APPLICATION
NOTE

JULY 1994

LH28F008SA
Software Drivers

SHARP

LH28F008SA
Software Drivers

~—

CONTENTS

1.0 INTRODUCTION

2.0 ASM-86 ASSEMBLY DRIVERS

3.0 “C” DRIVERS '

SHARP

1.0 INTRODUCTION

This application note provides example software code for byte writing, block erasing and otherwise controlling
SHARP’s LH28F008SA 8 Mbit symmetrically blocked Flash Memory family. Two programming languages are
provided; high-level “C" for multi-plaﬁomréuppért, and ASM-86 assembly. In many cases, the driver routines
can be inserted “as is” into the main body of code being developed by the system software engineer. The text
acoompanying each routiné describes the eiistihg code and suggests areas for possible alteration to fit spe-
cific applications. These explanations, along with in-line commenting, minimize driver modification efforts.

The product datasheet for the LH28FO08SA is a valuable reference document. This datasheet should be
reviewed in conjunction with this application note for a complete understanding of the devices. “LH28F008SA
Hardware Interfacing ” is the hardware-oriented application note equivalent for these devices and can also be

referenced.

The internal automation of the LH28F008SA makes software timing loops unnecessary and results in platform-
independent code. This software is designed to be executed in any type of memory and with all processor
clock rates. “C” code can be used with many microprocessors and microcontrollers.)

SHARP

2.0 ASM-86 ASSEMBLY DRIVERS

; The foliowing code controis byte write of data to a single LH28F008SA (x8 write)
; DS:[S1] points to the data to be written, ES:{DI] is the location to be written

H in protected mode operation, DS and ES reference a descriptor

H Register AX is modified by this procedure

WRITE_SETUP EQU 40H -~

READ_ID EQU S0H
MANUFACTURER_ID EQU 89H
DEVICE_ID EQU =~ 0A2H
DEVICE_ID2 EQU OA1H
READY EQU 80H
W_ERR_FLAG EQU 10H
VPP_FLAG EQU 08H

H Insert code here 1o ramp Vpp and disabie component /PWD inpu{. It a string of bytes is
H to be written at one time, Vpp ramp to 12V and ID cheek need only occur once,

H before the first byte is written.
MOV AX, “Address 0 for target LH28F008SA-segment” H initiaiize pointer to LH28FC08SA address 0
MOV ES, AX
MOV DI, “Address O for target L H28F008S A-offset”
MOV BYTE PTR ES:{DI), READ_ID H Write Inteiligent Identifler command
CMP BYTE PTR ES:[D}}, MANUFACTURER_ID H Does manufacturer ID read comectly?
JINZ W_BYT_ID_ERR .
MOV Di, "Address 1 for target LH28F008SA-offset” H Initialize pointer to LH28F008SA address 1
CMP BYTE PTR ES:{D1}, DEVICE_ID ; Does device 1D read correctly? ’
Jz W_BYT_ID_PASS
CMP BYTE PTR ES:[D1], DEVICE_ID2
JNZ W_BYT_ID_ERR
W_BYT_ID_PASS:
MOV AX. "Byte write destination address-segment® H Initialize pointer to byte write dest. address
MOV ES, AX
MoV . Ol "Byte write destination address-offset”
MOV . BYTE PTR ES:{D1), WRITE_SETUP - ; Write byte write setup command
MOV AL, Ds:[si ; Load AL with data to write
MOV ES:[D), AL ; Write to device
W_BYT_LOOP:
TEST BYTE PTR ES:[DI), READY H Read LH28F008SA Status Register
Jz W_BYT_LOOP : Loop until bit 7 = 1
TEST BYTE PTR ES:[Df), (W_ERR_FLAG OR VPP FLAG)
Jz W_BYT_CONT : Success|
TEST BYTE PTR ES:{D1], W_ERR_FLAG H Check Status Register bit 4
JNZ W_BYT_ERR : Jump if = 1, Byte Write Error
TEST ES:[D), VPP_FLAG H Check Status Register bit 3
JNZ W_BYT_VPP ; Jump if = 1, Vpp Low Error

W_BYT_ID_ERR:

H Insert code to service improper device ID read error here.
H Is LH28F008SA /PWD input disabled? is Vcc applied to the LH28F008SA?
W_BYT_ERR:

; Insert code to service byte write error here

W_BYT_VPP:
H Insert code 1o service byte write Vpp low emor here
W_BYT_CONT:
H Code continues from this poirt......

This routine writes a byte of data to a single LH28F008SA. Note the use of BYTE PTR notation to force x8
accesses. If a string of bytes is to be written at one time, the V,, ramp up, PWD disable and device ID checks
need only be done before the first byte write attempt. Additionally, when writing muitiple bytes at once, exami-
nation of bits other than bit 7 (WSM Status) need only occur after the last byte write has completed. The Status

Register retains any error bits until the Clear Status Register command is written.

2

SHARP

; The following code controis byte write of data to a pair of LH28F008SA (x16 write)
H DS:[SI] points to the data to be written, ES:{DI] is the location to be written

H In protected mode operation, DS and ES reference a descriptor

H Register AX is modified by this procedure

WRITE_SETUP EQU 40H

READ_ID EQU 90H
MANUFACTURER_ID EQU 89H

DEVICE_ID EQU 0A2H -
DEVICE_ID2 EQU OATH

READY EQU 80H
W_ERR_FLAG EQU - 10H

VPP_FLAG EQU 08H

H Insert code here to ramp Vpp and disable component /PWD input. If a string of words is

H to be written at one time, Vpp ramp to 12V and ID cheek need onty occur once,
V before the first word is written.

MOV AX, “Address 0 for target LH28F008SA-segment” ; Initialize pointer to LH28F008SA address 0
MOV ES, AX

MOV Di, *“Address 0 for target LH28F008SA-offset”

MOV ES:[DI1], ((READ_ID SHL 8) OR READ_ID) H Write Inteliigent Identifier command

CMP ES:[D1], {(MANUFACTURER_ID SHL 8) OR MANUFACTURER_ID) ; Does manufacturer ID read correctly?
JNZ W_WRD_ID_ERR .
MOV D, "Address 1 for target LH28F008SA-offset” H Initialize pointer to LH28FO0BSA address 1~ = -
CMP ES:[D1, ((DEVICE_ID SHL 8) OR DEVICE_ID) H Does device iD read correctly?

Jz W_WRD_ID_PASS

CMP ES:[DH, {{(DEVICE_ID2 SHL 8) OR DEVICE_ID2)

JNZ W_WRD_ID_ERR

W_WRD_ID_PASS:

MOV AX. "Byte write destination address-segment” ; Initialize pointer to byte write dest. address
MOV ES, AX
MOV D1, "Byte write destination address-oftset”
MOV ES:[D1], ((WRITE_SETUP SHL 8) OR WRITE_STEUP) ; Wirite byte write setup command
MOV AX, DS:{S}} . Load AX with data to write
MOV ES: (DY), AX K Write to devices

W_WRD_LOOP:
TEST ES:DIL ((READY SHL 8)OR READY) ; Read LH28F008SA Status Registers
Jz W_WRD_LOOP : Loop untitbit 7 =1
TEST ES:{DI}, (((W_ERR_FLAG OR VPP_FLAG) SHL 8) OR (W_ERR_FLAG OR VPP_FLAG))
JZ W_WRD_CONT H Success!
MOV AX, ES:{DI), H Load Status Register data into AX
TEST AL, W_ERR_FLAG H Check Status Register bit 4 (low byte)
JNZ W_WRD_ERR : Jump if = 1
TEST AH, W_ERR_FLAG ; Chaeck Status Register bit 4 (high byte)
JINZ W_WRD_ERR o Jumpifs)
TEST AL, VPP_FLAG H Check Status Register bit 3 {low byte)
JNZ W_WRO_vPP i Jump if=1
TEST AH, VPP_FLAG : Check Status Register bit 3 (high byte)
JNZ W_WRD_VPP H Jump if = 1

W_WRD_ID_ERR:

4 insert code to service improper device |D read emor here.

H Are LH28F008SA /PWD inputs disabied? Is Vcc applied to the LH28F008SAs? -
W_WRD_ERR:
N Insert code 1o service byte write error here
W_WRD_VPP:
N Insert code 10 service byte write Vpp low error hers
W_BYT_CONT:
; Code continues from this point......

This routine writes a word of data to a pair of LH28F008SAs. Note that all constants have been “OR’'d" for
parallel read/write of two devices at once. If a string of words is to be written at one time, the V, ramp up, PWD
disable and device ID checks need only be done before the first word write attempt. Additionally, when writing
multiple words at once, examination of bits other than bit 7 (WSM Status) need only occur after the last word
write has completed. The Status Register retains any error bits until the Clear Status Register command is
written.

3

SHARP

; The following code controls block erase of a single LH2BF00BSA (x8 block erase)
H ES:[DI] points to the block to be erased

H In protected mode operation, ES references a descriptor

: Register AX is modified by this procedure

ERASE_SETUP EQU 20H

ERASE_CONFIRM EQU ODOH

READ_ID EQU 90H
MANUFACTURER_ID EQU 89H -
DEVICE_ID EQU 0A2H
DEVICE_ID2 EQU OA1H

READY EQU - B80H
E_ERR_FLAG EQU 20H
E_CMD_FLAG EQU 30H

VPP_FLAG EQU 08H

H Insert code here to ramp Vpp and disable component /PWD input. If a string of blocks is

: to be erased at one time, Vpp ramp to 12V and !D check need only occur once,
s betore the first block is erased.

MOV AX, *Address 0 for target LH28F008SA-segment” H Initialize pointer to LH28FO08SA address 0
MOV ES, AX
MOV DI, “Addrass 0 for target LH28F008SA-offset”
MOV BYTE PTR ES:{DI], READ_ID H Write Intelligent Identifier command
- CMP BYTE PTR ES:(DI], MANUFACTURER_ID ; Does manufacturer ID read correctly? T
JNZ E_BYT_ID_ERR
MOV Di, ~Address 1 for target LH28F008SA-offset” H Initialize pointer to LH28F008SA address 1
CMP BYTE PTR ES:(DI], DEVICE_ID H Does device ID read correctly?
Jz E_BYT_ID_PASS
CMP BYTE PTR ES:[DI], DEVICE_ID2
JNZ E_BYT_ID_ERR
E_BYT_ID_PASS:
MOV AX. *Block erase destination address-sagment” H Initialize pointer to block erase dest. address
MOV ES, AX
MOV Di, "Block erase destination address-offset™
MOV BYTE PTR ES:[D}}, ERASE_STEUP ; Write block erase setup command
MOV BYTE PTR ES:[DI], ERASE_CONFIRM : Wirite block erase confirm command
E_BYT_LOOP:
TEST BYTE PTR ES:[D1], READY H Read LH28FQ08SA Status Register
JZ E_BYT_LOOP H Loop until bit 7 = 1
TEST BYTE PTR ES:[DI], (E_CMD_FLAG OR VPP_FLAG))
JZ E_BYT_CONT : Success!
TEST BYTE PTR ES:[DI], E_CMD_FLAG H Check Status Register bit 4 and 5
JINZ E_BYT_CMD_ERR ;o Jumpif=1
TEST BYTE PTR ES:[D1], E_ERR_FLAG ; Check Status Register it §
JNZ E_BYT_ERR o Jumplif=1
TEST BYTE PTR ES:[DI], VPP_FLAG H Check Status Register bit 3
JNZ E_BYT_vPP ;o Jump if=1

E_BYT_ID_ERR:

H Insert code to service improper device ID read emor here.

H 1s LH28F008SA /PWD input disabled? Is Vec applied to the LH28F008SA?

E_BYT_CMD_ERR: -
H insert code to service block erase command sequence efror here (setup followed by a command other than confirm)

E_BYT_ERR:
5 insert code to service block erase error here
E_BYT_VPP:
R Insert code to service block arase Vpp low error here
E_BYT_CONT:
H Code continues from this point......

This routine erases a block of a single LH28F008SA. Note the use of BYTE PTR notation to force x8 accesses.
If a string of blocks is to be erased at one time, the V,,, ramp up, PWD disable and device ID checks need only
be done before the first block erase attempt. Additionally, when erasing multiple blocks at once, examination of
bits other than bit 7(WSM Status) need only occur after the last block erase has completed. The Status Regis-
ter retains any error bits until the Clear Status Register command is written.

4

SHARP

5 The following code controls block erase of a pair of LH28F008SAs (x16 block erase)
; ES:[Di} points to the blocks to be erased

h In protected mode operation, ES references a descriptor

H Register AX is modified by this procedure

ERASE_SETUP EQU 20H

ERASE_CONFIRM EQU 0DOH

READ_ID EQU 90H
MANUFACTURER_ID EQU 89H

DEVICE_ID EQU 0A2H =
DEVICE_ID2 EQU 0ATH

READY EQU 80H

E_ERR_FLAG EQU 20H

E_CMD_FLAG EQU 30H

VPP_FLAG EQU 08H

: insert code here to ramp Vpp and disable component /PWD inputs. if a string of blocks is

H to be erased at one time, Vpp ramp to 12V and iD check need only occur once,
HE before the first block pair is erased.

MOV AX, *Address 0 for target | H28F008SA-segment” . lnitialize pointer to LH28FO08SA address 0
MOV ES, AX
MOV DI, "Address 0 for target LH28F008SA-offset”
MOV ES:Di}, ((READ_ID SHL 8) OR READ_ID) . Wrlte intelligent identitier command
CMP ES:[D1], ((MANUFACTURER_ID SHL8) OR MANUFACTURER_ID) ; Does manufacturer ID read comrectly? .. _
JNZ E_WRD_ID_ERR
MOV [»/8 *Address 1 for target LH28F008S A-offset” H Initiatize pointer to LH28FO08SA address 1
CMP ES:[DY), ((DEVICE_ID SHL 8) OR DEVICE_ID) B Does device ID read correctly?
JZ E_WRD_|D_PASS
CMP ES:Di], ((DEVICE_ID2 SHL 8) OR DEVICE_ID2)
JNZ W_WRD_ID_ERR
E_WRD_ID_PASS: .
MOV AX. "Block ease destination address-segment” ; Inttlalize pointer to block erase dest. address
MOV ES, AX
MOV DI, "Block erase destination address-offset”
MOV ES:D1), ((ERASE_SETUP SHL 8) OR ERASE_STEUP) ; write block erase setup command
MOV ES:[D1], ((ERASE_CONFIRM SHL 8) OR ERASE_CONFIRM) ; write block erase confirm command
E_WRD_LOOP:
TEST ~ ESiDI} ((READY SHL 8) OR READY - : Read LH28F008SA Status Registers
Jz E_WRD_LOOP . Loop until bit 7 = 1
TEST ES:D1), ({(E_CMD_FLAG OR VPP_FLAG) SHL 8) OR (E_CMD_FLAG OR VPP_FLAG))
Jz E_WRD_CONT ; Success!
MOV AX, ES:[DY], H Load Status Register data into AX
TEST AL, E_CMD_FLAG o Check Status Register bit 4 and 5 (low byte)
JINZ E_WRD_CMD_ERR i Jumpit=1t .
TEST AH, E_CMD_FLAG ; Check Status Register bit 4 and 5 (high byte
JNZ E_WRD_CMD_ERR i Jumpif=1
TEST AL, E_ERR_FLAG; H Check Status Register bit 5 (low byte)
JNZ E_WRD_ERR i Jumpif=1 N
TEST AH, E_ERR_FLAG; Check Status Register bit 5 (high byte)
JINZ E_WRD_ERR i Jumpit=1
TEST AL, VPP_FLAG ; Check Status Register bit 3 (low byte)
JNZ E_WRD_VPP ; Jump if = 1
TEST AH, VPP_FLAG H Check Status Register bit 3 (high byte)
JNZ E_WRD_VPP i Jumpift=1

E_WRD_ID_ERR:
H Insert code to sarvice improper device 1D read error here.
H Are LH28F008SA /PWD inputs disabled? Is Vce applied to the LH28FO08SAs?
E_WRD_CMD_ERR:
H insert code to service block erase command sequence error here {setup followed by a command other than confirm)
E_WRD_ERR:
H Insert code to service block erase error here
E_WRD_VPP:
; Insert code to service block erase Vpp low error here
" E_WRD_CONT:
H Code continues from this point......

This routine erases a block pair of two LH28F008SAs. Note that all constants have been “OR'd" for parallel
read/write of two devices at once. If a string of block pairs is to be erased at one time, the V,, ramp up, PWD
disable and device ID checks need only be done before the first block pair erase attempt. Additionally, when
erasing multiple block pairs at once, examination of bits other than bit 7 (WSM Status) need only occur after
the last block pair erase has completed. The Status Register retains any error bits until the Clear Status
Register command is written.

5

ﬁ\ﬁ‘d‘:‘lﬁ‘d\a‘i‘tﬁ\u\tﬁ\d\a“\‘l\d\i‘a‘o‘as‘i‘d\l‘l\‘a‘l‘l\i\t\a

SHARP

3.0 “C” DRIVERS

R R R R R R A AR R AR AL A AR AR AR A AL A A]

f---.c---c.-.----------..-..-.--------.-..------..------.--.....-.----...-.--.-----------o--..-...-

The following drivers control the Command and Status Registers of the LH28F008SA Flash Memory 1o
drive byte write, block erase, Status Register read and dear and array read aigorithms. Sampie Vpp and
/PWD control blocks are aiso included, as are exampie programs combining drivers into full aigorithms
The functions listed below are included:

erasbgn(): Begins block erasure

erassusp{): Suspends block erase o allow reading data from a block of the LH28F008SA other than
~ thatbeing erased ‘

erasres(): Resumes block erase if suspended

end(): Polls the Write State Machine to determine if block erase or byte write have

completed

eraschk(): Executes full status check after block grase completion

writebgn(): Begins byte write

writechk(): Executes full status check after byte write compietion

idread(): Reads and returns the manutacturer and device IDs of the target LH28F008SA

statrd(): Reads and retums the contents of the Status Register

statcir(): Clears the Status Register

" rdmode{): Puts the LH28F008SA in Read Array mode

rdbyte(): Reads and returns a specified byte from the target LH28FO08SA
vppup(). Enables high voitage Vpph

vppdowny(): Disables Vpph

pwden(): Enabiles active low signal /PWD

pwddis(): Disables active low signal /PWD

Addresses are transferred 10 functions as pointers 10 far byles (ie long integers). Ah alternate

approach is to create a global array the size of the LH28F008SA and located “over” the
LH28FQ08SA in the system memory map. Accassing specific locations of the LH28F008SA is then
accomplished by passing the chosen function an offset from the array base versus a

specific address. Different microprocessor architeciures will require different array

definitions: e for the x86 architecture, define it as “byte eightmeg(16][10000]" and pass

each function TWO offsels to access a specific location. MCS-96 architectures are

limited to "byte eightmeg[10000]"; alternate approaches such as using port pins for paging will

be required 10 access the full flash array

To create a far pointer, a function such as MK_FP() can be used, given a segment and offset in

the x86 architecture. 1use Turbo-C; see your compiler reference manual for additional
information.

r Revision History: Rev 2.0
r Changes From Revision 1.0 to Revision 2.0: .
r Added aiternate LH28F008SA device ID to routine idread()

!

R R R R I N N A R R R N R AL R R R

i
"
*
Mi
*/
*!
!
!
!
*
!

!
*!
*!
!

- ./

¢/
¢/
"

.oy
!
*
*

r---------..----.---.v------....-..-------.---.-----------..-'----..------a-..----c-a---n--.-o-.-..-v

typedel unsigned char byte;

SHARP

AR R R R R] sesosccceves sesessesescsensvene eesessconse teessscectsneny

r Function: Main *
r Description: The following code {commented out) shows examples of byte write and block erase algorithms that can be *!
r modified to fit the specific application and hardware design Vi
,'.'.'-"l"'."l."..t I NI NEE NN N R RN E SN ERENERNERES) [EEEEEERENNEERENNERNEENRS] Q".t'tt.'..'.t.'t..il.’
main{)
{ -

byte far *adcress;

byte data status;
r The foliowing code gives an exampie of a possible byte write algorithm. */
r Note that Vpp does not need to be cycled between byte writes when a string of byte writes occurs. Ramp Vpp o 12V !
r before the first byte write and leave at 12V untl after completion of the last byte write. Doing so minimizes Vpp ramp *f
r up-down deiay and maximizes byte write throughput *
) vepup();) '
r *INSERT SOFT WARE DELAY FOR VPP RAMP IF REQUIRED" ‘!

pwddis();

address = 0Xoonot

date = 0Xyy;

if (writebgn(data.address) == 1) : .
r "RECOVERY CODE-POWER NOT APPLIED (ID CHECK FAIL)" T

else

{
while (end(& status))

switch (wﬂted\l;(stams))
{

case 0:
break;
case 1:
r "RECOVERY CODE-VPP LOW DETECT ERROR" */
break;
case 2:
r . "RECOVERY CQDE-BYTE WRITE ERROR"” */
break;

}
statcir();

vppdown{), -

‘This “C” routine gives an example of combining lower-level functions (found in following pages) to compiete a
byte write. Routines vppup() and pwddis() enable the LH28F008SA for byte write. Function writebgn() issues
a byte write sequence to device, end() detects byte write compietion via Status Register bit 7, and writechk()
analyzes Status Register bits 3-6 to determine byte write success. If a string of bytes is to be written at one
time, V,, ramp up and PWD disable need only be done before the first byte write attempt. Additionally, when
writing muitiple bytes at once, examination of bits other than bit 7 (WSM Ready) need only occur after the last
byte write has completed. The Status Register retains any error bits until the Clear Status Register command

is written.
7

SHARP -

r The following code gives an example of a possible block erase aigorithm. */
r Note that Vpp does not need 1o be cycled between block erase when a string of block erases occurs. Ramp Vpp to 12V R4
r before the first block erase and leave at 12V until after completion of the last block erase. Doing so minimizes Vpp ramp *
r up-down delay and maximizes biock erase throughput k)
vppup();
r "INSERT SOFTWARE DELAY FOR VPP RAMP IF REQUIRED . !
pwodis();
address = 0Xx0oxl; -
it (erasbgn{address) == 1)
r “RECOVERY CODE-POWER NOT APPLIED (iID CHECK FAIL)" *t
olse . N
{
while (end(a status))
switch (erasehk(status))
{
case 0:
break;
case 1:
r "RECOVERY CODE-VPP LOW DETECT ERROR" *f
break; o
- case 2: -
r "RECOVERY CODE-BLOCK ERASE ERROR" !
break;
case 3
r "RECOVERY CODE-ERASE SEQUENCE ERROR" . -
break;
}
statcir();
}
vppdawn();

This “C” routine gives an example of combining lower-level functions (found in following-pages) to complete a
block erase. Routines vppup() and pwddis() enable the LH28F008SA for block erase. Function erasbgn()
issues a block erase sequence to the device, end() detects block erase completion via Status Register bit 7,
and eraschk() analyzes Status Register bits 3-6 to determine block erase success. If a string of blocks is to be
erased at one time, V_, ramp up and PWD disable need only be done before the first biock erase attempt.
Additionally, when erasing multiple blocks at once, examination of bits other that bit 7 (WSM Ready) need only
occur after the last block erase has completed. The Status Register retains any error bits until the Clear Status
Register command is written.

r Function: Erasgbn .- ’ i
r Duaipﬂon:Boonnuorablod(. */
r inputs: udw:m:.madms;mwnmbbckwbeeram . ¥
r Outputs: None i
r Retums: 0 = Block erase successtully initated *
r 1-Bbckomomﬂnluam(lodnckonw) /
r Device Read Mode on Return: Status Register (D if retums 1) *
f'...."....".....'.'.'..."..""."..'.-.'l'."l.‘l.'.......I.'..l...'-l".Il.'...l.l...'........./
#define ERASETUP 0x20 r Erase Setwp command o
#define ERASCONF 0XDo = " Erase Confirm command *
m«abgn(bldtaddr)
Dybhr'b_ldtaddr: I‘b‘d&adarlsmad&é&vdlﬁnmobbd(bbomed ! *
[

byte migrid.deviceid:

H(ldread(&nﬂgﬂd,&dewceid) - 1) 7" 1D read error; device not powered up? *

return (1); S B

*bickaddr = ERASETUP: " Write Erase Setup command to block address *

“bickaddr = ERASCONF; I Write Erase Confirm command to biock address ~

retum (0);

Routine erasbgn() issues a block erase command sequence to a LH28FO08SA. It is passed the desired sys-
tem address for the block to be erased. After calling idread(), it writes the erase command sequence at the
Specified address. It returns “0” if block erase initiation was successful, and “1” if the ID read fails (device not
powered up or PWD not disabled). :

SHARP

/...........-......-----.----------....................--......-...........---.....--....-.-.....--.../

r Function: Erassusp !
r Description: Suspends block erase to read from another block '~
r Inputs: None o/
r Outputs: None !
r Retrns: 0 = Block erase suspended !
r 1 = Error; Write State Machine not busy (block érase suspend not possible) t
r Device Read Mode on Return: Status Ragister S *
P T R R P R R R R R R AR LA AL AR E AL LA
#define RDYMASK 0X80 ~ * Mask 1o isolate the WSM Status bit of the Status Register o
#define WSMRDY 0X80 Status Register value after masking, signifying that the WSM is *
r no longer busy *
#define SUSPMASK 0X40 : 7* Mask 10 Isolate the erase suspend status bit of the Status Register . */
#define ESUSPYES 0X40 F Status Register vaiue after masking, signifying that biock erase has . : *!
r been suspended -
#define STATREAD 0X70 I Read Status Register command . !
#define SYSADDR 0 /* This constant can be initialized © any address within the memory map !
r of the target LH28F008SA and is alterable depending on the Vi
r system architecture !
_idefine SUSPCMD ~ 0XBO * Erase Suspend command oL
int erassusp()
byte far “stataddr; Pointer variable used to write commands to device) "

stataddr = (byte far *)SYSADDR;

“stataddr = STATREAD; /" Write Read Status Register command to LH28F008SA Vi
It (("stataddr & RDYMASK) == WSMRDY)
retum (1); /" WSM is not busy; block erase suspend possible. Error code "1° *
*stataddr = SUSPCMD; " Write Erase Suspend command to the device Vi
while (("stataddr & RDYMASK) | == WSMRDY)
. * Will remain in while loop until bit 7 of the Status Register goes 10 1, *t
r signifying that the WSM Is not longer busy !
while-(("stataddr & SUSPMASK) | == ESUSPYES)
H * Will remain in while loop unti bit 6 of the Status Register goes o 1, “
r signifying block erase suspension *!
retum (0);

Routine erassusp() issues the erase suspend command to a LH28F008SA. it first makes sure the WSM is truly
busy, then issues the erase suspend command and polls Status Register bits 7 and 6 untii they indicate erase
suspension. It returns “0” if block erase suspend was successful, and “1” if the WSM was not busy when
suspend was attempted. ;

10

SHARP

L R R R L R L R AR AR AR R AR

r Function: Erasres !
r Description: Resumes block erase previously suspended Vi
r Inputs: None */
r Outputs: None !
r Retums: 0 = Block erase resumed "
r 1 = Error; Block erase not suspended when function called *
r Device Read Mode on Retum: Status Register) */
P T L R R R R A Ll
#define RDYMASK 0X80 - I* Mask 1o isolate' WSM Status bit of the Status Register *
#define WSMRDY 0X80 I Status Register vaiue after masking, signifying that the WSM is *!
r no longer busy *
#define SUSPMASK 0X40 I~ Mask (o isolate the erase suspend status bit of the Status Register . *
#define ESUSPYES 0X40 £ Status Register value after masking, signifying that block erase - -
r has been suspended *
#define STATREAD 0X70 /" Read Status Register command *
#define SYSADDR 0 P This constant can be initialized any address within the memory map Vi
. r of the target LH28F008SA and is alterable depending on the *
r system architecture !
#define RESUMCMD 0XDoO " Erase Resume command T
int erasres()
{ R
byte far *stataddr; Pointer variable used to write commands to device - !

stataddr = (byte far }SYSADDR;

stataddr = STATREAD; I Write Read Status Register command to LH28F008SA Wi
it (("stataddr & SUSPMASK) | = ESUSPYES)
retum (1); /* Block erase not suspended. Error code "1 E *
“stataddr = RESUMCMD; I" Write Erase Resume command to the device !
while {(*stataddr & SUSPMASK) == ESUSPYES)
H /* Will remain in while loop untit bit 6 of the Status Register goes o 0, */
: r signifying block erase resumption */
while (("stataddr & RDYMASK) == WSMRDY)
. 7 Will remain in while Joop until bit 7 of the Status Register goes 1o 0, *
r signifying that the WSM is once again busy -)
return (0);

Routine erasres() issues the erase resume command to a LH28F008SA. 1t first makes sure the WSM is truly
suspended, then issues the erase resume command and polls Status Register bits 7 and 6 until they indicate
WSM resumption. It returns “0” if block erase resume was successful, and “1” if the WSM was not suspended
when resumption was attempted. -

11

SHARP

,--'-t-------......-.-.o------'---.-o-------.....'....-'----.--.-oo----.------.-.--'-.-..'-.--'-.o.-.-./

r Function: End !
r Description: Checks 10 see if the WSM is busy (Is byte write/block erase compieted?) “t
r Inputs: None "
r Outputs: statdata; Status Register data read from device !
r Retumns: 0 = Byte Write/Block Erase completed !
r 1 = Byte WritesBlock Erase still in progress !
r Device Read Mode on Return: Status Register *
[Peves et st et reterreteetretteratanretateetteeIIIerterTErT I At rITeT T leItEsEatsesRtsrrsecerrasneery
#define RDYMASK 0X80 /* Mask to isolate WSM Status bit of the Status Register) *
#define WSMRDY 0X80 r Status Register value after masking, signifying that the WSM _ *
r is no longer busy - . . Vi
#define STATREAD 0X70 I" Read Status Register command */
#define SYSADDR O I* This constant can be Initialized 1 any address within the memory map */
' r of the target LH28F008SA and is alterable depending on the */
r system architecture !
int end(statdata)
byte *statdata; 7 Allows Status Register data to be passed back to the main program -y
r for further analysis !
{
byte far *stataddr; Pointer variable used to write commands to device R .
stataddr = {byte far *) SYSADDR;
*stataddr = STATREAD; I" Write Read Status Register command to LH28F008SA - o
it (((*statdata = “stataddr) & RDYMASK) | = WSMRDY)
retum {1); I Byte write/block erasure still in progress...code "1° */
retum (0); I* Byte write/block erase attempt completed...code "0° "

Routine end() detects completion of byte write or block erase operations of a LH28F008SA. It passes back the
Status Register data it reads from the device. It also returns “0” if Status Register bit 7 indicates WSM “Ready”,
and “1” if indication is that the WSM is still “Busy”.

12

SHARP

AR e R R R A LA R R R A A AR A AR e]

r Function; Eraschk !
r Description; Completes full Status Register check for block erase (proper command sequence, Vpp low detect, *!
r block erase success). This routine assumes that block erase completion has already been checked in function *
r end(), and therefore does not check the WSM Status bit of the Status Register *
r Inputs; stamdata; Status Register date read in function end o
r Outputs; None - *r
r Retums; 0 = Biock erase compieted successfully */
r 1 = Error; Vpp iow detect . */
r 2 = Error; Block erase ermor ‘ *f
r 3 = Error; Improper command sequencing Wi
r Device Read Mode on Return; Same as when entered .)
r'llIit."ttt'-'-l".o.'-t'.t-.-'.."tt.tit.t"'!"t'n....'-..'t...'.-."t‘l."'ttt-tt.-tt-.tt"--..l’
#define ESEQMASK 0X30 I* Mask o isolate the erase and byte write status bits of the Status Register : i
#define ESEQFAIL 0X30 /* Status Register vaiue after masking if block erase command sequence emor T
r has been detected */
#define EERRMSK 0X20 /" Mask to isolate the erase status bit of the Status Register Vi
#define ERASERR 0X20 I Status Register value after masking if block erase error !
r has been detected ‘ *
#define VLOWMASK 0X08 /" Mask 1o isolate the Vpp status bit of the Status Register R
#define VPPLOW 0xos r* Status Register vaiue after masking if Vpp low has been detcted */
int eraschk(statdata)
byte stawlate; /* Status Register date that has been aiready read from the 28F008SA R
r in function end() Ty

it ((statdate & VLOWMASK) == VPPLOW)

return (1); I* Vpp low detect error, retum code "1 *
it ((statdate & EERRMSK) == ERASERR)

return (2); I* Block erase error detect, retum code "2" *t
it ((stardate & ESEQMASK) == ESEQFAIL)

return (3); /* Block erase command sequence error, return code “3° !
retum (0); / Block erase success, retum code “0° *

Routine eraschk() takes the Status Register data read in end() and further analyzes it. It returns “0” if block
erase was successful, “1”if V., low error was detected, “2” if block erase error was reported and “3” if an erase
command sequence error was found (erase setup followed by a command other than erase confirm). This is
useful after a block or string of blocks has been erased, to check for successful completion.

13

SHARP

[P v eeeetae et et ettt atesattateeetttetastoNc el eI eseINletRLINtITTEL It T AT IR ITOITISIREREITY Y

r Function; Writebgn !
r Description; Begins byte write sequence !
r Inputs; wdata; Data to be written into the device !
r waddr; Target address 0 be written !
r Outputs; None *
r Returns; 0 = Byte write successfully initiated *
r 1 = Byte write not initiated (ID check error) *
r Device Read Mode on Return; Status Register (1D if returns 1) !
T T R R L R R AR R
#define SETUPCMD OX40 I Byte Write Setup command !
int writebgn(wdata, waddr)
byte wdata; /" Date 10 be written into the LH28F008SA R *
byte for “waddr; /* waddr is the destination address for the date to be written *
{

byte mfgrid,deviceid;

It (idread(& mfgrid, & deviceid) == 1) * Device 1D read error...powered up? S
- return (1); B

“waddr = SETUPCMD; I* Write Byte Write Setup command and destination address Vi

*waddr = wdata; /" Write byte write data and destination address !

retumn (0);

}
[retevseveceeceevretoansennsaanastaeersetreeeatriletIaaT ettt at ittt terTIetttttsar Tt eensrstrey
r Function; Writechk ' *
r Description; Completes full Status Register check for byte write (Vpp low detect, byte write success).

r This routine assumes that byte write completion has aiready been checked in function end() Vi
r and therefore does not check the WSM Status bit of the Status Register *
r Inputs; statdata; Status Register date read in function end() *
r Outputs; None *!
r Returns; 0 = Byte write completed successfully . !
r 1 = Error; Vpp low detect Vi
r 2 = Error; Byte write emror *!
r Device Read Mode on Return; Status Register */
PR R L R R R R R L
#define WERRMSK 0X10 /" Mask 1o isolate the byte write error bit of the Status Register !
#define WRITERR 0X10 I Status Register value after masking if byte write error has been detected ‘!
#define VLOWMASK 0X08 I* Mask 1o isolate the Vpp status bit of the Status Register !
#define VPPLOW 0x08 I Status Register value after masking if Vpp low has been detected !
int writechk(statdata)
byte statdata; / Status Register data that has been already read from the LH28F008SA !
r in function end() !

f ((statdata & VLOWMASK) == VPPLOW)

retumn (1); /* Vpp low detect error, return code "1 *
it ((statdata & WERRMSK) == WRITERR) ~

retum (2); /* Byte write error detect, retum code “2" *
retum (0); /* Byte/string write success, return code "0” *

Routine writebgn() issues a byte write command sequence to a LH28F008SA. It is passed the desired system
address for the byte to be written, as well as the data to be written there. After calling idread(), it writes the byte
write command sequence at the specified address. It returns “0” if byte write initiation was successfui, and “1”
if the 1D read fails (device not powered up or PWD not disabled).

Routine writechk() takes the Status Register data read in end() and further analyzes it. It returns “0" if byte write
was successful, “1” if V,,, low error was detected, and “2” if byte write error was reported. This is useful after a
byte or string of bytes has been written, to check for successful completion.

14

SHARP

,-------.-.o---a--.-------.-.-.-.---.....---.----.-..-------------.-..-o--------'.--.-..-'--'o..------,

r Function; Idread */
r Description; Reads the manufacturer and device (Ds from the target LH28F008SA !
r Inputs; None */
r Qutputs; migrid; Retumned manufacturer ID !
r deviceid; Retumed device ID */
r Retumns; 0 = ID read correct ‘!
r 1 = Wrong or no 1D - - !
r Device Read Mode on Return; intelligent identifier */
R R L R R R R R R R L T
#define MFGRADDR 0 - /* Address "0° for the target LH28F008SA...alterable depending on the !
r system architecture !
#define DEVICADD 1 I* Address “17 for the target LH28F008SA...alterable depending on the *
r systemn architecture ‘!
#define _ IDRDCOMM 0X90 I Intelligent identifier command *f
#define MANUFACTURERID 0X89 I Manufacturer 1D for SHARP devices */
#define pvCciD 0X0A2 r Device 1D for LH28F008SA */
#define DvCID2 O0X0At I* Device iD for LH28F008SA-L */
Int idread(migrid,deviceid) .
byte *migrid; I The manufacturer ID read by this function, to be transferred back to *!
r the calling program) */
byte *deviceid; /" The device ID read by this function, to be transferred back to the Vi
r caliing function -
{
byte far “tempaddr; /* Pointer address variable used to read IDs - !

tempaddr = (byte far “YMFGRADDR,;

‘tempaddr = JDRDCOMM; I Write intelligent identifier command to an address within the LH28F008SA */

r memory map (in this case 00 hex) *

“migrid = *tempaddr; /* Read migr ID, tempaddr still points at address “0° */

tempaddr = (byte far “)DEVICADD; I* Point to address "1* for the device specific 1D !

‘deviceid = ‘tempaddr; I* Read device iD) !
it {{"migridl =« MANUFACTURERID) |} ((*deviceidi = DVCID) && (*deviceid! = DVCID2))

retum (1); 1* 10 read error; device powered up? i

retum (0);

Routine idread() issues the Intelligent Identifier command to a LH28F008SA. It passes back the manufacturer
and device IDs it reads. In addition, it returns “0” if the 1Ds read matched those expected for the LH28F008SA,
and “1” if either the manufacturer or device IDs did not match.

15

SHARP

,-o----------....q..-----'.----n----.-.--.....--....-----....-o'.---.--'-----.-..v-.o-g-.c--o--".o.-.I

r Function; Statrd !
r Description; Returns contents of the target LH28F008SA Status Register Ki
r Inputs; None . /
r Outputs; statdata; Returned Status Register data i
r Retums; Nothing *
r Device Read Mode on Return; Status Register !
R R R LT R T R A A LA R AL]
#define STATREAD 0X70 - I* Read Status Register command “
#define SYSADDR 0 - I'Thisconsmnténbelniﬂalizednanyaddmsiwimlnmememry map *f
r of the target LH28F008SA and [s alterable depending on the Vi
r system architecture . *
int statrd(statdata) :
byte *statdata; /* Allows Status Register data to be passed back to the calling program ¥
r for turther analysis */
{
byte far*stataddr; /* Pointer variable used to write commands to device !
statadar = (byte far *)SYSADDR; ' .
stataddr = STATREAD; / Write Read Status Register command to LH28F008SA Y
*statdata = “stataddr;
retum;
}
[ettreesiaesentretatteriateneeratceetresterttIttteteTeteTrssaENTeTaRtoerIIlrtERtT T RTErLtseansany
r Function; Statclr . *
r Description; Clears the LH28F008SA Status Register !
r Inputs; None Mi
r Outputs; None *
r Relumns; Nothing %
r Device Read Mode on Return; Array !
[reertteraenesaseasesueuvevtteseesevIeoteacartetitaTileaTNeIeesITeEN o LI T et ettt ieREattrattsTsanntyy
#define STATCLER 0X50 I Clear Status Register command *
#define SYSADDR © /* This constant can be initialized t any address within the memory map *
r of the target LH28F008SA and is aiterable depending on the *!
r system architecture *
int atatelr()
{
byte far*stataddr; 7 Pointer variable used to write commands o device *
stataddr = (byte far *)SYSADDR;) i
“stataddr = STATCLER; I Write Clear Status Register command o LH28FQ08SA *f
retum;
}

Routine statrd() reads a LH28F008SA Status Register. It issues the Read Status Register command and
passes back the data it obtains.

Routine statclr() issues the Clear Status Register command to a LH28F008SA. This routine is required after
analyzing Status Register contents in routines like eraschk() and writechk(). The LH28F008SA Status Register
retains state of bits 3-6 until they are cleared by the Clear Status Register command.

16

SHARP

fo---------.---..'...---.-..--.o.'.o.o-.-'.--.-----...-o--o-o-o-'---.'-----'--o-c--'--'.-.--'.-.--...’

r Function; Rdmode !
r Description; Puts the target LH28F008SA In Read Array Mode. This function might be used, for exampie, 1o prepare */
r the system for return 10 code execution out of the Flash memory after byte write or block erase aigorithms *f
r have been executed off-chip N */
r Inputs; None *t
r Outputs; None !
r Returns; Nothing - ' *
r Device Read Mode on Retum; Array !
r.l'.t.'tlnt..nl.'..'.'I"l.ll'..'..'.-.'..II'.ll.'q'-t..'-l-.l'.t""'.tt"'.....t.."ll"..'.""'.l
#define RDARRAY OXFF ‘ I Read Array command !
#define SYSADDR O r This constant can be initialized to any address within the memory map *
r of the target LH28F008SA and is aiterable depending on the *
r system architecture N
int rdmode)
{
byte far “tempaddr; /* Pointer variable used to write commands 10 the device */
tempaddr = (byte far*)SYSADDR; R
‘tempaddr = RDARRAY; I Write Read Array command to LH28F008SA */
retum;
}
LR R R L R R L R P TPy TRy
r Function; Rdbyte *
r Description; Reads a byte of data from a specified address and returns it to the calling program) !
r Inputs; raddr; Target address o be read from */
r Outputs; rdata; Date at the specified address !
r Retums; Nothing : !
r Device Read Mode on Return; Array !
R L R R LR R T T R R TR
#define RDARRAY OXFF /* Read array command Wi
int rdbyte(rdata, raddr) i
byte *rdata; I* Retums data read from the device at specified address !
byte far *raddr; I* Raddr is the target address to be read from N
{ .
“raddr = RDARRAY; /* Write read array command o an address within the LH28F008SA (in this !
r case the target address) !
rdata = “raddr; / Read from the specified address and store */
retum;

Routine rdmode() simply puts a LH28FO08SA in Read Array mode. This is useful after byte write and block
erase operations, to return the LH28F008SA to its “normal” mode of operation. After block erase or byte write,
the LH28F008SA will continue to output Status Register data until the Read Array command is issued to it, for
example.

Routine rdbyte() not only puts the LH28FQ08SA in Read Array mode, it also reads a byte of data. It is passed

the desired system byte address, and passes back the data at that address.
17

SHARP

/'"'""'""""""""""""""""""""""""""""""""""""""'"""""""'I

A

r Function; Vppup *
r Descrlpuon:MumeanmmmmmmorMm. This routine can be *
r tailored to the individual system architecture. For purposes of this example, | assumed that a system !
r Control Register existed at system address 20000 hex, with the following definitions; Vi
r Bit 7; Vpph Control; 1 = Enabled !
r - 0 = Disabled k)
r Bit 6; PWD Control; 1 = PowerDown Enabled *
r - 0 = PowerDown Disabled *
r Bits 5-0; Undefined !
r K
r inputs; None *
r Outputs; None] !
r Retums; Nothing : - *
r Device Read Mode on Return; As existed before entering the function. Part Is now ready for program or erase f
,..., -
#define VPPHIGH 0X80 £ 8it 7 = 1, Vpp elevated to Vpph o
#define SYSCADDR 0X20000 I Assumed system Control Register Address !
int vppup() ’ S
{

byte far *contaddr; / Pointer variable used to write data to the system Control Register *

contaddr = (byte far ")SYSCADDR;

contaddr = "contacdr 1 VPPHIGH; / Read current Control Register data, "OR" with constant to ramp Vpp *!

return;
}
,.../
r Function; Vppdown . */
r Description; Ramps down the Vpp supply o the target LH28F008SA to disable byte write/block erase. */
r See above for a description of the assumed system Control Register. Ni
r inputs; None ¥
r Outputs; None - Vi
r Retums; Nothing *
r Device Read Mode on Return; As existed before entering the function. Part now has high Vpp disabled. If byte write or *
r block erase was in progress when this function was called, it will compiete unsuccassfully with Vpp low error !
r In the Status Register. */
,...,
#define VPPDWN OX7F 7 Bit 7 = 0, Vpp lowered to Vppl !
#define SYSCADDR 0X20000 1" Assumed system Control Register Address !
int vppdown()

byte far “contaddr; * Pointer variable used to write data 1o the system Control Register *

contaddr = (byte far *)SYSCADDR;

‘contaddr = “contaddr & VPPDWN: I Read current Control Register data, "AND" with constant to lower Vpp !

retum;

Functions vppup() and vppdown() give examples of how to control via software the hardware that enables or
disables 12V V,, to a LH28F008SA. The actual hardware implementation chosen will drive any modification of
these routines.

.Y

SHARP

r.ll.l".-.-.'.-n".'-.-"--'."'...n--'tn.-t'-.'n--'..'.---t'."na'-n..'-t-t.--Qot-t'--t-'n...o.....l

r Function; Pwden o
r Description; Toggles the L H28FO08SA/PWD pin low 1o put the device in Deep PowerDown mode. !
r See above for a description of the assumed systemn Control Register. b
r nputs; None */
r Outputs; None !
r Rewms; Nothing - : K
r Device Read Mode on Return; The part Is powered down. It byte write or block erase was in progress when this function Vi
r mmllad._ItmnmnmmmunmmwmmnamauHoeovorylnmolbnnotmpeatof *
r bytewﬂmorblod(mwllbomukodom'nnpanmuonsomowmmn. *t
r w initialize data 10 @ known state. */
[esvTsieseacctesseeraertetetcttetectatrTNtstaotevaTarTeotrItlectttTtTTTaTLa ettt citiRtenetnny
sdefine PWD 0X40 /" Bit6 = 1, /PWD enabled *
#define SYSCADDR 0X20000 Assumed system Control Register Address o
int pwden()
{

byte tar*contaddr; I Pointer variable used 1o write data o the system Control Register *

contaddr = (byte far)SYSCADDR;

*contaddr = *contaddr 1 PWD; /* Read current Control Register data, "OR™ with constant to enable)

r Deep PoweDown o

retum;
}
TR R R R e AL R AR AR AR EEAAEAR AL Sl
r Function; Pwddis . */
r Description; Toggles the LH28F008SA/PWD pin high to transition the part out of Deep Powerdown. !
r See above for a description of the assumed system Control Register. !
r Inputs; None !
r Outputs; None o
r Retums; Nothing *
r Device Read Mode on Return: Read Array mode. Low voltage Is removed from the /PWD pin. LH28F008SA output *
r pins will output valid data time tPHQV after the /PWD pin transitions high (reference the datasheet AC Read Wi
r Characteristics) assuming valid states on ail other control and power supply pins. !
,...,
#define PDOFF OXBF /* Bit 6 = 0, /PWD disabled */
#define SYSCADDR 0X20000 I* Assumed system Control Register Address Vi
int pwddis()
{

byte far *contaddr; I pointer variable used to write data to the system Control register ’ *

contaddr = (byte far *)SYSCADDR;

*contaddr = *contaddr & PWDOFF; I Read current Control Register data, "AND" with constant to disabie *

r Deep Powerdown *f
retum;

Functions pwden() and pwddis() give examples of how to control via software the hardware that enables or
disables a LH28F008SA PWD input. The actual hardware implementation chosen will drive any modification
of these routines.

1Q

8 Mb, Flash, Memory Software Driver, LH28FO08SA

