SHARP LH28F040SU

NEW PRODUCT

4M-bit Dual Work Flash Memory

Description

Sharp's LH28F040SUTD 4M-bit flash memory is a revolutionary architecture which enables the design of truly mobile, high performance, personal computing and communication products. With innovative capabilities, 3.3 V low power operation and very high read/write performance, the LH28F040SUTD is also the ideal choice for designing embedded mass storage flash memory systems.

The LH28F040SUTD is a very high density, highest performance non-volatile read/write solution for solid-state storage applications. Its independently lockable 32 symmetrical blocked architecture (16k-byte each) extended cycling, low power operation, very fast write and read performance and selective block locking provide a highly flexible memory component suitable for high density memory cards, Resident Flash Arrays and PCMCIA-ATA Flash

Features

3.

- 1. 262 144 word \times 8 bit \times 2 organization
- 2. Maximum access time 150 ns (Vcc= 3.3 ± 0.3 V) 190 ns (Vcc=2.7 V)
 - Maximum supply currentStandby20 μ A (Low-power consumption type)160 μ A (Normal power consumption type)
- 4. 2 banks enable the simultaneous Read/Write/Erase operation
- 5. 32 independently lockable blocks
- 6. 100 000 erase cycles per block
- 7. 5 V Write/Erase operation (5 V VPP, 3.3 V Vcc)
 - Vcc for Write/Erase at as low as 2.9 V
- 8. Automated Byte write/Block erase
 - · Command user interface
 - · Stafus register

Drives. The LH28F040SUTD's 5.0 V/3.3 V power supply operation enables the design of memory cards which can be read in 3.3 V system and written in 5.0 V/3.3 V systems. Its $\times 8$ architecture allows the optimization of memory to processor interface. The flexible block locking option enables bundling of executable application software in a Resident Flash Array or memory card. Manufactured on Sharp's 0.55 μ m ETOXTM process technology, the LH28F040SUTD is the most cost-effective, high-density 3.3 V flash memory.

LH28F040SUTD divides 4M-bit into two areas. Each area can read/write/erase independently. For example, while you write and erase on one area, you can simultaneously read the data from the other area. This enables users to reduce the number of components in their system.

*ETOX is a trademark of Intel Corporation.

- 9. System performance enhancement
 - · Erase suspend for read
 - Two-byte write
 - Bank erase
- 10. Data protection
 - Hardware Erase/Write lockout during power transitions
 - Software Erase/Write lockout
- 11. Independently lockable for Write/Erase on each block (Lock Block & Protect Set/Reset)
- 12. Package
 - 40-pin TSOP (I) normal bend (TSOP040-P-1020)

Pin Connections

~

NC1 1 NC1 2 A11 3 A9 4 A3 5 A13 6 A14 7 A15 38 A16 33 D0 8 S 33 D0 33		
NCi 2 39 OE# Aii 33 NC 38 NC Ai 4 37 Aio 37 Aio Aii 5 36 BEi# 36 BEi# Aii 7 35 BEo# 30 DQ7 Aii 7 8 33 DQ6 33 DQ6 WE# 9 33 DQ6 33 DQ4 33 DQ4 VPP 11 39 OQ3 30 DQ3 31 DQ4 33 DQ5 33 DQ4 34 34 34 34 34 35 B2 A1 34 35 B2 A0 34 A1 34 34 35 34 A1 34 34 34 34 34 34		
A8 5 36 BE1# A13 6 35 BE0# A14 7 34 DQ7 A17 8 32 DQ6 WE# 9 32 DQ5 Vcc 10 30 DQ3 A16 12 30 DQ3 A16 12 29 GND A15 13 28 DQ2 A16 12 27 DQ1 A5 13 26 DQ0 A6 16 25 Ao A6 16 23 Ao A4 18 23 A2 NC2 10 21 NC		<u>40</u> NC
A8 5 36 BE1# A13 6 35 BE0# A14 7 34 DQ7 A17 8 32 DQ6 WE# 9 32 DQ5 Vcc 10 30 DQ3 A16 12 30 DQ3 A16 12 29 GND A15 13 28 DQ2 A16 12 27 DQ1 A5 13 26 DQ0 A6 16 25 Ao A6 16 23 Ao A4 18 23 A2 NC2 10 21 NC	NC1 2	<u>39</u> OE#
A8 5 36 BE1# A13 6 35 BE0# A14 7 34 DQ7 A17 8 32 DQ6 WE# 9 32 DQ5 Vcc 10 30 DQ3 A16 12 30 DQ3 A16 12 29 GND A15 13 28 DQ2 A16 12 27 DQ1 A5 13 26 DQ0 A6 16 25 Ao A6 16 23 Ao A4 18 23 A2 NC2 10 21 NC	A11 3	38 NC
Ai4 7 Ai7 8 WE# 9 Vcc 10 Vcc 10 Vpr 11 Ai6 12 Ai6 12 Ai7 13 DQ4 29 Vpr 11 Ai6 12 Ai6 13 DQ2 20 Ai7 15 Ai7 15 Ai8 17 Ai7 15 Ai8 23 Ai7 24 Ai8 23 Ai7 24 Ai8 23 Ai7 24 Ai8 23 Ai7 21 Ai8 21 Ai8 21 Ai	A9 4	<u>37</u> A10
Ai4 7 Ai7 8 WE# 9 Vcc 10 Vcc 10 Vpr 11 Ai6 12 Ai6 12 Ai7 13 DQ4 29 Vpr 11 Ai6 12 Ai6 13 DQ2 20 Ai7 15 Ai7 15 Ai8 17 Ai7 15 Ai8 23 Ai7 24 Ai8 23 Ai7 24 Ai8 23 Ai7 24 Ai8 23 Ai7 21 Ai8 21 Ai8 21 Ai	A8 5	36 BE1#
Ai4 7 Ai7 8 WE# 9 Vcc 10 Vcc 10 Vpr 11 Ai6 12 Ai6 12 Ai7 13 DQ4 29 Vpr 11 Ai6 12 Ai6 13 DQ2 20 Ai7 15 Ai7 15 Ai8 17 Ai7 15 Ai8 23 Ai7 24 Ai8 23 Ai7 24 Ai8 23 Ai7 24 Ai8 23 Ai7 21 Ai8 21 Ai8 21 Ai	A13 6	35 BEo#
VPP [1] 30 DQ3 A16 [12] 29 GND A15 [13] 28 DQ2 A12 [14] 27 DQ1 A7 [15] 26 DQ0 A6 [16] 25 A0 A3 [17] 24 A1 A4 [18] 23 A2 NC2 [19] 20 NC 21 NC	A14 7	34 DQ7
VPP [1] 30 DQ3 A16 [12] 29 GND A15 [13] 28 DQ2 A12 [14] 27 DQ1 A7 [15] 26 DQ0 A6 [16] 25 A0 A3 [17] 24 A1 A4 [18] 23 A2 NC2 [19] 20 NC 21 NC	A17 8	<u>33</u> DQ6
VPP [1] 30 DQ3 A16 [12] 29 GND A15 [13] 28 DQ2 A12 [14] 27 DQ1 A7 [15] 26 DQ0 A6 [16] 25 A0 A3 [17] 24 A1 A4 [18] 23 A2 NC2 [19] 20 NC 21 NC	WE# 9	32 DQs
	Vcc 10	31 DQ4
	VPP 11	<u>30</u> DQ3
	A16 12	29 GND
	A15 13	28 DQ ₂
	A12 14	27 DQ1
	A7 15	26 DQ0
	A6 16	<u>25</u> Ao
	A5 17	24 Aı
	A4 18	23 A2
		22 A3
Top View	NC2 20	21 NC
		Ton View

Pin Description

Symbol	I∕0	- ··· Name and Function
A0-A13	I	Byte-select addresses: Select a byte within one 16k-byte block. These addresses are latched during Data Writes.
A14-A17	I	Block-select addresses : Select 1 of 16k-byte Erase block. These addresses are latched during Data Writes, Erase and Lock-Block operations.
DQ0-DQ7	I/O	Data input/output: Inputs data and commands during CUI write cycles. Outputs array, buffer, identifier or status data in the appropriate Read mode. Floated when the chip is de-selected or the outputs are disabled.
BEo#, BEı#	I	Bank enable inputs: Activate the device's control logic, input buffers, decoders and sense amplifiers. CE# must be low to select the device. When BEo# is low, bank0 is active. When BE1# is low, bank1 is active. Both BEo# and BE1# must not be low at the same time.
OE#	I	Output enable : Gates device data through the output buffers when low. The outputs float to tri- state off when OE# is high.
WE#	I	Write enable: Controls access to the CUI, Page Buffers, Data Queue Registers and Address Queue Latches. WE# is active low, and latches both address and data (command or array) on its rising edge.
Vpp		Erase/write power supply (5.0 V \pm 0.5 V): For erasing memory array blocks or writing bytes into the flash array.
Vcc		Device power supply (3.3 V \pm 0.3 V): Do not leave any power pins floating.
GND	• -	Ground for all internal circuitry: Do not leave any ground pins floating.
NC		No connection
NC1, NC2		Open pin: But NC ₁ (between pin1 and pin2) and also NC ₂ (pin19 and pin20) are connected inside package.

LH28F040SU

Block Diagram

4

Memory Map

FFFFH	16k-byte Block	15	3C000H 3BFFFH	3FFFFH	16k-byte Block	15	3C000 3BFFF
8000H		14	3BFFFH	38000H	1	14	3BFFF
7FFFH	1	13	34000H 33FFFH	37FFFH	1	13	34000 33FFF
0000н		12	33FFFH	30000Н		12	33FFF
FFFFH	1	11	2С000Н	2FFFFH	-	11	2C000 2BFFF
8000н	1	10	2Břřřh	28000H		10	2BFFF
7FFFH		9	24000H	27FFFH		9	24000 23FFF
0000н	1	8	23ĚĚĚH	20000H		8	23FFF
FFFFH		7	1C000H	1FFFFH		7	1C000 1BFFF
8000н	1	6	IBFFFH	18000H	l I	6	1BFFF
7FFFH		5	14000H	17FFFH		5	14000
0000н	1	4	13FFFH	10000H	I I	4	13FFF
FFFFH	1	3	0C000H	0FFFFH	1	3	00000
8000H	1	2	ÓBFFFH	08000H	1	2	ÓBFFF
7FFFH	1	1	04000H	07FFFH		1	04000
0000н 📃	16k-byte Block	0	03FFFH	00000н	16k-byte Block	0	03FFF
	Bank 0 (BEo#="l	.ow")			Bank 1 (BE1#="I	low")	

Bus Operations

Operation		BEo#	BE1#	OE#	WE#	A0	DQ0-DQ7	Note
	Bank 0	VIL	VIH	V	N/	V	D	1
Read	Bank 1	Vih	Vil	ViL	Viн	X	Dout	
Output disable		Х	x	VIH	Vін	x	High-Z	1
Standby		Vih	Vih	x	x	x	High-Z	1
	Bank 0	Vil	Vін			57	DOLL	2
Manufacturer ID	Bank 1	Vih	Vil	VIL	VIH	VIL	B0H	2
	Bank 0	VIL	Vih		XY	X7	2111	
Device ID	Bank 1	Vih	VIL	VIL	Vін	Vih	31H	2
XX7 */	Bank 0	Vil	Vih	N/	V	v		1.2
Write	Bank 1	Vih	Vil	VIH	Vil	X	Din	1, 3

.

Note 1. X can be VIH or VIL for address or control pins, which is either VOL or VOH.

_

Note 2. An at VIL provide manufacturer ID codes. An at VIH provide device ID codes. All other addresses are set to zero.

Note 3. Commands for different Erase operations, Data write operations or Lock-block operations can only be successfully completed when VPP = VPPH.

Note 4. Both BEo# and BE1# must not be low at the same time.

Command Definitions

(1) LH28F008SA-Compatible mode command bus definitions

Following is the commands to be applied to each bank.

Command	I	First bus cycle	;	Se			
	Operation	Address	Data	Operation	Address	Data	Note
Read array	Write	Х	FFH	Read	AA	AD	
Intelligent identifier	Write	Х	90H	Read	IA	ID	1
Read compatible status register	Write	Х	70H	Read	Х	CSRD	2
Clear status register	Write	Х	50H		10010		3
Byte write	Write	Х	40H	Write	WA	WD	
Alternate byte write	Write	Х	10H	Write	WA	WD	
Block erase/Confirm	Write	Х	20H	Write	BA	D0H	4
Erase suspend/Resume	Write	Х	B0H	Write	Х	D0H	4

· Address

adress	• Data
AA : Array Address	AD : Array Data
BA : Block Address	CSRD: CSR Data
IA : Identifier Address	ID : Identifier Data
WA : Write Address	WD : Write Data
X : Don't care	

Note 1. Following the intelligent identifier command, two Read operations access the manufacturer and device signature codes.

Note 2. The CSR is automatically available after device enters Data write, erase, or suspend operations.

Note 3. Clears CSR.3, CSR.4 and CSR.5. See Status register definitions.

Note 4. While device performs Block erase, if you issue Erase suspend command (B0H), be sure to confirm ESS (Erase-Suspend-Status) is set to 1 on compatible status register. In the case, ESS bit was not set to 1, also completed the Erase(ESS = 0, WSMS = 1), be sure to issue Resume command (D0H) after completed next Erase command. Beside, when the Erase suspend command is issued, while the device is not in Erase, be sure to issue Resume command (D0H) after the next erase completed.

(2) LH28F040SU-Performance enhancement command bus definitions

Following is the commands to be applied to each bank.

Command	First bus cycle			Sec	Second bus cycle			Third bus cycle			
Command	Operation	Address	ddress Data	Operation	Address	Data	Operation	n Address	Data	Note	
Protect set/Confirm	Write	х	57H	Write	0FFH	D0H				1, 2, 6	
Protect reset/Confirm	Write	х	47H	Write	0FFH	D0H				3, 6	
Lock block/Confirm	Write	х	77H	Write	BA	D0H				1, 2, 4	
Bank erase all unlocked blocks	Write	x	A7H	Write	Х	D0H				1, 2	
Two-byte write	Write	X	FBH	Write	A0	WD (L, H)	Write	WA	WD (L, H)	1, 2, 5	

• Address	• Data
BA : Block Address	AD : Array Data
WA : Write Address	WD (L, H) : Write Data (Low, High)
X : Don't care	WD (H, L) : Write Data (High, Low)

Note 1. After initial device power-up, or reset is completed, the block lock status bits default to the locked state independent of the data in the corresponding lock bits. In order to upload the lock bit status, it requires to write Protect set/Confirm command.

Note 2. To reflect the actual lock-bit status, the Protect set/Confirm command must be written after Lock Block/confirm command.

Note 3. When Protect reset/Confirm command is written, all blocks can be written and erased regardless of the state of the lock-bits.

Note 4. The Lock block/Confirm command must be written after Protect reset/Confirm command was written.

Note 5. At is automatically complemented to load second byte of data. At value determines which WD is supplied first: $A_0 = 0$ looks at the WDL, $A_0 = 1$ looks at the WDH.

Note 6. Second bus cycle address of Protect set/Confirm and Protect reset/Confirm command is 0FFH. Specifically $A_{9}-A_{8} = 0$, $A_{7}-A_{0} = 1$, others are don't care.

Status Register

Each bank has its own status register.

 $\langle \text{Compatible status register (CSR)} \rangle$

WSMS	ESS	ES	DWS	VPPS	R	R	R
7	6	5	4	3	2	1	0
1 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =	RITE STATE MA Ready Busy ASE-SUSPEND Erase Suspended Erase in Progress ASE STATUS (E Error In Block E Successful Block TA-WRITE STA Error in Data Wr Data Write Succes STATUS (VPPS VPP Low Detect, VPP OK	STATUS (ESS) s/Completed ES) rasure c Erase ATUS (DWS) rite essful S)		an operation the approp for success If DWS and improper c and attemp The VPPS continuous VPP level of sequences VPP has no	on (Erase suspen riate Status bit (d ES are set to ' ommand sequen t the operation ag bit, unlike an A indication of Vr only after the E have been enter t been switched	ed to determine of d, Erase or Data (ESS, ES or DW '1" during an era ce was entered. O	write) before (S) is checked se attempt, an Clear the CSR es not provide M interrogates ase command the system if guaranteed to

***** CSR.2-0 = Reserved for future enhancements

These bits are reserved for future use and should be masked out when polling the CSR.

7

Absolute Maximum Ratings

Temperature under bi	as $\cdots -20$ to $+80$ °C
Storage temperature	$\cdots -65$ to $+125$ °C

WARNING

Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	Note
Vcc with respect to GND	Vcc		-0.2		7.0	V	
VPP supply voltage with respect to GND	Vpp		-0.2		7.0	V	1
Voltage on any pin (except V _{CC} , V _{PP}) with respect to GND	v		-0.5		Vcc+0.5	V	
Current into any non-supply pin	I				±30	mA	
Output short circuit current	Ιουτ				100	mA	2
Operating temperature, commercial	Та	Ambient temperature	-20		70	C	3

Note 1. Minimum DC voltage is -0.5 V on input/output pins. During transitions, this level may undershoot to -2.0 V for periods < 20 ns. Maximum DC voltage on input/output pins is Vcc+0.5 V which, during transitions, may overshoot to Vcc+2.0 V for periods < 20 ns.

Note 2. Output shorted for no more than one second. No more than one output shorted at a time.

Note 3. Operating temperature is for commercial product defined by this specification.

Capacitance

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	Note
Capacitance looking into an Address/Control pin	Cin	Ta=25 ℃, f=1.0 MHz		14	20	pF	1, 2
Capacitance looking into an output pin	Соит	Ta=25 ℃, f=1.0 MHz		18	24	pF	1
Load capacitance driven by outputs for timing specifications	CLOAD	$V_{CC} = 3.3 \pm 0.3 V$			50	pF	1
Equivalent testing load circuit $V_{CC} \pm 10\%$		50 Ω transmission line delay			2.5	ns	

Note 1. Sampled, not 100% tested.

Note 2. BEo#, and BE1# have half the value of this.

- ۲

DC Characteristics (Note 1)

$(V_{CC}=3.3\pm0.3 \text{ V}, \text{ Ta}=-20 \text{ to }+70 \text{ °C})$
--

			$(V_{CC}=3)$	$.3 \pm 0.3$	V, Ta = -	-20 to +	-70 ℃)
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	Note
Input load current	In.	$V_{CC} = V_{CC} MAX.$ $V_{IN} = V_{CC} \text{ or GND}$			±2.0	μ A	2
Output leakage current	Ilo	$V_{CC} = V_{CC} MAX.$ $V_{IN} = V_{CC} \text{ or GND}$			±20	μA	2
	-	$V_{CC} = V_{CC} MAX.$ BE ₀ #,BE ₁ #= $V_{CC} \pm 0.2 V$		5.0	10	μΑ	
Vcc Standby current	Iccs	$V_{CC} = V_{CC} MAX.$ BE ₀ #,BE ₁ #=V _{IH}		0.3	4.0	mA	2, 5, 6
Vcc read current (10 MHz operation)	Iccri	Vcc = Vcc MAX. CMOS: BE ₀ #, BE ₁ #=GND \pm 0.2 V Inputs=GND \pm 0.2 V or Vcc \pm 0.2 V TTL: BE ₀ #, BE ₁ #=V _{IL} Inputs=V _{IL} or V _{IH} f=10 MHz, Iout=0 mA			35	mA	2,4,5,6
Vcc read current (5.0 MHz operation)	ICCR2	Vcc = Vcc MAX. CMOS: BE ₀ #, BE ₁ #=GND \pm 0.2 V Inputs=GND \pm 0.2 V or Vcc \pm 0.2 V TTL: BE ₀ #, BE ₁ #=V _{IL} Inputs=V _{IL} or V _{IH} f=5.0 MHz, Iout=0 mA		10	20	mA	2,4,5,6
Vcc write current	Iccw	Byte/Two-byte serial write in progress		8.0	12	mA	2,6
Vcc block erase current	ICCE	Block erase in progress		6.0	12	mA	2,6
Vcc erase suspend current	Icces	BE ₀ #, BE ₁ #=V _{IH} Block erase suspended		3.0	6.0	mA	2, 3, 6
VPP standby current	IPPS	$V_{PP} \leq V_{CC}$		±1.0	±10	μ A	2, 6
VPP read current	Ippr	VPP>VCC		65	200	μ Α	2,6
V _{PP} write current	Ippw	$V_{PP} = V_{PPH}$ byte/two-byte serial write in progress		15	35	mA	2, 6
VPP erase current	IPPE	$V_{PP} = V_{PPH}$ block erase in progress		20	40	mA	2, 6
VPP erase suspend current	IPPES	$V_{PP} = V_{PPH}$ block erase suspended		65	200	μA	2, 6
Input "Low" voltage	Vil		-0.3		0.8	V	
Input "High" voltage	VIH		2.0		Vcc+0.3	V	
Output "Low" voltage	Vol	$V_{CC} = V_{CC} MIN.$ and $I_{OL} = 4.0 mA$			0.4	v	
Output "High" weltere	Vонı	$I_{OH} = -2.0 \text{ mA}$ Vcc = Vcc MIN.	2.4			V	•
Output "High" voltage	Vон2	$I_{OH} = -100 \ \mu \text{ A}$ $V_{CC} = V_{CC} \text{ MIN.}$	V _{cc} -0.2			V	
VPP during normal operations	VPPL		0		5.5	v	
VPP during Write/Erase operations	Vpph		4.5	5.0	5.5	v	
Vcc Erase/Write lock voltage	Vlko		1.4			V	

,

-

.

- Note 1. Following is the current consumption of one bank. For the current consumption of one device total, please refer to the Note 6.
- Note 2. All currents are in RMS unless otherwise noted. Typical values at V_{CC} = 3.3 V, V_{PP} = 5.0 V, Ta = 25°C.
- Note 3. ICCEs is specified with the device de-selected. If the device is read while in erase suspend mode, current draw is the sum of ICCEs and ICCR.
- Note 4. Automatic Power Saving (APS) reduces ICCR to less than 2 mA in Static operation.
- Note 5. CMOS Inputs are either Vcc ± 0.2 V or GND ± 0.2 V. TTL Inputs are either ViL or ViH.
- Note 6. These are the values of the current which is consumed within one bank area. The value for the bank0 and bank1 should added in order to calculate the value for the whole chip. If the bank0 is in write state and bank1 is in read state, the Icc = Iccw + IccR. If both bank are in standby mode, the value for the device is 2 times the value in the above table.

AC Characteristics

 $\langle Read only operations \rangle$ Note 1

 $(V_{CC}=3.3\pm0.3 \text{ V}, \text{ Ta}=-20 \text{ to }+70 ^{\circ}\text{C})$

Parameter	Symbol	MIN.	TYP.	MAX.	Unit	Note
Read cycle time	t avav	150			ns	
Address setup to OE# going low	tavgl	0			ns	3
Address to output delay	t avqv			150	ns	
BEo#, BE1# to output delay	telqv			150	ns	2
OE# to output delay	t glqv			50	ns	2
BE ₀ #, BE ₁ # to output in Low-Z	telqx	0			ns	3
BE6#, BE1# to output in High-Z	t ehqz			55	ns	3
OE# to output in Low-Z	tglqx	0			ns	3
OE# to output in High-Z	t GHQZ			40	ns	3
Output hold from address, BE0#, BE1# or OE# change, whichever occurs first	tон	0			ns	3

 $(V_{CC}=2.85\pm0.15 \text{ V}, \text{ Ta}=-20 \text{ to }+70 \text{ }^\circ\text{C})$

Parameter	Symbol	MIN.	TYP.	MAX.	Unit	Note
Read cycle time	t avav	190			ns	
Address setup to OE# going low	tavgl	0			ns	3
Address to output delay	t avqv			190	ns	
BEo#, BE1# to output delay	telqv			190	ns	2
OE# to output delay	tGLQV			65	ns	2
BEo#, BE1# to output in Low-Z	t elqx	0			ns	3
BEo#, BE1# to output in High-Z	t ehqz			70	ns	3
OE# to output in Low-Z	t glqx	0			ns	3
OE# to output in High-Z	t _{GHQZ}			55	ns	3
Output hold from address, BE0#, BE1# or OE# change, whichever occurs first	tон	0			ns	3

Note 1. See AC Input/Output reference waveforms for timing measurements, Figure 1.

Note 2. OE# may be delayed up to t_{ELQV} - t_{GLQV} after the falling edge of BE0# or BE1# without impact on t_{ELQV} .

Note 3. Sampled, not 100% tested.

○ Read timing Waveforms

(Vcc Power-up and reset timing) Note 1

Parameter	Symbol	MIN.	TYP.	MAX.	Unit	Note
WE# low to Vcc at 3.0 V minimum	twlpl	5.0			μs	2
Address valid to data valid for Vcc = 3.3 ± 0.3 V	tavqv			150	ns	3
WE# high to data valid for Vcc = 3.3 ± 0.3 V	t phqv	<u></u>		500	ns	3
BE0# and BE1# setup to WE# going low	telrs	100			ns	
OE# setup to WE# going low	tglrs	100			ns	
BE0# and BE1# hold from WE# going high	t ehrs	100	1		ns	
OE# hold from WE# going High	tghrs	100			ns	

Note 1. BE0#, BE1# and OE# must be set high once after power-up. BE0# and BE1# must not be set low at the same time.

Note 2. Chip reset is enabled when the low state of all BEo# (or BE1#), OE# and WE# exceeds 5 μ s. Especially when you will power on the chip, execute an above chip reset sequence for a protection from noise. All BEo# (or BE1#), OE# and WE# must not be low, except of the purpose for chip reset.

Note 3. These values are shown for 3.3 V Vcc operation. Refer to the AC Characteristics read only operations also.

O Power-up and reset timing waveforms

WE# controlled	command write o	peration Note 1
-----------------------	-----------------	-----------------

 $(V_{CC}=3.25\pm0.35 \text{ V}, \text{ Ta}=-20 \text{ to }+70 ^{\circ}\text{C})$

Parameter	Symbol	MIN.	TYP.	MAX.	Unit	Note
Write cycle time	t avav	150			ns	
VPP setup to WE# going high	tvpwh	100			ns	3
BEo# and BE1# setup to WE# going low	telwl	0			ns	
Address setup to WE# going high	tavwh	110			ns	2, 6
Data setup to WE# going high	tovwн	110			ns	2, 6
WE# pulse width	t wlwh	110			ns	
Data hold from WE# high	twhdx	10			ns	2
Address hold from WE# high	twhax	10			ns	2
BEo# and BE1# hold from WE# high	twhen	10			ns	
WE# pulse width high	twhwL	75			ns	
Read recovery before write	t Ghwl	0			ns	
Write recovery before read	t whgl	120			ns	
VPP hold from valid status register data	t qvvl	0			μs	
Duration of byte write operation	twhqv1	8.0	20	250	μs	4, 5, 7
Duration of block erase operation	twhqv2	0.3			S	4

Note 1. Read timing during write and erase are the same as for normal read.

Note 2. Refer to command definition tables for valid address and data values.

Note 3. Sampled, but not 100% tested.

Note 4. Write/Erase durations are measured to valid Status Register (CSR) Data.

Note 5. Byte write operations are typically performed with 1 Programming pulse.

Note 6. Address and Data are latched on the rising edge of WE# for all Command write operations.

Note 7. The max value of byte write time is the maximum write time inside the chip. It is not the time until the whole writing procedure is completed properly. It is necessary to check CSR to see if the writing procedure is properly completed.

• Command write operation waveforms (1)

SHARP

(BE# controlled command write operation) Note 1

 $(V_{CC}=3.25\pm0.35 \text{ V}, \text{Ta}=-20 \text{ to }+70 ^{\circ}\text{C})$

Parameter	Symbol	MIN.	TYP.	MAX.	Unit	Note
Write cycle time	tavav	150			ns	
VPP setup to BEo# or BE1# going high	tvpeh	100			ns	3
WE# setup to BEo# or BE1# going low	twlel	0			ns	
Address setup to BEo# or BE1# going high	t aveh	110			ns	2,6
Data setup to BEo# or BE1# going high	t dveh	110			ns	2,6
BEo# or BE1# pulse width	teleh	110			ns	
Data hold from BEo# or BE1# high	t ehdx	10			ns	2
Address hold from BE ₀ # or BE ₁ # high	twhax	10			ns	2
WE# hold from BE0# or BE1# high	t ehwh	10			ns	
BEo# or BE1# pulse width high	tehel	75			ns	
Read recovery before write	t GHWL	0			ns	
Write recovery before read	t ehgl	120			ns	
VPP hold from valid status register data	t qvvl	0			μs	
Duration of byte write operation	t _{ehqvi}	8.0	20	250	μs	4, 5, 7
Duration of block erase operation	tehqv2	0.3		1	S	4

Note 1. Read timing during write and erase are the same as for normal read.

Note 2. Refer to command definition tables for valid address and data values.

Note 3. Sampled, but not 100% tested.

Note 4. Write/Erase durations are measured to valid Status Register (CSR) Data.

Note 5. Byte write operations are typically performed with 1 Programming Pulse.

Note 6. Address and Data are latched on the rising edge of BE0# or BE1# for all Command write operations.

Note 7. The max value of byte write time is the maximum write time inside the chip. It is not the time until the whole writing procedure is completed properly. It is necessary to check CSR to see if the writing procedure is properly completed.

O Command write operation waveforms (2)

SHARP

 $\langle Erase and byte write performance \rangle$

, i	•		(Vc	$c = 3.25 \pm 0$	0.35 V, Ta	= -20 to	+70 °C
Parameter	Symbol	Conditions	MIN.	TYP.*	MAX.	Unit	Note
Byte write time	twhrhi			20	250	μs	1, 2
Two-byte serial write time	twhrh2			34		μs	1
16kB block write time	twhrh3	Byte write mode		0.33	1.0	S	1
16kB block write time	twhrh4	Two-byte serial write mode		0.28	1.0	s	1
Block erase time (16kB)				0.8		S	1
2M-bit bank erase time				9 to 15		S	1, 3

(.

***** 25 ℃, V_{PP}=5.0 V

Note 1. Excludes System-Level Overhead. It actually indicates the time from input write/erase command until bit7 of status register becomes ready (WSMS = 0).

Note 2. The max value of byte write time is the maximum write time inside the chip. It is not the time until the whole writing procedure is completed properly. It is necessary to check CSR to see if the writing procedure is properly completed.

Note 3. Depends on the number of protected blocks.

SHARP CORPORATION Japan

HEAD OFFICE

INTERNATIONAL SALES & MARKETING GROUP -IC/ELECTRONIC COMPONENTS 22-22, NAGAIKE-CHO, ABENO-KU, OSAKA 545, JAPAN PHONE: (06) 621-1221 FAX: 6117-725300, 6117-725301, 6117-725302

U.S.A.

SHARP ELECTRONICS CORPORATION **Microelectronics Group**

North American Head Quarters 5700 Northwest Pacific Rim Blvd. #20, Camas, WA 98607 PHONE: (1)360-834-2500 FAX : (1)360-834-8903 West 1980 Zanker Road, San Jose, CA 95112 PHONE: (1)408-436-4900 FAX : (1)408-436-0924 16841 Armstrong Avenue, Irvine, CA 92714 PHONE: (1)714-25-0225 FAX : (1)714-250-0438 Central 1025 Roval Lane DFW Airport, TX 75261-9035 PHONE : (1)972-574-5205 FAX : (1)972-574-9870 10222 Scull Creek, Austin, TX 78730 PHONE : (1)512-349-7262 FAX : (1)512-349-7002 9950 Cypresswood, Suite 350, Houston, TX 77070 PHONE : (1)713-955-9909 FAX : (1)713-955-9910 East 1300 Napervill Road, Romeoville, IL 60441 PHONE: (1)630-226-2400 FAX (1)630-759-8572 691 N. Squirrel Road, Suite 110, Auburn Hills, MI 48326 PHONE: (1)810-377-9220 FAX : (1)810-377-9222 14A Second Avenue, Burlington, MA 01803 PHONE : (1)617-270-7979 FAX : (1)617-229-9117 Canterbury Hall, 4815 Emperor Blvd. Suite 140, Durham, NC 27703 PHONE : (1)919-941-0065 FAX : (1)919-941-0066

IC SALES DEPARTMENT

INTERNATIONAL SALES & MARKETING GROUP -IC/ELECTRONIC COMPONENTS 2613-1 ICHINOMOTO-CHO TENRI-CITY NARA 632, JAPAN PHONE: (07436) 5-1321 FAX: (07436) 5-1532

EUROPE

SHARP ELECTRONICS (EUROPE) GmbH

Head Office

Microelectronics Division, (MED) Sonninstrasse 3, 20097 Hamburg, Germany PHONE : (49)40-23 76 22 86 FAX : (49)40-23 76 22 32

Germany MED Stuttgart Office Zettachring 8, 70567, Stuttgart, Germany PHONE : (49)711-90076-3 FAX : (49)711-90076-50

Germany MED Nürnberg Office Donaustrasse 69, 90451 Nürnberg, Germany PHONE : (49)911-642 70 51 FAX : (49)911-642 66 69

France MED Paris Office Immeuble Rosny 2, Avénue du Général de Gaulle 93110 Rosny Sous Bois Cédex, France PHONE : (33)1-48 12 19 00 FAX : (33)1-48 55 46 78

Italy MED Milano Office Centro Direzionale Colleoni Palazzo Taurus Ingresso 2 20041 Agrate Brianza, Milano, Italy PHONE : (39)39-68 99 946 FAX : (39)39-68 99 948

U.K. MED London Office Centennial Court, Easthampstead Road Bracknell, Berks RG12 1YQ, United Kingdom PHONE : (44)1344-86 99 22 FAX : (44)1344-36 09 03

U.K. MED Scotland Office Unit 48 Grovewood Business Centre, Strathclyde Business Park, Bellshill ML43NQ, Scotland, United Kingdom PHONE : (44)1698-84 34 42 FAX : (44)1698-84 28 99

Ireland MED Dublin Office First Floor, Block 1, St. Johns Court Santry, Dublin 9, Ireland PHONE: (353)1-842 87 05 : (353)1-842 84 55 FAX

ASIA

SHARP-ROXY (HONG KONG) LTD.

3rd Business Division 17/F, Admiralty Centre, Tower 1, 18 Harcourt Road, Hong Kong PHONE : (852)28229311 FAX : (852)28660779

SHARP ELECTRONICS (SINGAPORE) PTE., LTD.

Electronic Components Division. 100, Beach Road #32-07 to 13
 Shaw Towers, Singapore 189702

 PHONE : (65)295-0566

 FAX : (65)295-0977

SHARP ELECTRONIC COMPONENTS (TAIWAN) CORPORATION 8FL, No. 16, Sec. 4, Nanking E. Rd., Taipei, Taiwan, Republic of China PHONE: (886)2-577-7341 FAX : (886)2-577-7326, (886)2-577-7328

 SHARP ELECTRONIC

 COMPONENTS (KOREA) CORPORATION

 RM 501 Geosung B/D, 541,

 Dohwa-dong, Mapo-ku, Seoul, Korea

 PHONE: (82)2-711-5813 to 5818

 FAX
 : (82)2-711-5819

The circuit application examples in this publication are provided to explain representative applications of SHARP devices and are not intended to guarantee any circuit design or license any intellectual property rights. SHARP takes no responsibility for any problems related to any intellectual property right of a third party resulting from the use SHARP devices.

In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP devices shown in catalogs, data books, etc.

SHARP reserves the right to make changes in the specifications, characteristics, data, materials, structures and other contents described herein at any time without notice in order to improve design or reliability. Contact SHARP in order to obtain the latest specification sheets before using any SHARP device. Manufacturing locations are also subject to change without notice

Observe the following points when using any device in this publication. SHARP takes no responsibility for change caused by improper use of the devices, which does not meet the conditions and absolute maximum ratings for use specified in the relevant specification sheet nor meet the following conditions :

The devices in this publication are designed for use in general electronic equipment designs, such as : • Personal computers

- Office automation equipment
 Office automation equipment
 Telecommunication equipment (except for trunk lines)
 Test and measurement equipment
- Industrial control
 Audio visual equipment

•

- Consumer electronics
- Measures such as Fail-safe function and redandant desigh should be taken to ensure reliability and safety when SHARP devices are used for or in connection with equipment that requires higher reliability such as : Main frame computers

 - Transportation control and safety equipment (i.e., aircraft, trains, automobiles, etc.)

- Traffic signals
 Gas leakage sensor breakers
- Alarm equipment
 Various safety devices etc.
- SHARP devices shall not be used for or in connection with equipment that requires an extremely high level of reliability and safety such as :
 - Space applications
 - Telecommunication equipment (trunk lines)
 - Nuclear power control equipment Medical and other life suport equipment (e.g scuba)

Contact a SHARP representative in advance when intending to use SHARP devices for any "specific" applications other than those recommended by SHARP or when it is unclear which category mentioned above controls the intended use.

If the SHARP devices listed in this publication fall in the scope of strategic products described in the Foreign Exchange and Foreign Trade Control Law, it is necessary to obtain export permission or approval under the law in order to export such SHARP devices.

This publication is the proprietary product of SHARP and copyrighted, with all rights reserved. Under the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP. Express written permission is also required before any use of this publication may be made by a third party.

Contact and consult with a SHARP representative if there are any questions about the contents of this publication.

Ref. No. NP 161C

LH28Fxxx FLASH MEMORY FLASH NON-VOLATILE MEMORY FLASH E2ROM FLASH ROM READ ONLY MEMORY ETOX DUAL VOLTAGELH28F040SU 4M-bit Dual Work