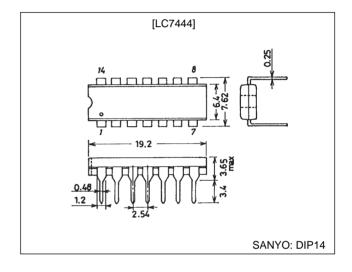


Overview

The LC7444 consists of two independent VCO (voltage controlled oscillator) circuits.

These circuits support VCO operation with only the addition of external resistors that determine the oscillation range.

Features


- Two independent VCO circuits
- The oscillator frequency range can be set with external resistors
- Good linearity in the voltage frequency conversion characteristics
- High-impedance oscillator control voltage input
- CMOS clock output
- Fabricated in a CMOS process for lower power
- Oscillator frequency range: 8 to 32 MHz
- Operating supply voltage: 5 V ± 10%

• Package: DIP14

Package Dimensions

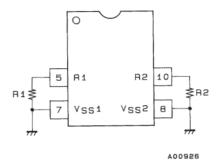
unit: mm

3003A-DIP14

Specifications

Absolute Maximum Ratings at $Ta = 25 \pm 2^{\circ}C$, $V_{SS}1 = V_{SS}2 = 0$ V, $V_{DD} = V_{DD}1$, $V_{DD}2$

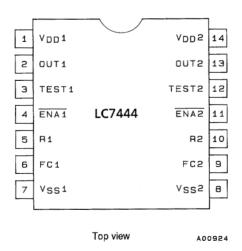
Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{DD} max		-0.3 to +7.0	V
Maximum input voltage	V _{IN} max		-0.3 to V _{DD} + 0.3	V
Maximum output voltage	V _{OUT} max		-0.3 to V _{DD} + 0.3	V
Allowable power dissipation	Pd max		300	mW
Operating temperature	Topr		-10 to +70	°C
Storage temperature	Tstg		-55 to +125	°C


Allowable Operating Ranges at Ta = -10 to +70°C, $V_{SS}1 = V_{SS}2 = 0$ V, $V_{DD} = V_{DD}1$, $V_{DD}2$

Parameter	Symbol	Conditions	min	typ	max	Unit
Supply voltage	V_{DD}		4.5	5.0	5.5	V
Input high level voltage	V_{IH}	ENA1, ENA2	0.7 V _{DD}			V
Input low level voltage	V_{IL}	ENA1, ENA2			0.3 V _{DD}	V
Oscillator range resistors	Rrng	R1, R2	6.8		13	kΩ

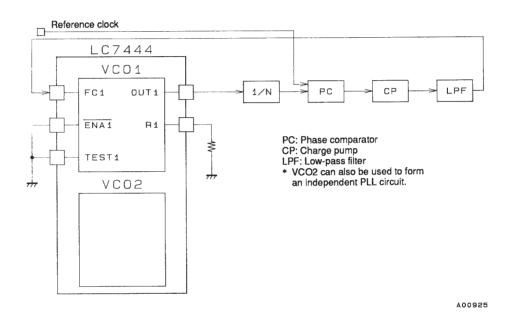
Electrical Characteristics at Ta = 25 \pm 2°C, V_{DD} = 5 V \pm 10%, $V_{SS}1$ = $V_{SS}2$ = 0 V, V_{DD} = $V_{DD}1$, $V_{DD}2$

Parameter	Symbol	Conditions	min	typ	max	Unit
Output high level voltage	V _{OH}	OUT1, OUT2: I _{OH} = -1 mA	V _{DD} - 0.4			V
Output low level voltage	V _{OL}	OUT1, OUT2: I _{OL} = 1 mA			0.4	V
Quiescent current	I _{DDS}	ENA1, ENA2 = V _{DD} , FC1, FC2 = V _{SS}		2		mA
Operating current drain	I _{DD}	R1 = R2 = 7.5 kΩ, no output load, oscillator clock = 20 MHz		7		mA
Input leakage current	I _{IH} , I _{IL}		-1		+1	μΑ
Oscillator clock frequency	fo	R1, R2 = 6.8 k Ω , FC1, FC2 = V_{SS} to V_{DD}^{*1}	16		32	MHz
operating range	range	R1, R2 = 13 k Ω , FC1, FC2 = V_{SS} to V_{DD}^{*1}	8		16	MHz
Duty	Du	*2		50		%


Note: 1.

2. Duty: Du
$$Du = \frac{tH}{tH + tI} \times 100$$

Pin Assignment



Pin Functions

Pin No.	Symbol	Function
1	V _{DD} 1	Power supply
2	OUT1	VCO1 clock output
3	TEST1	Test pin. Must be tied low in normal operation.
4	ENA1	VCO1 enable input
5	R1	VCO1 oscillator range resistor
6	FC1	VCO1 control voltage input
7	V _{SS} 1	Ground

Pin No.	Symbol	Function
8	V _{SS} 2	Ground
9	FC2	VCO2 control voltage input
10	R2	VCO2 oscillator range resistor
11	ENA2	VCO2 enable input
12	TEST2	Test pin
13	OUT2	VCO2 clock output
14	V _{DD} 2	Power supply

Sample Application

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of May, 1995. Specifications and information herein are subject to change without notice.