SIEMENS ## LH1298 # HIGH VOLTAGE, SOLID STATE RELAY OPTOCOUPLER #### **FEATURES** - Normally Closed, Single Pole Single Throw Operation - Control 350 VAC or DC Voltage - Switch 100 mA Loads - LED Control Current, 1.5 mA - Low ON-Resistance - dv/dt, >500 V/ms - Isolation Test Voltage, 3750 VAC_{RMS} - Current Limiting - Underwriters Lab File # E52744 #### **APPLICATIONS** - Telephone Switch Hook - High Voltage Test Equipment - TRIAC Driver - Motor Control - Industrial Control Systems #### **DESCRIPTION** The LH1298 is a single pole single throw (SPST), normally closed (NC), solid state relay. The relay can control AC or DC loads currents up to 100 mA, with a supply voltage up to 350 V. The device is packaged in a six pin 0.3 inch dual-in line package. This package offers an insulation dielectric withstand of 3750 VAC_{RMS}. The coupler consists of a AlGaAs LED that is optically coupled to a dielectrically isolated monolithic integrated circuit. The IC chip consists of a photodiode array, control circuitry and high voltage DMOS transistors. The typical ON resistance between the output terminals is 30 Ω at 0 mA LED current. The switch offers low off-state leakage current at LED current of 5 mA or greater. There is on board output current limiting circuitry. #### **Maximum Ratings** | Terminal Voltage | 350 V | |---|-------------------------| | Terminal Current | 100 mA | | LED Forward Current | 60 mA | | LED Reverse Current | 6 mA | | Isolation Test Voltage | 3750 VAC _{RMS} | | Isolation Resistance | | | V _{IO} =500 V, T _A =25°C | ≥10 ¹² Ω | | V _{IO} =500 V, T _A =100°C | ≥10 ^{11 W} | | Operating Temperature Range | | | Storage Temperature Range | 40 to +150°C | | Lead Soldering Temperature | | | at 260°C, 2 mm from case | 5 sec. | #### Characteristics (T_A=25°C) | Emitter | Sym | Min. | Тур. | Max. | Units | Condition | | | |---|---------------------------------|------|------|------|-------|--|--|--| | Forward
Voltage | V _F | | 1.25 | 1.5 | V | I _F =10 mA | | | | V _F Temperature
Coefficient | $\Delta V_F / \Delta T_A$ | | -2.2 | | mV/°C | | | | | Reverse
Current | I _R | | 1 | 10 | μА | V _R =6 V | | | | Junction
Capacitance | СЈ | | 15 | | pF | V _R =0 V
f=1 MHz | | | | Dynamic
Resistance | $\Delta V_F/\Delta I_F$ | | 6 | | W | I _F =10 mA | | | | Switching Time | t _R , t _F | | 1 | | μs | I _F =10 mA | | | | Detector | | | | | | | | | | Output Break-
down Voltage | VB | 350 | | | V | I _B =50 μA | | | | Output OFF-State | l _{T(OFF)} | | 0.1 | 1 | μА | V _T =100 V, | | | | Leakage Current | | | 0.1 | 5 | μА | I _F =5 mA
V _T =300 V,
I _F =2.5 mA | | | | Terminal
Capacitance | СТ | | 24 | | pF | V _T =0,
f= MHz | | | | Current Limit | | | 150 | | mA | | | | | Package | • | • | • | • | | | | | | LED Forward
Current,
Turn-Off | I _{Fth} | | 1.5 | 2.5 | mA | V _L =±300 V,
T _A =25°C | | | | ON-resistance | R _{ON} | 20 | 30 | 50 | W | I _T =±25 mA,
I _F =0 mA | | | | Turn-on Time | T _{ON} | | | 3 | ms | I _F =5 mA, | | | | Turn-off Time | TOFF | | | 2 | ms | $V_L=50 V$, $R_L=1 k\Omega$ | | |