LC9948G # 1/5-Inch Optical Size CCIR B/W Solid-State Image Sensor ## **Preliminary** #### Overview The LC9948G is a 1/5" optical size frame transfer type CCD (charge-coupled device) solid-state image sensor developed for use in B/W video cameras. #### **Features** - Effective number of pixels (total pixels): 499 H × 582 V (532 H × 600 V) - Number of optical black pixels: Number of optical black pixels: Horizontal direction: Front: 7 pixels Back: 26 pixels Vertical direction: Front: 14 pixels Back: 4 pixels - . Dummy bits: Horizontal direction: 4 pixels - · Horizontal resolution: 380 TV lines - · Supports miniature, compact camera designs. - Package: 20-pin half-pitch transparent DIP - · Horizontal shift register: 5 V operation - · Supports variable-speed electronic shutter operation #### Device Structure - 1/5" type frame transfer CCD image sensor - Unit cell size: 5.8 μm (H) × 3.75 μm² (Ñ) - Chip size: 4.18 mm (H) × 5.10 mm (V) - · Parallel gate CCD sensor - · Built-in high-sensitivity output amplifier ## **Specifications** Absolute Maximum Flatings at Ta #25°C, V_{SS} # 0 V | Parameler | Symbol | Conditions | Ratings | Unit | |------------------------|-------------------------------|-----------------------|-------------|------| | // 🛝 | V _{DD} // | Vpw=0 V | -0.3 to +18 | V | | Maximum supply voltage | Veg/ | V _{PW} = 0 V | -0.3 to +5 | ٧ | | Maximum supply voltage | NSUB-PW | | -0.3 to +50 | ٧ | | Maximum supply voltage | NSUB-01 to 04,
051 to 054: | | -0.3 to +55 | v | | Horizontal elock pin | ∕ eA | V _{PW} × 0 V | -0.3 to +18 | V | | Other clock pins | | V _{PW} = 0 V | -15 to +18 | V | | Other pins | | V _{PW} * 0 V | -0.3 to +10 | V | | Operating temperature | Topr | | -10 to +60 | °C | | Storage temperature | Tstg | | -30 to +80 | °C | # Package Dimensions unit: mm #### 3217 # **Block Diagram** ## Pin Assignment ## **Pin Functions** | Pin No. | Symbol | Function | Pin No. | Symbol | Function | |---------|-----------------------|--------------------------|---------|--------|-----------------------| | 1 | NSUB | N ₅ substrate | 20 | NSUB | N-substrate | | 2 | VPW | P-well | 19 | ø\$4 | | | 3 | 04 / | | 18 | øS1 | Starage area alook | | 4 | e3 / / | Image area clock | 17 | ø\$2 | - Storage area clock | | 5 | ø2.** ,/ | | 16 | ø\$3 | | | 6 | ø1, | | 15 | øH1 | Horizontal area clock | | 7 | øA | Reset gate | 14 | øH2 | Horizontal area clock | | 8 | // v _{oo} // | Supply voltage | 13 | Vog | CCD output gate | | 9 | Vout | CCD oulput | 12 | VGG | Load gate | | 10 🧪 | NSUB | N-substrale / | 11 | NSU8 | N-substrate | # **Specifications** ## Clock Voltage Conditions at frame frequency = 3.55 MHz | Paran | neter | Symbol | Conditions | min | lyp | max | Unit | |---------------------|-----------------|----------------------|------------------|--------|------------------------------|-------|------| | Image area clock | Pulse amplitude | V _{PIF} | *1 | 14.0 | 14.5 | 15.0 | V | | 01, 02, 03, 04 | Low level | V _{LIF} | | ~10.0 | -9.5 | -9.0 | ٧ | | Storage area clock | Pulse ampfilude | V _{PSL} | | 14.0 | /14/5 | f5.0 | . V | | øS1, øS2 | Low level | V _{LSL} | | -7.0 | <i>≸ </i> ₁ ∕-6.5 | -6.0 | , W | | Storage area clock | Pulse amplitude | VPSL | | 14.0 | 14.5 | 15.0 | W. | | øS3, øS4 | Low level | V _{LSL} | | -8,0 | -7.5 | -7.0 | N/ | | Horizontal register | Pulse amplitude | Veri | | 4.5 | \$.0 | § 5.5 | , N | | øH1, øH2 | Low fevel | VLH | | ///0 | Ø | 0.5 | / v | | Reset gate clock | Pulse amplitude | V _{PA} | | // 4.5 | 5.0 | 5.5 | ٧ | | øR | Low level | VLR | gi th | 3.6 | 40 | 4.4 | V | | N-Substrate clock | High level | V _{HSU8} 12 | See Figure 1 | 30.0 | | 40.0 | ٧ | | | Low level | VLSUB | Jee (igule) | 17.5 | 18.0 | 18.5 | ٧ | Note: 1. Insert 47 pF capacitors as shown in Figure 2. 2. Adjust V_{HSUB} within the range where image degradation does not occur so that the saturated output level is maximized. #### **Bias Conditions** | Parameter | Symbol | Conditions | min | typ | max | Unil | |------------------------|-----------------|------------|------|-------------|------|------| | P-well | V _{PW} | | | 0 | | ٧ | | <u>.</u> | V ₀₀ | * 1 | 14.5 | 15.0 | 15.5 | ٧ | | Output circuit voltage | Vgg | +2 | 0.5 | 0.8 | 1.1 | ٧ | | OG bias | Vog | •2 | 4.5 | 5 .0 | 5:5 | V | Note: 1. Design applications so that this level never exceeds the substrate pulse low level V_{LSUB}. 2. These are high-impedance inputs. ## **DC Characteristics** | Parameter | Symbol | Conditions | | | 100 | max / | Unit | |----------------------|--------|------------|------|-----|-----|-------|------| | DC operating current | 100 | | , de | 2.5 | 4.5 | 6,5 | mΑ | ## **Drive Pulse Waveform Standards** Figure 3 Pulse Waveform | | | # 1 | | | _ <u>Z</u> | | |-----------------------|-----------------|-------------------|--------------------|--------------------|---|------------| | Symbol | 1 _{WH} | lwi// | | % ' | Conditions | Unit | | ayrilooi | typ | <u>\$</u> | lyp | typ,// | Conditions | 01/11 | | øl | 167 | /192 | 6.5 | 6/5 _/ / | | | | ø2 | 143 | //117 | 11 | <u> </u> | During frame drive | A D | | ø3 | 167 | // 102 | 6.5 | / /6.5 | When the frame shift frequency is 3.55 MHz | ns | | 64 | 143 | 117 | 11 | / 11 | | | | ø\$1 | 143 | 117 | 11 _/ _/ | 11 | | | | ø\$2 | 143 | 117 | [" 1 <i>]</i> | 11 | During frame drive | ns | | ø\$3 | 1,43 | 117 | 3/11/ | 11 | When the frame shift frequency is 3.55 MHz | ris. | | øS4 | / /143 | 117 | //1 | 11 |] | | | øS1 " | 1.4 | 62.5 | / // 30 | 30 | | | | øS2 | 1:4 | 62.5 | 30 | 30 | The values enclosed in dark lines are in µs units and apply | 1 | | ø83/ ^{//} // | 62.6 | 1.4 // | 30 | 30 | during 1H line transfers. | ns | | o.84 | 62.5 | 1.4 | 30 | 30 | | | | Fla | 10 | /68/ | 4 | 4 | Reset pulse | 1 | | øH1 | 50 | ,/ ⁶ 0 | 3 | 3 | Ouring horizontal transfers | | | øH2 | 50 | // 50 | 3 | 3 | | | | øNSU8 | 9.9 | / 19.99 + | 0.07 | 1 | Stice pulse* value is in ms units. | μs | | øNSUB | 4.2 | 19.99* | 0.07 | 1 | Shutter pulse* value is in ms units. | μs | #### **Imaging Characteristics** | Parameter | Symbol | Test method | Conditions | min | typ | max | Unit | |------------------------|--------|-------------|------------|-----|--------------------|--|--| | Sensitivity | S | 1 | | 110 | | | mV | | Video signal imbalance | VF | 2 | | | g _i ti. | 15 | % | | Saturated signal | Vsat | 3 | | 500 | 100 | and the same of th | mV | | Smear | SM | 4 | +1 | | 0.04 | All Silvery | % | | Dark signal | Vdrk | 5 | Ta = 55°C | | | 7 | mV | | Gamma characteristics | γ | | | | // 1 / | X . | All The State of t | Note: 1. When the frame shift frequency is 3.55 MHz and the storage time is 1/50 second. #### **Test Procedures** The Sanyo evaluation board must be used for the following tests. #### 1. Sensitivity Use a CCV31F pattern box (manufactured by Dai Nippon Printing Co., L(d)) set up at a brightness of J320 NT and color temperature of 3100°K with no pattern. Image the pattern box with an HF16A lens (manufactured by Fujinon) with a 1 mm thick C-500 IR cut filter in front of that lens. Set the lens f-stop to f11 and set the lens to be 50 cm from the pattern box. Measure the CCD output signal from the center of the image with this setup. #### 2. Video Signal Imbalance Measure under the following conditions. - Standard drive conditions (See the specifications document.) - Use a 3200°K color temperature halogen lamp as the light source. - · Use a 1 mm thick C-500 IR cut filter. Set the CCD surface illumination to 7 lux, and divide the image into 45 areas as shown in Figure 4. Measure the average value for each block, and determine the maximum, minimum, and mean of those values. Determine the ratio of the range of the block average values to the mean of the block average values. VF = maximum block average value - minimum block average value mean block average value #### 3. Saturated Signal Saturate the output signal by removing the lens in the test setup for item 1. Measure the CCD output signal from the center of the image in this state. #### 4. Smear - Place a 1/10 V chart in front of the halogen light source as shown in the figure and image that chart. - Adjust the amount of light entering the CCD with ND filters so that the CCD output signal at point A becomes 250 mV. - Remove the ND filter(s) and measure the output value of the CCD output signal from the first line (point B). $SM = \frac{(VB) TND}{250} \times 100 [96]$ VB: The amount of smear at point B [mV] TND: The ND titler transmissivity Figure 5 #### 5. Dark Signal Completely block all light from falling on the CCD element surface and measure the CCD output signal at the center of the image. Here, do not measure the difference between this signal and the optical black section level, but rather measure the difference between this signal and the no signal level that has no pixel information. (See Figure 6.) Figure 6 Structure of a Single Horizontal Period #### CCD B/W Camera Block Diagram Figure 7 CCD B/W Camera Block Diagram #### **CCD B/W Camera Blocks** | osc | | Generates the reference frequency for synchronization signal and timing pulse generation: 28.375 MHz | |----------------------------|-----------|--| | Timing pulse generation (C | | Generates the putses required for video signal processing (SYNC, blanking, and other signals) and the pulses required for CCO drive. Includes a built-in CCO horizograp triver circuit. Provides an electronic iris function | | Driver IC | .John Jan | Amplifies the above pulses to their stipulated amplitudes to drive the CCD element. | | Level shifting circuit | 11 | Drive pulsa fevel shilting | | Signal-processing IC | | Video signal processing, including sample and hold, clamp, AGC, gamma correction, while clipping, and pedestal addition, | #### Notes on Mounting and Handling - 1. Preventing Electrostatic Discharge (ESD) - Since CCD sensors are easily destroyed by ESD, the antistatic measures described below should be employed when handling this device. - All tools and personnel must be grounded when handling CCDs. Note that a 1 M Ω resistor should be inserted in series between personnel and ground for safety. (We recommend using wrist straps for personnel grounding.) - Personnel should handle CCD devices with either bare hands or antistatic gloves. Use antistatic materials for work garments. Personnel should wear conductive shoes. - Lay conductive mats on the floor and benches in the workplace so that static charges do not accumulate. - We recommend using ionized air blowers (or other static removal techniques) when mounting CCD sensors. - Use antistatic boxes when transporting boards that have CCD sensors mounted on them. - Do not leave packing materials or fittings made from plastic materials (such as Styroform) that easily collect static charges on or near workplace tables. - Ground all tools, test equipment, conveyors, soldering irons, and other objects used in the workplace. Inspect grounding regularly to assure that it is complete. - Do not handle this IC in the vicinity of TV monitors or other equipment that generates high static voltages. If unavoidable, install antistatic filters in front of monitor screens and take all other possible antistatic measures. - Static charges accumulate easily in workplaces with a low relative humidity. Manufacturing operations should be carried out in an environment with a relative humidity of at least 50%. #### 2. Soldering - This IC's package temperature must not exceed 80°C. - Since CCD sensors are sensitive to thermal stress as well as ESD, the soldering iron temperature should be under 300°C. Aim for a soldering time of 2 seconds per pin. - Use soldering irons that include an adjustable temperature control function that holds the soldering iron tip at a constant temperature. - Be especially careful to assure that the device package temperature does not exceed 80°C when repairing or redoing solder joints or removing a CCD sensor from a printed circuit board. #### 3. Soiling and Contamination Prevention - CCD sensors should be handled in a clean workplace. (A class 1000 level is appropriate.) - Do not touch the package surface and do not allow any object to contact the package surface. Use compressed air to remove any foreign object (such as dust) that lands on the package surface. (We recommend using an ionized air blower if possible.) - Use a cotton swab dipped in ethyl alcohol to remove oily contamination, being especially careful not to scratch the package surface. - Use special-purpose cases to prevent soiling and contamination. Warm or cool CCD sensors in advance to prevent condensation when transporting between rooms with radically differing temperatures. - For CCD sensors that are shipped with protective tape applied, only remove that tape immediately prior to use in an environment in which BSD prevention measures have been fully implemented. Do not reuse protective tape that has been removed from a CCD sensor. #### 4. Storage - Do not allow sunlight or other bright light to fall on CCD sensors for extended periods. - Since barsh conditions such as high temperatures or high humidities can adversely influence device characteristics, do not use or store these devices in environments with such conditions. Samples should be stored in places where the temperature and humidity fall in normal ranges, i.e., 5 to 35°C and 45 to 75% RH. - Since CCD sensors are precision optical components, do not apply mechanical shocks. - Avoid locations with corrosive atmospheres or high dust levels. - Avoid locations subject to rapid temperature changes. - Do not place heavy objects on top of boxes containing CCD sensors during storage. - Use materials that cannot accumulate static charges for containers used to hold samples. - Do not apply mechanical shocks to magazines holding CCD sensors, since this could adversely influence reliability during mounting. #### 5. Notes on Mounting - Flare can occur if a lens with an optical size larger than 1/5" is used. Consult your SANYO sales representative in advance when selecting lenses. - This product is mounted in a fully transparent plastic package, and is easily influenced by light that passes through the mounting board from the back to the front. Design end-products to adequately block out extraneous light. ## 6. Shipping - Do not drop or throw packages containing CCD sensors. - Do not allow packages containing CCD sensors to become wet due to rain or snow/ - Protect packages containing CCD sensors from mechanical shock and vibration as much as possible during shipping.