

9 December 1996

SHARP CORPORATION

LH28F800SUTD 8 Mbit (1024 Kbit x 8, 512 Kbit x 16) 3.3V (V_{pp}=5V) Dual Work Flash Memory

CONTENTS

PAGE CONTENTS

PAGE

FE	ATURES	.1
1.0	INTRODUCTION	2
	1.1 Product Overview	2
2.0	DEVICE PINOUT	3
	2.1 Lead Descriptions	5
3.0	MEMORY MAPS	7
4.0	BUS OPERATIONS, COMMANDS AND	
	STATUS REGISTER DEFINITIONS	8
	4.1 Bus Operations for Word-Wide Mode	8
	4.2 Bus Operations for Byte-Wide Mode	
	4.3 LH28F008SA-Compatible Mode	
	Command Bus Definitions	9
	4.4 LH28F800SUTD-Performance	-
	Enhancement Command Bus	
	Definitions	to
	4.5 Compatible Status Register	
5.0	8M DUAL WORK FLASH MEMORY SOFTWAR	E
	ALGORITHMS	12

5.1	Overview	12
5.2	8M Dual Work Flash Memory Algorithm	
	Flowcharts	13

	•	
6.0	ELECTRICAL SPECIFICATIONS	 23
	6.1 Absolute Maximum Ratings	 23
	6.2 Capacitance	
	6.3 Timing Nomenclature	
	6.4 DC Characteristics	
	6.5 AC Characteristics-Read Only	
	Operations	 28
	6.6 Power-Up and Reset Timings	
	6.7 AC Characteristics for WE# -	
	Controlled Command Write	
	Operations	 33
	6.8 AC Characteristics for BE# -	
	Controlled Command Write	
	Operations	 35
	6.9 Erase and Byte Write	
	Performance	 37

7.0 PACKAGE AND PACKING

SPECIFICATIONS	38	
----------------	----	--

Sharp

8M DUAL WORK

Handle this document carefully for it contains material protected by international copyright law. Any reproduction, full or in part, of this material is prohibited without the express written permission of the company.

ullet When using the products covered herein, please observe the conditions written herein and the precautions outlined in the following paragraphs. In no event shall the company be liable for any damages resulting from failure to strictly adhere to these conditions and precautions.

(1) The products covered herein are designed and manufactured for the following application areas. When using the products covered herein for the equipment listed in Paragraph (2). even for the following application areas, be sure to observe the precautions given in Paragraph (2). Never use the products for the equipment listed in Paragraph (3).

·Office electronics

- ·Instrumentation and measuring equipment
- · Machine tools
- ·Audiovisual equipment
- · Home appliance
- ·Communication equipment other than for trunk lines

(2) Those contemplating using the products covered herein for the following equipment which demands high reliability, should first contact a sales representative of the company and then accept responsibility for incorporating into the design fail-safe operation, redundancy, and other appropriate

measures for ensuring reliability and safety of the equipment and the overall system. ·Control and safety devices for airplanes, trains, automobiles, and other transportation equipment

- ·Mainframe computers
- ·Traffic control systems
- ·Gas leak detectors and automatic cutoff devices
- ·Rescue and security equipment
- •Other safety devices and safety equipment, etc.

(3) Do not use the products covered herein for the following equipment which

demands extremely high performance in terms of functionality, reliability, or accuracy.

·Aerospace equipment

·Communications equipment for trunk lines

·Control equipment for the nuclear power industry

· Medical equipment related to life support, etc.

(4) Please direct all queries and comments regarding the interpretation of the above three Paragraphs to a sales representative of the company.

•Please direct all queries regarding the products covered herein to a sales representative of the company.

8M DUAL WORK

LH28F800SUTD 8 MBIT (1024 KBIT x 8, 512 KBIT x 16) 3.3V (V_{p=}5V) DUAL WORK FLASH MEMORY

FEATURES

- 2 Banks Enable the Simultaneous Read/ Write/Erase Operation
- 64 Independently Lockable Blocks
- 10,000 Erase Cycles per Block
- 5V Write/Erase Operation (5V V_{pp}, 3.3V V_{cc})
- User-Configurable x8 or x16 Operation
- 150 ns Maximum Access Time $(V_{cc} = 3.3V \pm 0.3V)$
- Min. 2.7V Read Capability
 190 ns Maximum Access Time
 - (V_{cc} = 2.7V, -40°C to +85°C)
- Automated Byte Write/Block Erase
 - Command User Interface
 - Status Register
 - RY/BY# Status Output
- 48-Lead, 1.2mm x 12mm x 20mm TSOP Package

- System Performance Enhancement
 - Erase Suspend for Read
 - Two-Byte Write
 - Bank Erase
- Data Protection
 - Hardware Erase/Write Lockout during Power Transitions
 - Software Erase/Write Lockout
- Independently Lockable for Write/Erase on Each Block (Lock Block & Protect Set/ Reset)
- 8 µA (Typ.) Ice in CMOS Standby
- 0.4 μA (Typ.) Deep Power-Down
- State-of-the-Art 0.45 µm ETOX[™] Flash Technology
- Extended Temperature Operation
 - -40°C to +85°C
- Not designed or rated as radiation hardened

Sharp's LH28F800SUTD 8-Mbit Flash Memory is a revolutionary architecture which enables the design of truly mobile. high performance, personal computing and communication products. With innovative capabilities, 3.3V low power operation and very high read/write performance, the LH28F800SUTD is also the ideal choice for designing embedded mass storage flash memory systems.

The LH28F800SUTD is a very high density, highest performance non-volatile read/write solution for solid-state storage applications. Its independently lockable 64 symmetrical blocked architecture (16-Kbyte each) extended cycling, low power operation, very fast write and read performance and selective block locking provide a highly flexible memory component suitable for high density memory cards, Resident Flash Arrays and PCMCIA-ATA Flash Drives. The LH28F800SUTD's 5.0V/3.3V power supply operation enables the design of memory cards which can be read in 3.3V system and written in 5.0V/3.3V systems. Its x8/x16 architecture allows the optimization of memory to processor interface. The flexible block locking option enables bundling of executable application software in a Resident Flash Array or memory card. Manufactured on Sharp's 0.45 µm ETOX[¬] process technology, the LH28F800SUTD is the most cost-effective, high-density 3.3V flash memory.

LH29F800SUTD divides 8-Mbit into two areas. Each area can read/write/erase independently. For example, while you write and erase on one area, you can simultaneously read the data from the other area. This enables users to reduce the number of components in their system.

* ETOX is a trademark of Intel corporation.

Sharp

1.0 INTRODUCTION

The data sheet is intended to give an overview of the chip feature-set and of the operating AC/DC specifications.

1.1 Product Overview

The LH28F800SUTD is a high performance 8-Mbit (8,388.608 bit) block erasable non-volatile random access memory organized as either 256 Kword x 16 x 2 banks or 512 Kbyte x 8 x 2 banks. The LH28F80CSUTD includes sixty-four 16 KB (16,384) blocks. A chip memory map is shown in Figure 3.

The two banks, the one selected by BE₀# (bank0) and the other selected by BE₁# (bank1) can be controlled independently. For example, while erase the data in bank0, the data in bank1 can be read out.

The implementation of a new architecture, with many enhanced features, will improve the device operating characteristics and results in greater product reliability and ease of use.

Among the significant enhancements of the LH28F500SUTD:

- 3V Read, 5V Write/Erase Operation (5V V_{PP} 3V V_{cc})
- Low Power Capability (2.7V V_{cc} Read)
- Improved Write/Erase Performance (Two-Byte Serial Write, Bank Erase)
- Dedicated Block Write/Erase Protection
- Command-Controled Memory Protection Set/Reset
 Capability

The LH28F800SUTD will be available in a 48-lead, 1.2mm thick, 12mm x 20mm TSOP type I package. This form factor and pinout allow for very high board layout densities.

A Command User Interface (CUI) serves as the system interface between the microprocessor or microcontroller and the internal memory operation.

Internal Algorithm Automation allows Byte Writes and Block Erase operations to be executed using a Two-Write command sequence to the CUI in the same way as the LH29F008SA 8-Mbit Flash memory. A Superset of commands have been added to the basic LH28F008SA command-set to achieve higher write performance and provide additional capabilities. These new commands and features include:

- Software Locking of Memory Blocks
- Memory Protection Set/Reset Capability
- Two-Byte Serial Writes in 8-bit Systems
- Bank Erase All Unlocked Blocks

Writing of memory data is performed typically within 20 μ sec per byte. Writing of memory data is performed typically within 30 μ sec per word. A Elock Erase operation erases one of the 64 blocks in typically 1.1 sec, independent of the other blocks.

LH28F800SUTD allows to erase all unlocked blocks for each bank selected by BE_0 or BE_1 . It is desirable in case of which you have to implement Erase operation max. 64 times.

LH28F800SUTD enables Two-Byte serial Write which is operated by three times command input. Writing of memory data is performed typically within 30 µsec per two-byte. This feature can improve system write performance by up to typically 15 µsec per byte.

All operations are started by a sequence of Write commands to the device. Status Register (described in detail later) and a RY/BY# output pin provide information on the progress of the requested operation.

Same as the LH28F008SA, LH28F800SUTD requires an operation to complete before the next operation can be requested, also it allows to suspend block erase to read data from any other block, and allow to resume erase operation.

The LH28F800SUTD provides user-selectable block locking to protect code or data such as Device Drivers, PCMCIA card information, ROM-Executable OS or Application Code. Each block has an associated nonvolatile lock-bit which determines the lock status of the block. In addition, the LH28F300SUTD has a software controled master Write Protect circuit which prevents any modifications to memory blocks whose lock-bits are set.

8M DUAL WORK

When the device power-up or RP# turns High, Write Protect Set Confirm command must be written both in bank0 and bank1. Otherwise, all lock bits in the device remain being locked, can't perform the Write to each block and single Block Erase. Write Protect Set/Confirm command must be written to reflect the actual lock status. However, when the device power-on or RP# turns High, Erase All Unlocked Blocks can be used. If used, Erase is performed with reflecting actual lock status, and after that Write and Block Erase can be used.

The LH28F300SUTD contains a Compatible Status Register (CSR) which is 100% compatible with the LH28F008SA Flash memory's Status Register. This register, when used alone, provides a straightforward upgrade capability to the LH28F800SUTD from a LH28F008SA-based design.

The LH28F600SUTD incorporates an open drain RY/ BY# output pin. This feature allows the user to OR-tie many RY.BY# pins together in a multiple memory configuration such as a Resident Flash Array.

The LH28F300SUTD is specified for a maximum access time of 150 nsec (t_{Acc}) at 3.3V operation (3.0 to 3.6V) over the commercial temperature range (-40 to +85°C). A corresponding maximum access time of 190 nsec (t_{Acc}) at 2.7V (-40 to +85°C) is achieved for reduced power consumption applications.

The LH28F300SUTD incorporates an Automatic Power Saving (APS) feature which substantially reduces the active current when the device is in static mode of operation (addresses not switching).

In APS mode, the typical I_{cc} current is 2 mA at 3.3V.

A Deep Power-Down mode of operation is invoked when the RP# (called PWD# on the LH28F008SA) pin transitions low, any current operation is aborted and the device is put into the deep power down mode. This mode brings the device power consumption to less than 16 μ A, and provides additional write protection by acting as a device reset pin during power transitions. When the power is turned on, RP# pin is turned to low in order to return the device to default configuration. When the power transition is occurred, or at the power on/off, RP# is required to stay low in order to protect data from noise. A recovery time of 750ns is required from RP# switching high until outputs are again valid. In the Deep Power-Down state, the WSM is reset (any current operation will abort) and the CSR register is cleared. A CMOS Standby mode of operation is enabled when BE_x # (either BE_0 # or BE_1 # which is in low state) transitions high with all input control pins at CMOS levels. In this mode, the device draws an I_{cc} standby current of 30 μ A.

Please do not excute reprogramming 0 for the bit which has already been programed 0. Overwrite operation may generate unerasable bit. In case of reprogramming 0 to the data whitch has been programmed 1.

- program 0 for the bit in which you want to change data from 1 to 0.
- program 1 for the bit which has already been programmed 0.

For example, changing data from 10111101 to 10111100 requires 11111100 programming.

2.0 DEVICE PINOUT

The LH28F800SUTD 48-Lead TSOP Type I pinout configuration is shown in Figure 2.

SHARP

8M DUAL WORK

Figure 1. LH28F800SUTD Block Diagram

•

2.1 Lead Descriptions

Symbol	Туре	Name and Function
DQ ₁₅ /A ₋₁	INPUT	BYTE-SELECT ADDRESS: Selects between high and low byte when device is in x8 mode. This address is latched in x8 Data Writes. Not used in x16 mode (i.e., the DQ_{15}/A_{-1} input buffer is turned off when BYTE# is high).
A0-A12	INPUT	WORD-SELECT ADDRESSES: Select a word within one 16-Kbyte block. These addresses are latched during Data Writes.
A ₁₃ -A ₁₇	INPUT	BLOCK-SELECT ADDRESSES: Select 1 of 32 Erase blocks. These addresses are latched during Data Writes, Erase and Lock-Block operations.
DQ0-DQ7	INPUT/ OUTPUT	LOW-BYTE DATA BUS: Inputs data and commands during CUI write cycles. Outputs array, buffer, identifier or status data in the appropriate Read mode. Ficated when the chip is de-selected or the outputs are disabled.
DQ8-DQ15	INPUT/ OUTPUT	HIGH-BYTE DATA BUS: Inputs data during x16 Data-Write operations. Outputs array, buffer or identifier data in the appropriate Read mode; not used or Status register reads. Floated when the chip is de-selected or the outputs are disabled. DQ_{15}/A_{-1} is address.
BE ₀ #, BE ₁ #	INPUT	BANK ENABLE INPUTS: Activate the device's control logic, input buffers, decoders and sense amplifiers. BE# must be low to select the device. When BE_0 # is low, bank0 is active. When BE_1 # is low, bank1 is active. Both BE_0 # and BE_1 # must not be low at the same time.
RP#	INPUT	RESET/POWER-DOWN: With RP# low, the device is reset, any current operation is aborted and device is put into the deep power down mode. When the power is turned on, RP# pin is turned to low in order to return the device to default configuration. When the power transition is occurred, or the power on/off, RP# is required to stay low in order to protect data from noise. When returning from Deep Power-Down, a recovery time of 750 ns is required to allow these circuits to power-up. When RP# goes low, any current or pending WSM operation(s) are terminated, and the device is reset. All Status registers return to ready (with all status flags cleared). After returning, the device is in read array mode.
OE#	INPUT	OUTPUT ENABLE: Gates device data through the output buffers when low. The outputs float to tri-state off when OE# is high.
WE#	INPUT	WRITE ENABLE: Controls access to the CUI, Data Queue Registers and Address Queue Latches. WE# is active low, and latches both address and data (command or array) on its rising edge.
RY/BY#	OPEN DRAIN OUTPUT	READY/BUSY: Indicates status of the internal WSM. When low, it indicates that the WSM is busy performing an operation. When the WSM is ready for new operation or Erase is Suspended, or the device is in deep power-down mode RY/BY = pin is floated.
BYTE#	INPUT	BYTE ENABLE: BYTE# low places device in x8 mode. All data is then input or output on DQ ₀₋₇ , and DQ ₈₋₁₅ float. Address A-1 selects between the high and low byte. BYTE# high places the device in x16 mode, and turns off the A ₋₁ input buffer. Address A ₀ , then becomes the lowest order address.
Vpp	SUPPLY	ERASE/WRITE POWER SUPPLY (5.0V \pm 0.5V): For erasing memory array blocks or writing words/bytes into the flash array.
Vcc	SUPPLY	DEVICE POWER SUPPLY (3.3V ± 0.3V): Do not leave any power pins floating.
GND	SUPPLY	GROUND FOR ALL INTERNAL CIRCUITRY: Do not leave any ground pins floating.
NC		NO CONNECT: No internal connection to die, lead may be driven or left floating.

5

8M DUAL WORK

3.0 MEMORY MAPS

7FFFFH 7C300H	16 KByte Block	31
78FFFH 78000H	16 KByte Block	30
77FFFH 74000H	16 KSyte Block	29
73FFFH 70000H	16 KEyte Block	29
6FFFFH	16 KByte Block	27
68.FFFH	16 KByte Block	26
67FFFH	16 KByte Block	25
60000H	16 KByte Block	24
SEPERH SCOOM	16 KByte Block	23
58FFFH	16 KByte Block	22
58000H 57FFFH	16 KByte Bicck	21
S4000H S3FFFH	16 KByte Block	20
50000H	16 KByte Block	19
4COODH 48FFFH	16 KByte Block	18
48000H 47FFFH	16 KByte Block	17
44000H 43FFFH		16
40000H 3FFFFH	16 KByte Block	15
3C300H 38F7FH	·	14
38000H 37FFFH	16 KByte Block	
34000H 33FFFH	16 KByte Block	13
30000H 2FFFFH	16 KByte Block	12
2C000H 28FFFH	16 KByte Block	
28000H 27FFFH	16 KByte Block	10
24000H	16 KByte Block	9
20000H	16 KByte Block	8
1C000H	16 KByte Block	7
18주프H 18000H	16 KByte Block	6
17FFFH 14000H	16 KByte Block	5
13FFFH 10000H	16 KByte Block	4
06200H	16 KByte Block	3
08FFFH 08000H	16 KByte Block	2
07FFFH 04000H	16 KByte Block	1
03FFFH	16 KByte Block	0

755554 70000++	16 KByte Block	31
78FFF+ 78000r	16 KByte Block	30
775224 74000m	16 KByte Block	29
73FFF-	16 KByte Block	28
6C000H	16 KByte Block	. 27
685225-	16 KByte Block	26
6400CH	16 KByte Block	25
63FTT.	16 KByte Block	24
SPEEZA	16 KEyte Block	23
5C000H	16 KByte Block	22
580004	16 KEyte Block	21
5400CH 53FFFH	16 KByte Block	20
50000H 4F25254	16 KByte Block	19
40000H 48F55-1	16 KByte Block	18
48000H 47FFFH	16 KByte Block	17
44000H 43FTTL	16 KByte Block	16
40000H	16 KByte Block	15
30000H 38FF=H	· · · · · · · · · · · · · · · · · · ·	14
38000H 37FEEH	16 KByte Block	13
34000H 33FFFH	16 KByte Block	12
30000H 2FFFFH	16 KByte Block	
2COODH 28FFFH	16 KByte Block	11
25000H	16 KByte Block	10
24000H 23FFFH	16 KByte Block	9
2000CH	16 KByte Block	8
10000H	16 KByte Block	
18000H	16 KByte Block	6
14000H 13FFFH	16 KByte Block	5
10000H	16 KByte Block	_4
000000	16 KByte Block	3
08000H 07555H	16 KByte Block	2
04000H	16 KByte Block	1
00000H	16 KByte Block	0

Bank0 (BEc# = Low)

Bank1 (BE1# = Low)

Figure 3. LH28F800SUTD Memory Map (Byte-wide mode)

* In Byte-wide (x8) mode A₁ is the lowest order address.

In Word-wide (x16) mode A, don't care, address values are ignored A,.

4.0 BUS OPERATIONS, COMMANDS AND STATUS REGISTER DEFINITIONS

Mode		Notes	RP#	BE ₀ #	BE ₁ #	OE#	WE#	Ao	DQ0-15	RY/BY#
Read	Bank 0	1,2,7	VIH	VIL	VIH	VIL	VIH	X	DOUT	x
	Bank 1			VIH	VIL	: i				
Output Disable	Output Disable		ViH	X	х	VIH	VIH	Χ.	High Z	x
Standby	Standby			VIH	VIH	X	Х	X	High Z	x
Deep Power-Dow	Deep Power-Down		VIL	x	X	х	х	х	High Z	V _{OH}
Manufacturer ID	Bank 0	4	VIH	VIL	VIH	VIL	VIH	VIL	оовон	V _{OH}
	Bank 1			VIH	VIL					
Device ID	Bank 0	4	ViH	VIL	ViH	VIL	ViH	VIH	ID	VOH
Bank 1				ViH	VIL					
Write	Bank 0	1,5,6	VIH	VIL	VIH	VIH	VIL	x	DIN	x
	Bank 1			VIH	VIL					

4.1 Bus Operations for Word-Wide Mode (Byte#=V,,)

4.2 Bus Operations for Byte-Wide Mode (Byte#=V_a)

Mode)	Notes	RP#	BE ₀ #	BE ₁ #	OE#	WE#	Ao	DQ0-7	RY/BY#
Read	Bank 0	1,2,7	VIH	VIL	VIH	VIL	VIH	Х	Dout	X
	Bank 1			ViH	VIĽ	1				
Output Disable		1,6,7	VIH	X	X	VIH	ViH	х	High Z	x
Standby		1,6,7	VIH	VIH	ViH	Х	Х	x	High Z	x
Deep Power-Dow	'n	1,3	VIL	x	х	Х	х	X	High Z	VOH
Manufacturer ID	Bank 0	4	ViH	VIL	ViH	VIL	ViH	VIL	вон	V _{OH}
	Bank 1			ViH	ViL					
Device ID	Bank 0	4	V _{IH}	VIL	VIH	ViL	VIH	ViH	ID	V _{OH}
	Bank 1			ViH	VIL					
Write	Bank 0	1,5,6	VIH	VIL	ViH	ViH	VIL	x	DIN	x
	Bank 1		ſ	ViH	ViL					

NOTES:

.

1. X can be V $_{\rm L}$ cr V $_{\rm L}$ for address or control pins except for RY/BY#, which is either V $_{\rm OL}$ or V $_{\rm CH}$

2. RY/BY# output is open drain. When the WSM is ready. Erase is suspended or the device is in deep power-down mode, RY/BY# will be at V_{ou} if it is tied to V_{cc} through a resistor. When the RY/BY# at V_{ou} is independent of OE# while a WSM operation is in progress.

3. $BP \neq at GND \pm 0.2V$ ensures the lowest deep power-down current.

4. A₂ at V_{ic} provide manufacturer ID codes.

A₂ at V_{IN} provide device ID codes. Device ID Code = 23H (x8). Device ID Code = 6623H (x16).

All other addresses are set to zero.

5. Commands for different Erase operations. Data Write operations, and Lock-Block operations can only be successfully completed when V_{pp} = V_{pp}.

6. While the WSM is running, RY/BY# in Level-Mode (default) stays at V_{oL} until all operations are complete. RY/BY# goes to V_{oH} when the WSM is not busy or in erase suspend mode.

7. RY78Y# may be at Vot while the WSM is busy performing various operations. For example, a status register read during a write operation.

8. Both BE₂# and BE₁# must not be low at the same time.

8M DUAL WORK

4.3 LH28F008SA-Compatible Mode Command Bus Definitions

Following is the commands to be applied to each bank.

	N	Fir	st Bus Cy	Second Bus Cycle			
Command	Notes	Oper	Addr	Data	Oper	Addr	Data
Read Array		Write	×	FFH	Read	AA	AD
Intelligent Identifier	1	Write	X	90H	Read	IA	ID
Read Compatible Status Register	2	Write	X	70H	Read	x	CSRD
Clear Status Register	3	Write	X	50H			
Word/Byte Write		Write	х	40H	Write	WA	WD
Alternate Word/Byte Write		Write	x	10H	Write	WA	WD
Block Erase/Confirm	4	Write	X	20H	Write	BA	DOH
Erase Suspend/Resume	4	Write	х	вон	Write	х	DOH

ADDRESS

AA = Array Accress BA = Block Accress IA = Identifier Accress WA = Write Accress X = Don't Care DATA AD = Array Data CSRD = CSR Data ID = Identifier Data WD = Write Data

NOTES:

1. Following the intelligent identifier command, two Read operations access the manufacturer and device signature codes.

2. The CSR is automatically available after device enters Data Write, Erase, or Suspend operations.

3. Clears CSR.3, CSR.4 and CSR.5. See Status register definitions.

4. While device performs Block Erase, if you issue Erase Suspend command (B0H), be sure to confirm ESS (Erase-Suspend-Status) is set to 1 on compatible status register. In the case, ESS bit was not set to 1, also completed the Erase (ESS=0, WSMS=1), be sure to issue Resume command (D0H) after completed next Erase command. Beside, when the Erase Suspend command is issued, while the device is not in Erase, be sure to issue Resume command (D0H) after the next erase completed.

4.4 LH28F800SUTD -Performance Enhancement Command Bus Definitions

			First Bus Cycle			Second Bus Cycle			Third Bus Cycle		
Command	Mode	Notes	Oper	Addr	Data	Oper	Addr	Data	Oper	Addr	Data
Protect Set/Confirm		1,2,6	Write	x	57H	Write	OFFH	DOH			
Protect Reset /Confirm		3,6	Write	x	47H	Write	OFFH	рон	·		
Lock Block/Confirm		1,2,4	Write	x	77H	Write	BA	DOH			
Bank Erase Ail Unlocked Biccks		1,2	Write	x	A7H	Write	x	рон			<u> </u>
Two-Byte Write	x8	1,2,5	Write	x	FBH	Write	A-1	WD(L,H)	Write	WA	WD(H,L)

Following is the commands to be applied to each bank.

ADDRESS BA = Block Address

DATA AD = Array Data WD (L,H) = Write Data (Low, High) WD (H,L) = Write Data (High, Low)

X = Don't Care

WA = Write Address

NOTES:

1. After initial device power-up, or return from deep power-down mode, the block lock status bits default to the locked state independent of the data in the corresponding lock bits. In order to upload the lock bit status, it requires to write Protect Set/Confirm command.

2. To reflect the actual lock-bit status, the Protect Set/Confirm command must be written after Lock Block/Confirm command.

3. When Protect Reset/Confirm command is written, all blocks can be written and erased regardless of the state of the lock-bits.

4. The Lock Block/Confirm command must be written after Protect Reset/Confirm command was written.

5. A, is automatically complemented to load second byte of data. A, value determines which WD is supplied first: A, = 0 looks at the WDL, A, = 1 looks at the WDH. In word-wide (x16) mode A, don't care.

6. Second bus cycle address of Protect Set/Confirm and Protect Reset/Confirm command is 0FFH. Specifically A3-A3 = 0, A7-A3 = 1, others are don't care.

4.5 Compatible Status Register

Each bank has its own status register.

WSN	/IS	ESS	ES	DWS	VPPS	R	R	R		
7	7 6 5 4		7 6 5 4 3 2 1							0
CSR.7 =	WRITE 1 = Re 0 = Bu	,	INE STATUS		RY/BY# output or termine completio Erase or Data Wi bit (ESS, ES or D	n of an oper rite) before	nust be chec ration (Erase the appropria	Suspend, ate Status		
CSR.6 =	CSR.6 = ERASE-SUSPEND STATUS (ESS) 1 = Erase Suspended 0 = Erase in Progress/Completed									
CSR.5 =	1 = Err	E STATUS (ES) or in Block Eras ccessful Block I	sure	1	If DWS and ES are set to "1" during an erase at- tempt, an improper command sequence was en- tered. Clear the CSR and attempt the operation again.					
CSR.4 =	1 = Err	WRITE STATU or in Data Write ta Write Succes	9		The VPPS bit, unl					
CSR.3 =		ATUS (VPPS) Low Detect, O OK	peration Abor	t i	vide continuous interrogates V _{pp} 's Erase command s informs the system VPPS is not guara between V _{ppt} and	: level only : sequences h m if V _{pp} has anteed to re	after the Data ave been en not been sw	a-Write or tered, and itched on.		

CSR.2-0 = RESERVED FOR FUTURE ENHANCEMENTS

These bits are reserved for future use and should be masked out when polling the CSR.

5.0 8M DUAL WORK FLASH MEMORY SOFTWARE ALGORITHMS

5.1 Overview

With the advanced Command User Interface, its Performance Enhancement commands and Status Registers, the software code required to perform a given operation may become more intensive but it will result in much higher write/erase performance compared with current flash memory architectures.

The software flowcharts describing how a given operation proceeds are shown here. Figures 5-1 through 5-3 depict flowcharts using the 2nd generation flash device in the LH28F008SA-compatible mode. Figures 5-4 through 5-9 depict flowcharts using the 2nd generation flash device's performance enhancement commands mode.

When the device power-up or the device is reset by RP# pin, Set Write Protect command must be written to both the bank selected by BE_n# and BE₁# in order to reflect actual block lock status.

When the device power-up or the device is reset by RP# pin, all blocks come up locked. Therefore, Word/Byte Write, Two Byte Serial Write and Block Erase can not be performed in each block. However, at that time, Erase All Unlocked Block is performed normally, if used, and reflect actual lock status, also the unlocked block data is erased. When the device power-up or the device is reset by RP# pin, Set Write Protect command must be written to reflect actual block lock status.

Reset Write Protect command must be written before Write Block Lock command. To reflect actual block lock status, Set Write Protect command is succeeded.

The Compatible Status Register (CSR) is used to determine which blocks are locked. In order to see Lock Status of a certain block, a Word/Byte Write command (WA=Block Address, WD=FFH) is written to the CUI, after issuing Set Write Protect command. If CSR7, CSR5 and CSR4 (WSMS, ES and DWS) are set to "1"s, the block is locked. If CSR7 is set to "1", the block is not locked.

Reset Write Protect command enables Write/Erase operation to each block.

In the case of Block Erase is performed, the block lock information is also erased. Block Lock command and Set Write Protect command must be written to prohibit Write/Erase operation to each block.

There are unassigned commands. It is not recommended that the customer use any command other than the valid commands specified in Chapter 4 "Command Bus Definitions". Sharp reserved the right to redefine these codes for future functions.

5.2 8M Dual Work Flash Memory Algorithm Flowcharts

The following flowcharts describe the 2nd generation flash device modes of operation:

- Figure 5-1 Word/Byte Writes with Compatible Status Register
- Figure 5-2 Block Erase with Compatible Status Register
- Figure 5-3 Erase Suspend to Read Array with Compatible Status Register
- Figure 5-4 Block Locking Scheme
- Figure 5-5 Updating Data in a Locked Block
- Figure 5-6 Two-Byte Serial Writes with Compatible Status Registers
- Figure 5-7 Bank Erase All Unlocked Blocks with Compatible Status Registers
- Figure 5-8 Set Write Protect
- Figure 5-9 Reset Write Protect

SHARP

8M DUAL WORK

Bus Operation	Command	Comments
Write	Block Erase	⊇ = 20H À = X
Write	Confirm	D = D0H A = BA
Read		Q = CSRD Tcggle BEo#, BE1# or OE# to update CSRD. $\lambda = X$
Standby		Check CSR.7 1 = WSM Ready 0 = WSM Busy

Repeat for subsequent Block Erasures.

CSR Full Status Check can be done after each Block Erase, or after a sequence of Block Erasures.

Write FFH after the last operation to reset device to read array mode.

See Command Bus Cycle notes for description of codes.

CSR FULL STATUS CHECK PROCEDURE

Figure 5-2. Block Erase with Compatible Status Register

Figure 5-3. Erase Suspend to Read Array with Compatible Status Register

Bus Operation	Command	Comments
Read		Q = CSED Toggle EE:#, BE:# or OE# to update CSED. 1 = WSM Ready 0 = WSM Busy
Write	Reset Write Protect	After Write D = $47H$ A = X, Write D = D0H A = $0FFH$
Read		Q = CSRD Toggle BEc#, BE1# or OE# to update CSRD. 1 = WSM Ready 0 = WSM Busy
Write	Lock Block	D = 77H A = X
Write	Confirm	D = D0H A = BA
Read		Q = CSRD Toggle BEc#, BE1# or OE# to update CSRD. 1 = WSM Ready 0 = WSM Busy
Write	Set Write Protect	After Write D = 57H A = X, Write D = D0H A = 0FFH

If CSR.4.5 is set, as it is command sequence error, SHOULD be cleared before further attempts are initiated.

Write FFH after the last operation to reset device to read array mode.

See Command Bus Definitions for description of codes.

8M DUAL WORK

8M DUAL WORK

Figure 5-5. Updating Data in a Locked Block

Bus Operation	Command	Comments
Read		C = CSRD Toggle BEc=. BE1# or OE# to update CSRD. 1 = WSM Ready 0 = WSM Busy
Write	2-Byte Write	D = FBH A = X
Write		D = WD A-1 = 0 loads low byte of Data Register. A-1 = 1 loads high byte of Data Register. Cther Addresses = X
Write		D = WD A = WA Internally, A-1 is automatically complemented to load the alternate byte location of the Data Register.
Read		Q = CSRD Tcggle BEo#. BE:# or OE# to update CSRD. 1 = WSM Ready 0 = WSM Busy
1. If CSR.4,5 is s before further att	et, as it is comma empts are initiated	nd sequence error, SHOULD be cleared
CSR Full Status sequence of 2-By	Check can be dor yte Writes.	ne after each 2-5yte Write, or after a
Write FFH after t	he last operation t	o reset device to read array mode.
See Command B	lus Cycle notes fo	r description of codes.

Figure 5-6. Two-Byte Serial Writes with Compatible Status Registers

8M DUAL WORK

SHARP

Figure 5-7. Bank Erase All Unlocked Blocks with Compatible Status Registers

In order to bank erase all unlocked blocks in all areas, this procedure must be executed on both banks selected by BE₃# and BE₁#.

8M DUAL WORK

Figure 5-8. Set Write Protect

Set write protect is controlled individually for each bank. The above sequence should be applied to either bank in which write protect should be set.

Bus Operation	Command	Comments
Read		Check CSR.7 1 = WSM Ready 0 = WSM Busy
Write	Reset Write Protect	D = 47H A = X
Write	Reset Confirm	D = D0H A = 0FFH (A9-A8 = 0, A7-A0 = 1, Others = X)
Read		Check CSR.7 1 = WSM Ready 0 = WSM Busy
Read		Check CSR.4,5 1 = Unsuccessful 0 = Success
efore further atte eset Write Prote	empts are initiated. ect command enable	t sequence error, SHOULD be cleared as Write/Erase operation to all blocks. reset device to Read Array Mode.
	us Cycle notes for d	

Figure 5-9. Reset Write Protect

Reset write protect is controlled individually for each bank. The above sequence should be applied to either bank in which write protect should be reset.

8M DUAL WORK

8M DUAL WORK

ELECTRICAL SPECIFICATIONS(1) 6.0

Absolute Maximum Ratings* 6.1

Temperature Under Bias -40°C to + 80°C Storage Temperature - 65°C to + 125°C Note: 1. V_{cc} supply range during read is 2.7 to 3.6V.

*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

$V_{cc} = 3.3V \pm 0.3V$ Systems

<u> </u>	Parameter	Notes	Min	Max	Units	Test Conditions
Symbol				05	.c	Ambient Temperature
TA	Operating Temperature, Commercial	1	- 40	85		Ambient remporatore
	V _{CC} with Respect to GND	2	- 0.2	7.0	V	
Vpp	VPP Supply Voltage with Respect to GND	2	- 0.2	7.0	<u>v</u>	
V	Voltage on any Pin (except Vcc, Vpp) with Respect to GND	2	- 0.5	Vcc +0.5	V	
1	Current into any Ncn-Supply Pin			± 30	mA	
······	Output Short Circuit Current	3		100	mA	

NOTES:

1. Operating temperature is for commercial product defined by this specification.

2. Minimum DC voltage is - 0.5V on input/output pins. During transitions, this level may undershoot to - 2.0V for periods < 20 ns. Maximum DC voltage on input/output pins is V_{cc} + 0.5V which, during transitions, may overshoot to V_{cc} + 2.0V for periods < 20 ns. 3. Output shorted for no more than one second. No more than one output shorted at a time.

6.2 Capacitance

For a 3.3V System:

Cumbal	Parameter	Note	Тур	Max	Units	Test Conditions
Symbol	Farameter			<u> </u>		
	Capacitance Looking into an Address/Control Pin		14	20	pF	T _A = 25°C, f = 1.0 MHz
		1	18	24	pF	T _A = 25°C, f = 1.0 MHz
	Capacitance Looking into an Address/Control Pin A ₋₁		10			
~	Capacitance Looking into an Output Pin	1	18	24	pF	T _A = 25°C, f = 1.0 MHz
Ссит	Capacitance Looking into an Oupder in		1			
	Lcad Capacitance Driven by Outputs for Timing Specifications	1		50	pF	For $V_{CC} = 3.3V \pm 0.3V$
		1	1	2.5	ns	50Ω transmission
	Equivalent Testing Load Circuit Vcc \pm 1C ^e $_{3}$			2.5		line delay

NOTE:

1. Sampled, not 100% tested.

2. EE,# and BE,# have half the value of this.

6.3 Timing Nomenclature

For 3.3V systems use 1.5V cross point definitions.

Each timing parameter consists of 5 characters. Some common examples are defined below:

 $t_{cE} = t_{ELOV}$ time(t) from $BE_x # (1)$ (E) going low (L) to the outputs (Q) becoming valid (V)

 t_{cE} t_{aLov} time(t) from OE# (G) going low (L) to the outputs (Q) becoming valid (V)

 t_{AVCV} time(t) from address (A) valid (V) to the outputs (Q) becoming valid (V)

t_{AS} t_{AVWH} time(t) from address (A) valid (V) to WE# (W) going high (H)

 t_{DH} time(t) from WE = (W) going high (H) to when the data (D) can become undefined (X)

	Pin Characters		Pin States
Α	Address Inputs	н	High
D	Data Inputs	L	Low
Q	Data Outputs	V	Valid
E	BEx# (Bank Enable) (1)	X	Driven, but not necessarily valid
G	OE# (Output Enable)	Z	High Impedance
w	WE# (Write Enable)		
P	RP# (Deep Power-Down Pin)		
R	RY/BY# (Ready/Busy#)		
v	Any Voltage Level	<u> </u>	
ЗV	V _{CC} at 3.0V Minimum		

NOTE:

1. BE_x# means either BE₀# or BE₁#.

6.4 DC Characteristics

 $V_{cc} = 3.3V \pm 0.3V$, $T_{A} = -40^{\circ}C$ to + 85°C :(Erase:Write) , $V_{cc} = 2.7V \sim 3.6V$, $T_{A} = -40^{\circ}C$ to - 85°C :(Read)

Following is the current consumption of one bank. For the current consumption of one device total, please refer to the NOTE 7.

Symbol	Parameter	Notes	Min	Тур	Max	Units	Test Conditions
h_	Input Load Current	1			± 1	μA	V _{CC} = V _{CC} Max. V _{IN} = V _{CC} or GND
ΙLO	Output Leakage Current	1			± 10	μA	V _{CC} = V _{CC} Max, V _{IN} = V _{CC} or GND
lccs	V _{CC} Standby Current	1,4,7		4	15	μA	V _{CC} = V _{CC} Max, BE ₀ #, BE ₁ #, RP# = V _{CC} ± 0.2V BYTE# = V _{CC} ± 0.2V or GND ± 0.2V
				0.3	4	mA	V _{CC} = V _{CC} Max, BE ₀ #, BE ₁ #, RP# = V _{IH} BYTE# = V _{IH} or V _{IL}
ICCD	Vcc Deep Power-Down Current	1,7		0.2	8	μA	RP# = GND ± 0.2V
ICCR1	V _{CC} Read Current	1,3,4,7			35	mA	$\label{eq:VCC} \begin{array}{l} V_{CC} = V_{CC} \mbox{ Max}, \\ CMOS: BE_0 \#, BE_1 \# = GND \pm 0.2V \\ BYTE \# = GND \pm 0.2V \mbox{ or } V_{CC} \pm 0.2V \\ Inputs = GND \pm 0.2V \mbox{ or } V_{CC} \pm 0.2V, \\ TTL: BE_0 \#, BE_1 \# = V_{1L}, \\ BYTE \# = V_{1L} \mbox{ or } V_{1H} \\ Inputs = V_{1L} \mbox{ or } V_{1H}, \\ f = 8 \mbox{ MHz. } I_{0UT} = 0 \mbox{ mA} \end{array}$
I _{CCR} 2	V _{CC} Read Current	1,3,4,7		10	20	mA	$\label{eq:VCC} \begin{array}{l} V_{CC} = V_{CC} \mbox{ Max}, \\ CMOS: BE_0 \mbox{{\tiny \#}}, BE_1 \mbox{{\tiny \#}} = GND \pm 0.2V, \\ BYTE \mbox{{\tiny \#}} = V_{CC} \pm 0.2V \mbox{ or } GND \pm 0.2V \\ Inputs = GND \pm 0.2V \mbox{ or } V_{CC} \pm 0.2V, \\ TTL: BE_3 \mbox{{\tiny \#}}, BE_1 \mbox{{\tiny \#}} = V_{IL} \\ BYTE \mbox{{\tiny \#}} = V_{IH} \mbox{ or } V_{IL} \\ Inputs = V_{IL} \mbox{ or } V_{IH}, \\ f = 4 \mbox{ MHz}, I_{OUT} = 0 \mbox{ mA} \end{array}$
Iccw	V _{CC} Write Current	1,7		8	16	mA	Word/Byte Write in Progress
	V _{CC} Block Erase Current	1,7		6	12	mA	Block Erase in Progress
	V _{CC} Erase Suspend Current	1,2,7		3	6	mA	BE ₀ #, BE ₁ # =V _{IH} Block Erase Suspended
IPPS	Vpp Standby Current	1,7		± 1	± 10	μA	Vpp ≤ Vcc
	Vpp Deep Power-Down Current	1,7		0.2	8	μA	RP# = GND ± 0.2V

DC Characteristics (Continued)

 $V_{aa} = 3.3V \pm 0.3V$, $T_{a} = -40^{\circ}C$ to + 85°C :(Erase/Write) , V_{co} = 2.7V ~3.6V, T_A = -40°C to + 85°C :(Read)

Following is the current consumption of one bank. For the current consumption of one device total, please refer to the NOTE 7.

Symbol	Parameter	Notes	Min	Тур	Max	Units	Test Conditions
Ippa	Vpp Read Current	1		Ī	200	μA	VPP > VCC
Ippw	VPP Write Current	1		15	35	mA	V _{PP} = V _{PPH} . Word/Byte Write in Progress
IPPE	Vpp Erase Current	1		20	40	mA	V _{PP} = V _{PPH} , Block Erase in Progress
IPPES	VPP Erase Suspend Current	1			200	μA	VPP = VPPH. Block Erase Suspended
VIL	Input Low Voltage	5	- 0.3		0.8	V	
VIH	Input High Voltage	1	2.0		V _{CC} + 0.3	v	
V _{OL}	Output Low Voltage				0.4	v	$V_{CC} = V_{CC}$ Min and $I_{OL} = 4$ mA
V _{OH} 1	Output High Voltage		2.4			V	I _{CH} = - 2 mA V _{CC} = V _{CC} Min
V _{OH} 2			V _{CC} - 0.2			v	I _{OH} = - 100 μA V _{CC} = V _{CC} Min
VPPL	Vpp during Normal Operations	6	0.0		5.5	v	
V _{PPH}	VPP during Write/ Erase Operations		4.5	5.0	5.5	v	
V _{LKO}	V _{CC} Erase/Write Lock Voltage		1.4			v	

NOTES:

1. All currents are in RMS unless otherwise noted. Typical values at $V_{cc} = 3.3V$, $V_{pp} = 5.0V$, $T = 25^{\circ}C$. 2. I_{cccs} is specified with the device de-selected. If the device is read while in erase suspend mode, current draw is the sum of I_{cccs} and Icon.

3. Automatic Power Saving (APS) reduces I_{corr} to less than 2 mA in Static operation. 4. CMOS Inputs are either $V_{cc} \pm 0.2V$ or GND $\pm 0.2V$. TTL Inputs are either V_{ij} or V_{iji} .

5. In 2.7V < V_{cc} < 3.0V operation, TTL-level input of RP# is V_{π} (Max.) = 0.6V.

6. V_{pet} in read is $V_{cc} - 0.2V < V_{pet} < 5.5V$ or GND $< V_{pet} < GND + 0.2V$.

7. These are the values of the current which is consumed within one bank area. The value for the bank0 and bank1 should added in order to calculate the value for the whole chip. If the bank0 is in write state and bank1 is in read state, the $I_{cc} = I_{ccw} + I_{cca}$. If both bank are in standby mode, the value for the device is 2 times the value in the above table.

6.5 AC Characteristics - Read Only Operations⁽¹⁾

$V_{cc} = 3.3V \pm 0.3V$, $T_{A} = -40^{\circ}C$ to +85°C

Symbol	Parameter	Notes	Min	Max	Units
tavav	Read Cycle Time		150		ns
tAVGL	Address Setup to OE# Going Low	3	0		ns
tavgv	Address to Output Delay		_	150	ns
tELQV	BE ₀ #, BE ₁ # to Output Delay	2		150	ns
tphQv	RP# High to Output Delay			750	ns
tGLQV	OE# to Output Delay	2		50	ns
telox	BE ₀ #, BE ₁ # to Output in Low Z	3	0		ns
tehoz	BE ₀ #, BE ₁ # to Output in High Z	3		55	ns
tGLQX	OE# to Output in Low Z	3	0		ns
tGHQZ	OE# to Output in High Z	3		40	ns
tон	Output Hold from Address, BE ₀ #, BE ₁ # or OE# Change, Whichever Occurs First	3	0		ns
tFLGZ	BYTE# Low to Output in High Z	3		60	ns
tFLEL tFHEL	BYTE# High or Low to BE ₀ #, BE ₁ # Low	3	20		ns

NOTES:

1. See AC Input/Output Reference Waveforms for timing measurements, Figure 4. 2. OE# may be delayed up to $t_{ELOV} - t_{GLOV}$ after the falling edge of BE₃# or BE₁# without impact on t_{ELOV} . 3. Sampled, not 100% tested.

$V_{ac} = 2.85V \pm 0.15V$, $T_{A} = -40^{\circ}C$ to $+85^{\circ}C$

Symbol	Parameter	Notes	Min	Max	Units
tavav	Read Cycle Time		190		ns
tavgl	Address Setup to OE# Going Low	3	0		ns
tavgv	Address to Output Delay			190	ns
telov	BE ₀ #, BE ₁ # to Output Delay	2		· 190	ns
tPHCV	RP# High to Output Delay			900	ns
tGLCV	OE# to Output Delay	2		65	ns
TELOX	BE ₀ #, BE ₁ # to Output in Low Z	3	0		ns
tehcz	BE_0 #, BE_1 # to Output in High Z	3		70	ns
tGLCX	OE# to Output in Low Z	3	0		ns
tGHCZ	OE# to Output in High Z	3		55	ns
^t он	Output Hold from Address, BE ₀ #, BE ₁ # or OE# Change. Whichever Occurs First	3	0		ns
			•		
tFLGZ	BYTE# Low to Output in High Z	3		85	ns
tFLEL tFHEL	BYTE# High or Low to BE ₀ #, BE ₁ # Low	3	30		ns

NOTES:

1. See AC Input/Output Reference Waveforms for timing measurements, Figure 4. 2. $OE \neq may be delayed up to t_{ELCV} - t_{GLCV}$ after the falling edge of $BE_0 \neq or BE_1 \neq without impact on t_{ELCV}$. 3. Sampled, not 100% tested.

8M DUAL WORK

Figure 6. Read Timing Waveforms

ADDRESSES STABLE ADDRESSES (A) AVAV ٧_۴ BE₁# (E) NOTE 1 ٧. le-oz CE# (Gi GHOZ <u>م</u>ا , TAVGL LAVOV -SYTE# (F) GLOV ٧£ GLOX LOX ton-H 1HIGH Z Vон DATA CUTPUT HIGH Z DATA CUTPUT DATA (DOD - DOT) 177 VCL LAVOV 10,02 Vor Т HIGH Z HIGH Z DATA (DG8 - DG15) Val NOTES: 1. BE_x# means either BE₀# or BE₁#.

8M DUAL WORK

6.6 Power-Up and Reset Timings

Figure 8. V_{cc} Power-Up and Reset Waveforms

Symbol	Parameter	Note	Min	Max	Unit
tPL3V	RP# Low to V _{CC} at 3.0V Minimum	1	0		μs
tavov	Address Valid to Data Valid for $V_{CC} = 3.3V \pm 0.3V$	2		150	ns
tphov	RP# High to Data Valid for $V_{CC} = 3.3V \pm 0.3V$	2	· · · · · · · · · · · · · · · · · · ·	750	ns

NOTES:

BE,#, BE,# and OE# are switched low after Power-Up.

1. The power supply may start to switch concurrently with RP# going Low. RP= is required to stay low, until Vcc stays at recommended operating voltage.

2. The address access time and RP# high to data valid time are shown for 3.3V V_{cc} operation. Refer to the AC Characteristics Read Only Operations also.

8M DUAL WORK

6.7 AC Characteristics for WE# - Controlled Command Write Operations⁽¹⁾ $V_{aa} = 3.3 \pm 0.3V$. $\overline{T}_{A} = -40^{\circ}$ C to + 85°C

Symbol	Parameter	Nctes	Min	Тур	Max	Unit
tavav	Write Cycle Time		150		ł	ns
tvpwh	Vpe Setup to WE# Going High	3	100			ns
tPHEL	RP# Setup to BE ₀ # and BE ₁ # Going Low	ł	480			ns
TELWL	BE ₀ # and BE ₁ # Setup to WE# Going Low		10			ns
tavwh	Address Setup to WE# Going High	2.5	120			ns
tovwh	Data Setup to WE≢ Going High	2.5	120			ns
twLWH	WE# Pulse Width		120			ns
twhox	Data ∺old from WE# High	2	10			ns
twhax	Address Hold from WE# High	2	10			ns
twhen	BE ₀ # and BE ₁ # Hold from WE# High		10			ns
twhwL	WE# Pulse Width High		75			ns
^t GHWL	Read Recovery before Write		0			ns
twhal	WE# ∺igh to RY/BY# Going Low				100	ns
t _{RHPL}	RP# Hold from Valid Status Register Data and RY/BY# High	3	0			ns
tehwl	RP# High Recovery to WE# Going Low		1			μs
twhgl	Write Recovery before Read		120			ns
tavvi.	VPP Hold from Valid Status Register Data and RY/BY# High		0			μs
twhav1	Duration of Byte Write Operation	4.5,7	8	20		μs
WHQV2	Duration of Block Erase Operation	4	0.3			S

NOTES:

1. Read timing during write and erase are the same as for normal read.

2. Refer to command definition tables for valid address and data values.

3. Sampled, but not 100% tested.

4. Write/Erase durations are measured to valid Status Register (CSR) Data.

5. Byte write operations are typically performed with 1 Programming Pulse.

6. Address and Data are latched on the rising edge of WE# for all Command Write operations.

7. The max value of tyte write time is the maximum write time inside the chip. It is not the time until the whole writing procedure is completed property. It is necessary to check CSR to see if the writing procedure is property completed.

SHARP

8M DUAL WORK

Figure 9. AC Waveforms for Command Write Operations

6.8 AC Characteristics for BE# - Controlled Command Write Operations⁽¹⁾ $V_{cc} = 3.3V \pm 0.3V$, $T_{a} = -40^{\circ}C$ to + 85°C

Symbol	Parameter	Notes	Min	Тур	Max	Unit
t avav	Write Cycle Time		150			ns
t PHWL	RP# Setup to WE# Going Low	3	480			ns
tvpeh	VPP Setup to BE0# or BE1# Going High	3	100			ns
twlei	WE≢ Setup to BE₀# or BE₁# Going Low		0 ·			ns
taveh	Address Setup to BE ₀ # or BE ₁ # Going High	2,6	120			ns
toveh	Data Setup to BE ₀ # or BE ₁ # Going High	2,6	120			ns
telen	BE ₀ # or BE;# Pulse Width		120			ns
tehdx	Data Hold from BE ₀ # or BE ₁ # High	2	10			ns
t _{EHAX}	Address Hold from BE ₀ # or BE ₁ # High	2	10		<u> </u>	ns
tенwн	WE# Hold from BE0# or BE1# High		10			ns
tehel	BE ₀ # or BE ₁ # Pulse Width High		75			ns
tGHEL	Read Recovery before Write		0			ns
tehrt	BE ₀ # or BE:# High to RY/BY# Gcing Low				100	ns
tRHPL	RP# Hold from Valid Status Register Data and RY/BY# High	3	0			ns
tPHEL	RP# High Recovery to BE ₀ # or BE ₁ # Going Low		1			μs
tengl	Write Recovery before Read		120		·	ns
tavvl	VPP Hold from Valid Status Register Data and RY/BY# High		0			μs
tehov1	Duration of Word/Byte Write Operation	4,5,7	8	20		μs
tehav2	Duration of Block Erase Operation	4	0.3			S

NOTES:

1. Read timing during write and erase are the same as for normal read.

2. Refer to command definition tables for valid address and data values.

3. Sampled, but not 100% tested.

4. Write/Erase durations are measured to valid Status Register (CSR) Data.

5. Byte write operations are typically performed with 1 Programming Pulse.
 6. Address and Data are latched on the rising edge of BE₃# or BE₁# for all Command Write Operations.

7. The max value of byte write time is the maximum write time inside the chip. It is not the time until the whole writing procedure is completed property. It is necessary to check CSR to see if the writing procedure is properly completed.

8M DUAL WORK

Figure 10. Alternate AC Waveforms for Command Write Operations

. Ň

8M DUAL WORK

6.9 Erase and Byte Write Performance

 $V_{cc} = 3.3V \pm 0.3V$, $T_{A} = -40^{\circ}C$ to + 85°C

Symbol	Parameter	Notes	Min	Typ(1)	Max	Units	Test Conditions
twhen1	Byte Write Time	2		20		μs	
twhen2	Two-Byte Serial Write Time	2,3		30		 µs	
twнян3	Word Write Time	2,4		30		μs	
twnnh4	16KB Block Write Time	2		0.33	1.5	S	Byte Write Mode
twhah5	16KB Block Write Time	2,3		0.26	1.2	s	Two-Byte Serial Write Mode
twhen6	16KB Block Write Time	2,4		0.26	1.2		Word Write Mode
	Block Erase Time (16KB)	2		1.1	13	s	
	Bank Erase Time	2,5		15.2-26.4	312	s	·

NOTES:

1. 25°C, V_{pp} = 5.0V. Sampled.
 2. Excludes System-Level Overhead.
 3. Two-Byte Serial Write mode is valid at x8-bit configuration only.

Word Write mode is valid at x16-bit configuration only.
 Depends on the number of protected blocks.

LH28Fxxx FLASH MEMORY FLASH NON-VOLATILE MEMORY FLASH E2ROM FLASH ROM READ ONLY MEMORY ETOX DUAL VOLTAGE LH28F800SUTD 8M (1024Kx8/512Kx16) 3V Dual Work