Address access time | t _{AA} | | 70 | ns | | | CE ₁ access time | t _{ACE1} | _ | 70 | ns | _ | | CE ₂ access time | t _{ACE2} | _ | 70 | ns | _ | | Output enable to output valid | t _{OE} | | 40 | ns | | | Output hold from address change | t _{OH} | 10 | _ | ns | | | CE ₁ Low to output active | t _{LZ1} | 5 | _ | ns | 1 | | CE ₂ High to output active | t _{LZ2} | 5 | _ | ns | 1 | | OE Low to output active | toLZ | 0 | _ | ns | 1 | | CE ₁ High to output in High impedance | t _{HZ1} | _ | 30 | ns | 1 | | CE ₂ Low to output in High impedance | t _{HZ2} | _ | 30 | ns | 1 | | OE High to output in High impedance | t _{OHZ} | _ | 30 | ns | 1 | #### NOTE: # WRITE CYCLE ($T_A = -25$ °C to +85°C, $V_{CC} = 2.7$ V to 3.6 V) | PARAMETER | SYMBOL | MIN. | MAX. | UNIT | NOTE | |-------------------------------------|-----------------|------|------|------|------| | Write cycle time | t _{WC} | 70 | | ns | | | Chip enable to end of write | t _{CW} | 60 | | ns | | | Address valid to end of write | t _{AW} | 60 | | ns | | | Address setup time | t _{AS} | 0 | | ns | | | Write pulse width | t _{WP} | 55 | | ns | | | Write recovery time | t _{WR} | 0 | | ns | | | Input data setup time | t _{DW} | 30 | | ns | | | Input data hold time | t _{DH} | 0 | | ns | | | WE High to output active | tow | 5 | _ | ns | 1 | | WE Low to output in High impedance | twz | _ | 30 | ns | 1 | | OE High to output in High impedance | tonz | | 30 | ns | 1 | ## NOTE: Active output to High impedance to output active tests specified for a ±200 mV transition from steady state levels into the test load. ^{1.} Active output to High impedance to output active tests specified for a ± 200 mV transition from steady state levels into the test load. # DATA RETENTION CHARACTERISTICS ($T_A = -25^{\circ}C$ to +850°C) | PARAMETER | SYMBOL | CONDITIONS | | MIN. | TYP. ¹ | MAX. | UNIT | NOTES | |-------------------------------|---|---|---|------|-------------------|------|------|-------| | Data retention supply voltage | VCCDR | $\frac{\text{CE}_2 \le 0.2 \text{ V or}}{\text{CE}_1 \ge \text{V}_{\text{CCDR}} - 0.2 \text{ V}}$ | | 2.0 | _ | 3.6 | V | 2 | | V _{CCDR} = 3 V | V _{CCDR} = 3 V | T _A = 25°C | _ | 0.5 | 1.0 | μΑ | _ | | | supply current | Data retention Icopp CF ₂ < 0.2 V or | T _A = 40°C | _ | _ | 3.0 | _ | _ | | | | | 5=1= 100BK 5.= 1 | | _ | _ | 50 | μΑ | 2 | | Chip enable setup time | tcdr | _ | | 0 | _ | _ | ms | _ | | Chip enable hold time | t _R | _ | | 5 | _ | _ | ms | _ | ## NOTES: 1. Typical value at $T_A = 25^{\circ}C$ 2. $CE_2 \ge V_{CCDR}$ - 0.2 V or $CE_2 \le 0.2$ V # PIN CAPACITANCE ($T_A = 25^{\circ}C$, f = 1 MHz) | PARAMETER | SYMBOL | CONDITIONS | MIN. | TYP. | MAX. | UNIT | NOTE | |-------------------|------------------|------------------------|------|------|------|------|------| | Input capacitance | C _{IN} | V _{IN} = 0 V | _ | _ | 8 | pF | 1 | | I/O capacitance | C _{I/O} | V _{I/O} = 0 V | | _ | 10 | pF | 1 | #### NOTE: 1. This parameter is sampled and not production tested. Figure 3. Read Cycle ### NOTES: - 1. A write occurs during the overlap of a LOW CE₁, a HIGH CE₂ and a LOW WE, A write begins at the latest transition among CE₁ going LOW, CE₂ going HIGH and WE going LOW. A write ends at the earliest transition among CE₁ going HIGH, CE₂ going LOW and WE going HIGH. t_{WP} is measured from the beginning of write to the end of write. - 2. $t_{\rm CW}$ is measured from the latter of $\overline{\rm CE}_1$ going LOW or ${\rm CE}_2$ going HIGH to the end of write. - 3. $\,t_{\rm AS}$ is measured from the address valid to the beginning of write. - 4. t_{WR} is measured from the end of write to the address change. t_{WR1} applies in case a write ends at CE₁ or WE going HIGH. t_{WR2} applies in case a write ends at CE₂ going LOW. - During this period, I/O pins are in the output state, therefore the input signals of opposite phase to the outputs must not be applied. - If CE₁ goes LOW simultaneously with WE going LOW or after WE going LOW, the outputs remain in high impedance state. - If CE₁ goes HIGH simulaneously with WE going HIGH or before WE going HIGH, the outputs remain in high impedance state. 51BV1000-4 Figure 4. Write Cycle (OE Controlled) #### NOTES: - 1. A write occurs during the overlap of a LOW \(\overline{CE}_1\), a HIGH CE₂ and a LOW \(\overline{WE}\), A write begins at the latest transition among \(\overline{CE}_1\) going LOW, CE₂ going HIGH and \(\overline{WE}\) going LOW. A write ends at the earliest transition among \(\overline{CE}_1\) going HIGH. CE₂ going LOW and \(\overline{WE}\) going HIGH. t_{WP} is measured from the beginning of write to the end of write. - 2. t_{CW} is measured from the latter of \overline{CE}_1 going LOW or CE_2 going HIGH to the end of write. - 3. $\,t_{\rm AS}$ is measured from the address valid to the beginning of write. - t_{WR} is measured from the end of write to the address change. t_{WR1} applies in case a write ends at CE₁ or WE going HIGH. t_{WR2} applies in case a write ends at CE₂ going LOW. - During this period, I/O pins are in the output state, therefore the input signals of opposite phase to the outputs must not be applied. - If \(\overline{CE}_1\) goes LOW simultaneously with \(\overline{WE}\) going LOW or after \(\overline{WE}\) going LOW, the outputs remain in high impedance state. - 7. If $\overline{\text{CE}}_1$ goes HIGH simulaneously with $\overline{\text{WE}}$ going HIGH or before $\overline{\text{WE}}$ going HIGH, the outputs remain in high impedance state. 51BV1000-5 Figure 5. Write Cycle (OE Low Fixed) 8 Figure 6. Data Retention Chart (CE₁ Controlled) # **PACKAGE DIAGRAM** # **ORDERING INFORMATION**