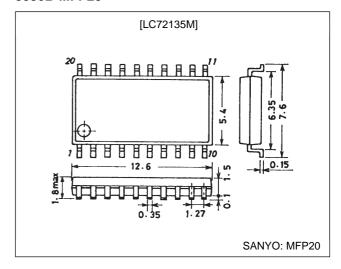


PLL Frequency Synthesizer for Electronic Tuning

Overview

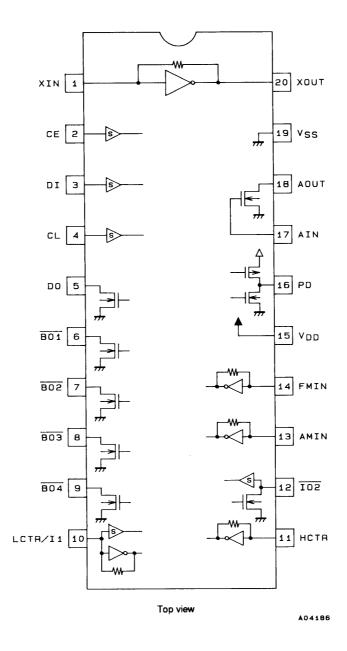
The LC72135M is a PLL frequency synthesizer LSI for tuners in car stereo and similar applications. High-performance AM/FM tuners can be easily implemented with this product.

Functions

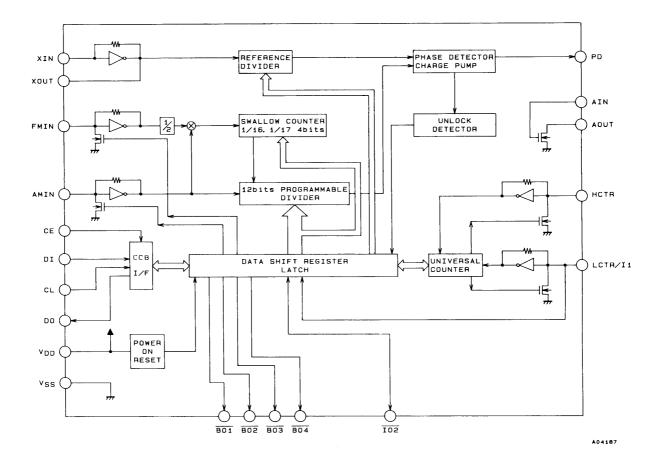

- · High-speed programmable dividers
 - FMIN: 10 to 160 MHzpulse swallower (built-in divide-by-two prescaler)
 - AMIN: 2 to 40 MHzpulse swallower 0.5 to 10 MHzdirect division
- IF counter
 - HCTR 0.4 to 12 MHzAM/FM IF counter
 - LCTR 100 to 500 k Hz.....AM IF counter
- Reference frequencies
 - Twelve selectable frequencies
 - (4.5 or 7.2 MHz crystal)
 - 1, 3, 5, 9, 10, 3.125, 6.25, 12.5, 15, 25, 50 and 100 kHz
- Phase comparator
 - Dead zone control
 - Unlock detection circuit
 - Deadlock clear circuit
- Built-in MOS transistor for forming an active low-pass filter
- I/O ports
 - Dedicated output ports: 4
 - Input or output ports: 1
 - Input ports (LCTR): 1
 - Support clock time base output

- Serial data I/O
 - Support CCB format communication with the system controller.
- · Operating ranges
 - Supply voltage......4.5 to 5.5 V
 - Operating temperature.....-40 to +85°C
- Package
 - MFP20

Package Dimensions


unit: mm

3036B-MFP20



- CCB is a trademark of SANYO ELECTRIC CO., LTD.
- CCB is SANYO's original bus format and all the bus addresses are controlled by SANYO.
- Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

Pin Assignment

Block Diagram

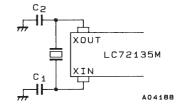
Specifications

Absolute Maximum Ratings at $Ta = 25^{\circ}C$, $V_{SS} = 0$ V

Parameter	Symbol	Pins	Ratings	Unit
Maximum supply voltage	V _{DD} max	V_{DD}	-0.3 to +7.0	V
	V _{IN} 1 max	CE, CL, DI, AIN	-0.3 to +7.0	V
Maximum input voltage	V _{IN} 2 max	XIN, FMIN, AMIN, HCTR, LCTR/I1	-0.3 to V _{DD} + 0.3	V
	V _{IN} 3 max	ĪO2	-0.3 to +15	V
	V _O 1 max	DO	-0.3 to +7.0	V
Maximum output voltage	V _O 2 max	XOUT, PD	-0.3 to V _{DD} + 0.3	V
	V _O 3 max	BO1 to BO4, IO2, AOUT	-0.3 to +15	V
	I _O 1 max	BO1	0 to 3.0	mA
Maximum output current	I _O 2 max	AOUT, DO	0 to 6.0	mA
	I _O 3 max	BO2 to BO4, IO2	0 to 10.0	mA
Allowable power dissipation	Pd max	Ta ≤ 85°C	180	mW
Operating temperature	Topr		-40 to +85	°C
Storage temperature	Tstg		-55 to +125	°C

Allowable Operating Ranges at $Ta = -40 \ to \ +85^{\circ}C, \ V_{SS} = 0 \ V$

Parameter	Symbol	Pins	Conditions	min	typ	max	Unit
Supply voltage	V _{DD}	V _{DD}		4.5		5.5	V
	V _{IH} 1	CE, CL, DI		0.7 V _{DD}		6.5	V
Input high-level voltage	V _{IH} 2	LCTR/I1		0.7 V _{DD}		V _{DD}	V
	V _{IH} 3	ĪO2		0.7 V _{DD}		13	V
Input low-level voltage	V _{IL}	CE, CL, DI, 102 , LCTR/I1		0		0.3 V _{DD}	V
Output voltage	V _O 1	DO		0		+6.5	V
Output voltage	V _O 2	BO1 to BO4, IO2, AOUT		0		+13	V
	f _{IN} 1	XIN	V _{IN} 1	1		8	MHz
	f _{IN} 2	FMIN	V _{IN} 2	10		160	MHz
Input fraguancy	f _{IN} 3	AMIN	V _{IN} 3, SNS = 1	2		40	MHz
Input frequency	f _{IN} 4	AMIN	V _{IN} 4, SNS = 0	0.5		10	MHz
	f _{IN} 5	HCTR	V _{IN} 5	0.4		12	MHz
	f _{IN} 6	LCTR/I1	V _{IN} 6	100		500	kHz
	V _{IN} 1	XIN	f _{IN} 1	400		1500	mVrms
	V _{IN} 2-1	FMIN	f = 10 to 130 MHz	40		1500	mVrms
	V _{IN} 2-2	FMIN	f = 130 to 160 MHz	70		1500	mVrms
	V _{IN} 3	AMIN	f _{IN} 3, SNS = 1	40		1500	mVrms
Input amplitude	V _{IN} 4	AMIN	f _{IN} 4, SNS = 0	40		1500	mVrms
	V _{IN} 5-1	HCTR	f _{IN} 5, IFS = 1	40		1500	mVrms
	V _{IN} 5-2	HCTR	f _{IN} 5, IFS = 0	70		1500	mVrms
	V _{IN} 6-1	LCTR/I1	f _{IN} 6, IFS = 1	40		1500	mVrms
	V _{IN} 6-2	LCTR/I1	f _{IN} 6, IFS = 0	70		1500	mVrms
Supported crystals	Xtal	XIN, XOUT	*	4.0		8.0	MHz


Note: * Recommended crystal oscillator CI values:

 $CI \le 120\Omega$ (For a 4.5 MHz crystal)

 $\text{CI} \leq 70\Omega$ (For a 7.2 MHz crystal)

<Sample Oscillator Circuit>
Crystal oscillator: HC-49/U (manufactured by Kinseki, Ltd.), CL = 12 pF

The circuit constants for the crystal oscillator circuit depend on the crystal used, the printed circuit board pattern, and other items. Therefore we recommend consulting with the manufacturer of the crystal about evaluation and reliability.

Electrical Characteristics for the Allowable Operating Ranges at $Ta=-40\ to\ +85^{\circ}C,\ V_{SS}=0\ V$

Parameter	Symbol	Pins	Conditions	min	typ	max	Unit
	Rf1	XIN			1.0		ΜΩ
	Rf2	FMIN			500		kΩ
Built-in feedback resistance	Rf3	AMIN			500		kΩ
	Rf4	HCTR			250		kΩ
	Rf5	LCTR/I1			250		kΩ
	Rpd1	FMIN			200		kΩ
Built-in pull-down resistor	Rpd2	AMIN			200		kΩ
Hysteresis	V _{HIS}	CE, CL, DI, IO2 , LCTR/I1			0.1 V _{DD}		V
Output high-level voltage	V _{OH} 1	PD	I _O = -1 mA	V _{DD} – 1.0			V
	V _{OL} 1	PD	I _O = 1 mA			1.0	V
	., .	504	I _O = 0.5 mA			0.5	V
	V _{OL} 2	BO1	I _O = 1 mA			1.0	V
	., .		I _O = 1 mA			0.2	V
Output low-level voltage	V _{OL} 3	DO	I _O = 5 mA			1.0	V
	V _{OL} 4		I _O = 1 mA			0.2	V
		BO2 to BO4, IO2	I _O = 5 mA			1.0	V
			I _O = 8 mA			1.6	V
	V _{OL} 5	AOUT	I _O = 1 mA, AIN = 1.3 V			0.5	V
	I _{IH} 1	CE, CL, DI	V _I = 6.5 V			5.0	V
	I _{IH} 2	LCTR/I1	V _I = V _{DD} , L/I1 = 0			5.0	μA
	I _{IH} 3	ĪŌ2	V _I = 13 V			5.0	μA
Input high-level current	I _{IH} 4	XIN	$V_I = V_{DD}$	2.0		11	μA
	I _{IH} 5	FMIN, AMIN	$V_I = V_{DD}$	4.0		22	μA
	I _{IH} 6	HCTR, LCTR/I1	V _I = V _{DD} , L/I1 = 1	8.0		44	μA
	I _{IH} 7	AIN	V _I = 6.5 V			200	nA
	I _{IL} 1	CE, CL, DI	V _I = 0 V			5.0	μA
	I _{IL} 2	LCTR/I1	V _I = 0 V, L/I1 = 0			5.0	μΑ
land law law laws	I _{IL} 3	ĪO2	V _I = 0 V			5.0	μΑ
Input low-level current	I _{IL} 4	XIN	V _I = 0 V	2.0		11	μΑ
	I _{IL} 5	FMIN, AMIN	V _I = 0 V	4.0		22	μΑ
	I _{IL} 6	HCTR, LCTR/I1	V _I = 0 V, L/I1 = 1	8.0		44	μΑ
	I _{IL} 7	AIN	V _I = 0 V			200	nA
Output off leakage current	I _{OFF} 1	BO1 to BO4, AOUT,	V _O = 13 V			5.0	μA
-	I _{OFF} 2	DO	V _O = 6.5 V			5.0	μA
High-level three-state off leakage current	I _{OFFH}	PD	$V_O = V_{DD}$		0.01	200	nA
Low-level three-state off leakage current	I _{OFFL}	PD	V _O = 0 V		0.01	200	nA
Input capacitance	C _{IN}	FMIN			6		pF
	I _{DD} 1	V _{DD}	$\begin{aligned} \text{Xtal} &= 7.2 \text{ MHz}, \\ \text{f}_{\text{IN}} &= 130 \text{ MHz}, \\ \text{V}_{\text{IN}} &= 40 \text{ mVrms} \end{aligned}$		5	10	mA
Current drain	I _{DD} 2	V _{DD}	PLL block stopped (PLL INHIBIT), Xtal oscillator operating (Xtal = 7.2 MHz)		0.5		mA
	I _{DD} 3	V _{DD}	PLL block stopped Xtal oscillator stopped			10	μA

Pin Functions

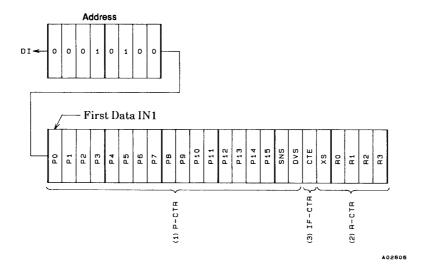
Symbol	Pin No.	Туре	Functions	Circuit configuration
XIN XOUT	1 20	Xtal OSC	Crystal resonator connection (4.5/7.2 MHz)	A02598
FMIN	14	Local oscillator signal input	FMIN is selected when the serial data input DVS bit is set to 1. The input frequency range is from 10 to 160 MHz. The input signal passes through the internal divide-bytwo prescaler and is input to the swallow counter. The divisor can be in the range 272 to 65535. However, since the signal has passed through the divide-by-two prescaler, the actual divisor is twice the set value.	A02599
AMIN	13	Local oscillator signal input	AMIN is selected when the serial data input DVS bit is set to 0. When the serial data input SNS bit is set to 1: The input frequency range is 2 to 40 MHz. The signal is directly input to the swallow counter. The divisor can be in the range 272 to 65535, and the divisor used will be the value set. When the serial data input SNS bit is set to 0: The input frequency range is 0.5 to 10 MHz. The signal is directly input to a 12-bit programmable divider. The divisor can be in the range 4 to 4095, and the divisor used will be the value set.	A02599
CE	2	Chip enable	Set this pin high when inputting (DI) or outputting (DO) serial data.	□S >
CL	4	Clock	Used as the synchronization clock when inputting (DI) or outputting (DO) serial data.	A02600
DI	3	Data input	Inputs serial data transferred from the controller to the LC72135M.	A02600
DO	5	Data output	Outputs serial data transferred from the LC72135M to the controller. The content of the output data is determined by the serial data DOC0 to DOC2.	A02601
V _{DD}	15	Power supply	The LC72135M power supply pin (V _{DD} = 4.5 to 5.5 V) The power on reset circuit operates when power is first applied.	

Continued on next page.

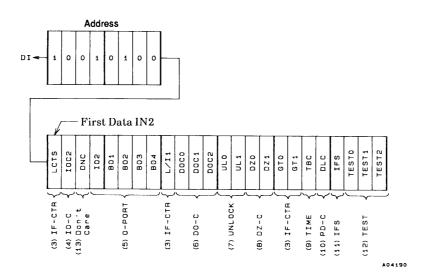
Continued from preceding page.

Symbol	Pin No.	Туре	Functions	Circuit configuration
V _{SS}	19	Ground	The LC72135M ground	-
BO1 BO2 BO3 BO4	6 7 8 9	Output port	Dedicated output pins The output states are determined by BO1 to BO4 bits in the serial data. Data: 0 = open, 1 = low All output ports are set to the open state following a power-on reset. A time base signal (8 Hz) can be output from the BO1 pin. (When the serial data TBC bit is set to 1.) Care is required when using the BO1 pin, since it has a higher on impedance that the other output ports (pins BO2 to BO4).	A02501
ĪO2	12	I/O port	I/O dual-use pins The direction (input or output) is determined by bit IOC2 in the serial data. Data: 0 = input port, 1 = output port When specified for use as input ports: The state of the input pin is transmitted to the controller over the DO pin. Input state: low = 0 data value high = 1 data value When specified for use as output ports: The output states are determined by the IO2 bit in the serial data. Data: 0 = open, 1 = low The pin function as input pin following a power-on reset.	A02502
PD	16	Charge pump output	PLL charge pump output When the frequency generated by dividing the local oscillator frequency by N is higher than the reference frequency, a high level is output from the PD pin. Similarly, when that frequency is lower, a low level is output. The PD pin goes to the high-impedance state when the frequencies match.	A02603
AIN AOUT	17 18	LPF amplifier transistor	The n-channel MOS transistor used for the PLL active low-pass filter.	A02604

Continued from preceding page.


Symbol	Pin No.	Туре	Functions	Circuit configuration
HCTR	11	IF counter	HCTR is selected when the LCTS bit in the serial data is set to 0. Accepts an input in the frequency range 0.4 to 12 MHz. The input signal is directly transmitted to the IF counter. The result is output starting the MSB of the IF counter using the DO pin. Four measurement periods are supported: 4, 8, 32, and 64 ms.	A02599
LCTR/I1	10	IF counter	LCTR is selected when the LCTS bit in the serial data is set to 1. (Set the L/I1 bit in the serial data to 1 when using the IF counter.) The input frequency range is 100 to 500 kHz. The signal is directly transmitted to the IF counter. The result, starting with the MSB of the IF counter, is output serially through the DO pin. There are four measurement times: 4, 8, 32, and 64 ms. If the L/I1 bit in the serial data is set to 0, the LCTR/I1 pin functions as an input port and the state of that input pin is transmitted to the controller from the DO pin. When the input state is low, the data will be 0, and when the state is high, the data will be 1.	A04189

Serial Data I/O Methods


The LC72135M inputs and outputs data using the Sanyo CCB (computer control bus) audio LSI serial bus format. This LSI adopts an 8-bit address format CCB.

I/O mode Address										Function		
	I/O mode	В0	B1	B2	В3	A0	A1	A2	А3	Function		
1	IN1 (82)	0	0	0	1	0	1	0	0	Control data input mode (serial data input) 24 data bits are input. See the "DI Control Data (serial data input) Structure" item for details on the meaning of the input data.		
2	IN2 (92)	1	0	0	1	0	1	0	0	 Control data input mode (serial data input) 24 data bits are input. See the "DI Control Data (serial data input) Structure" item for details on the meaning of the input data. 		
3	OUT (A2)	0	1	0	1	0	1	0	0	Data output mode (serial data output) The number of bits output is equal to the number of clock cycles. See the "DO Output Data (Serial Data Output) Structure" item for details on the meaning of the output data.		
		B1		В	3	AO	A1)	A2	A3	First Data OUT A02605		

- 1. DI Control Data (Serial Data Input) Structure
 - IN1 Mode

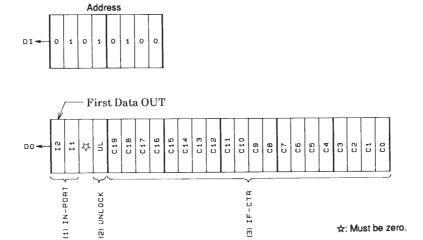
• IN2 Mode

2. DI Control Data Functions

No.	Control block/data		Related data					
	Programmable divider data	Data that	sets the p	rogramma	ble divider	•		
	P0 to P15	A binary v DVS and				The LSB char	nges depending on	
		DVS	SNS	LSB	Divisor	setting (N)	Actual divisor	
		1	*	P0	272 t	o 65535	Twice the value of the setting	
		0	1	P0	272 t	o 65535	The value of the setting	
		0	0	P4	4	to 4095	The value of the setting	
(1)		Note: P0	to P3 are	ignored wl	hen P4 is t	he LSB.		
	DVS, SNS				MIN or FM don't care		ogrammable divider, switches	
		DVS	SNS	Input	pin		Input frequency range	
		1	*	FMI	N		10 to 160 MHz	
		0	1	AMI	N		2 to 40 MHz	
		0	0	AMI	N		0.5 to 10 MHz	
		Note: See	e the "Proo	grammable	e Divider" i	tem for more i	nformation.	
	Reference divider data	Reference	frequenc	y (fref) sel	ection data	۱.		
	R0 to R3	R3	R2	R1	R0	Re	eference frequency (kHz)	
		0	0	0	0		100	
		0	0	0	1		50	
		0	0	1	0		25	
		0 0	0 1	1 0	0		25 12.5	
		0	1	0	1		6.25	
		0	1	1	0		3.125	
		0	1	1	1		3.125	
		1 1	0	0	0		10 9	
			0	1	0		5	
(2)		1	0	1	1		1	
		1	1	0	0		3	
		1	1	0	1		15	
		1	1	1	0	PLL	INHIBIT + Xtal OSC STOP	
		1	1	1	1		PLL INHIBIT	
		AMIN	orogramma I, HCTR a	nd LCTR	pins are se	t to the pull-d	or block are stopped, the FMIN, own state (ground), and the charge	
	VO.	· ·	•	•	pedance s	state.		
	XS	 Crystal res XS = 0: 4. 		election				
		XS = 1: 7.						
		The 7.2 M	Hz freque	ncy is sele	ected after	the power-on	reset.	
	IF counter control data	IF counter			data			
	CTE	CTE = 1: 0						
	GT0, GT1	• Determine			asuramant	neriod		IFS
	010, 011			ı		<u>'</u>	T	11 0
		GT1	GT0	Mea	surement t	ime (ms)	Wait time (ms)	
		0	0		4		3 to 4	
		0	1		8		3 to 4	
		1	0		32		7 to 8	
		1	1		64		7 to 8	
(3)						e information.		
	IF counter selection data	Data that						
	LCTS L/I1	LCTS = 0: L/I1 = 0: I:						
	, 							
		LCTS L/I1 LCTR/I1 pin HCTR pin						
		0	0		nput port)		HCTR	
		0	1	Off	(pulled do	wn)	(FM/AM IF counter)	
		1	0		I1 (input p	ort)	Off	
		1	1	LCTP (A	M IF coun	ter)	(pulled down)	
			'	1 -011 (A	ii oouli		I	

Continued from preceding page.

No.	Control block/data				Functions		Related data
(4)	I/O port specification data IOC2			ection for le, 1 = out	the bidirectional pin IO2 put mode		
(5)	Output port data BO1 to BO4, IO2	1	determine open, 1 =		out from the BO1 to BO4	, and IO2 output ports	IOC2
		The data	= 0 (open)	state is s	elected after the power-	on reset.	
	DO pin control data	Data that	determine	s the DO	pin output		
	DOC0, DOC1, DOC2	DOC2	DOC1	DOC0	[OO pin state	
		0 0 0	0 0 1	0 1 0	Open Low when the unlock send-UC*1	state is detected	
		0 1 1 1 1	0 0 1 1	1 0 1 0 1	Open The LCTR/I1 pin state The IO2 pin state*3 Open	*2	
		The open	state is se	elected aft	er the power-on reset.		
		Note: 1.	end-UC: (Check for I	F counter measurement	completion	
(6)		DO pin _		1		\$5	UL0, UL1, CTE, IOC2
			① Cou	nter start	② Co cor	unter ③ CE: high nplete A0250B	
		(L/I	from z When the me Dependence to the thing of the thing	ero to one the IF cour easuremer ding on se the open state	e), the DO pin automatica nter measurement complent completion state. rial data I/O (CE: high) tate if the LCTR/I1 pin is	is started (i.e., when CTE is changed ally goes to the open state. letes, the DO pin goes low to indicate the DO pin goes to the open state. set to the AM-IF counter function fied to be an output port.	
		Caution: TI hi Al w C					
	Unlock detection data UL0, UL1			. ,	detection width for check e specified detection wid	king PLL lock. th is seen as an unlocked state.	
		UL1	UL0	Ø	E detection width	Detector output	
		0	0	Stopped		Open	DOCO,
(7)		0	1	0		øE is output directly	DOC1, DOC2
		1	0	±0.55 µs		øE is extended by 1 to 2 ms	D002
			te: In the			øE is extended by 1 to 2 ms w and the UL bit in the serial data	
	Phase comparator				or dead zone.		
	control data	DZ1	DZ0		Dead 70	one mode	
	DZ0, DZ1	0	0	DZA	Doud 20		
(0)		0	1	DZB			
(8)		1	0	DZC			
		1	1	DZD			
		Dead zon	e widths:	DZA < DZ	B < DZC < DZD		
(9)	Clock time base TBC	Setting TE	BC to one	causes ar		me base signal to be output	BO1
	Charge pump control data	Forcibly c	ontrols the	charge p	ump output.		
	DLC	D	LC		Charge p	ump output	
			0	Normal o	pperation		
(10)			1	Forced lo	-		
						ge (Vtune) going to zero and the VCO	
		1	-:		برط لممعممات مطحمه بامماله	facilities that the control of the c	1
					o V $_{ m CC}$. (This is the dead	forcing the charge pump output to	

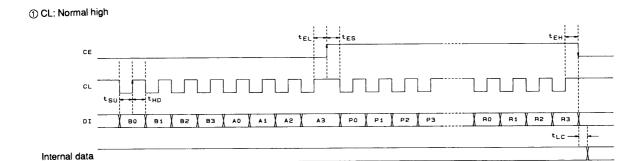

Continued on next page.
No. 5175-12/24

Continued from preceding page.

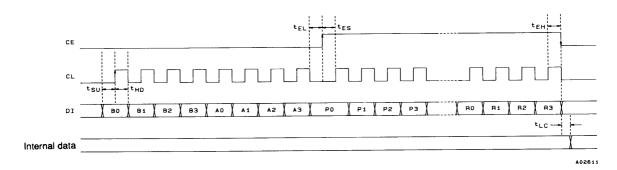
No.	Control block/data	Functions	Related data
(11)	IF counter control data	This data should be set to 1 during normal operation. Note that if this value is set to zero the system enters input sensitivity degradation mode, and the sensitivity is reduced to 10 to 30 mV rms. See the "IF Counter Operation" item for details.	
(12)	LSI test data TEST 0 to 2	LSI test data TEST0 TEST1 TEST2 These values must all be set to 0. TEST2 These test data are set to 0 automatically after the power-on reset.	
(13)	DNC	Don't care. This data must be set to 0.	

3. DO Output Data (Serial Data Output)

• OUT Mode

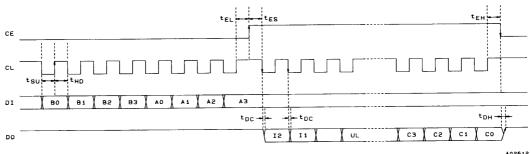


4. DO Output Data

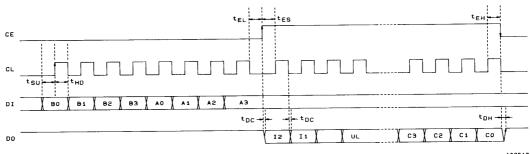

No.	Control block/data	Functions	Related data
(1)	I/O port data I2, I1	• Latched from the pin states of the LCTR/I1 input port (L/I1 bit is set to 0) and the $\overline{\text{IO2}}$ I/O port. These values follow the pin states regardless of the input or output setting. Data is latched when the data output mode is entered. I1 \leftarrow LCTR/I1 pin state High: 1 Low: 0	L/l1 IOC2
(2)	PLL unlock data UL	Latched from the state of the unlock detection circuit. UL ← 0: Unlocked UL ← 1: Locked or detection stopped mode	ULO, UL1
(3)	IF counter binary data C19 to C0	Latched from the value of the IF counter (20-bit binary counter). C19 ← MSB of the binary counter C0 ← LSB of the binary counter	CTE, GT0, GT1

A02609

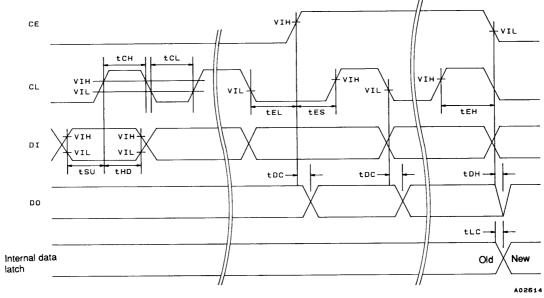
5. Serial Data Input (IN1/IN2) t_{SU} , t_{HD} , t_{EL} , t_{ES} , $t_{EH} \ge 0.75~\mu s$, $t_{LC} \le 0.75~\mu s$

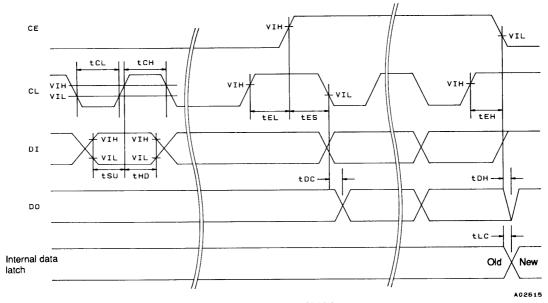


② CL: Normal low



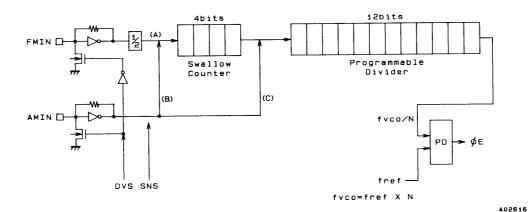
6. Serial Data Output (OUT) t_{SU} , t_{HD} , t_{EL} , t_{ES} , $t_{EH} \ge 0.75~\mu s$, t_{DC} , $t_{DH} \le 0.35~\mu s^*$





Note: Since the DO pin is an n-channel open-drain pin, the time for the data to change (t_{DC} and t_{DH}) will differ depending on the value of the pull-up resistor and the printed circuit board capacitance.

7. Serial Data Timing


When stopped with CL low

When stopped with CL high

Parameter	Symbol	Pins	Conditions	min	typ	max	Unit
Data setup time	t _{SU}	DI, CL		0.75			μs
Data hold time	t _{HD}	DI, CL		0.75			μs
Clock low-level time	t _{CL}	CL		0.75			μs
Clock high-level time	t _{CH}	CL		0.75			μs
CE wait time	t _{EL}	CE, CL		0.75			μs
CE setup time	t _{ES}	CE, CL		0.75			μs
CE hold time	t _{EH}	CE, CL		0.75			μs
Data latch change time	t _{LC}					0.75	μs
Data output time	t _{DC}	DO, CL	Differs depending on the value of the pull-up resistor			0.35	116
Data output time	t _{DH}	DO, CE	and the printed circuit board capacitances.			0.33	μs

Programmable Divider Structure

	DVS	SNS	Input pin	Set divisor	Actual divisor: N	Input frequency range (MHz)
Α	1	*	FMIN	272 to 65535	Twice the set value	10 to 160
В	0	1	AMIN	272 to 65535	The set value	2 to 40
С	0	0	AMIN	4 to 4095	The set value	0.5 to 10

Note: * Don't care.

1. Programmable Divider Calculation Examples

• FM, 50 kHz steps (DVS = 1, SNS = *, FMIN selected)

$$FM RF = 90.0 MHz (IF = +10.7 MHz)$$

FM VCO = 100.7 MHz

PLL fref = 25 kHz (R0 to R1 = 1, R2 to R3 = 0)

100.7 MHz (FM VCO) \div 25 kHz (fref) \div 2 (FMIN: divide-by-two prescaler) = 2014 \rightarrow 07DE (HEX)

A02617

• SW, 5 kHz steps (DVS = 0, SNS = 1, AMIN high-speed side selected)

SW RF =
$$21.75$$
 MHz (IF = $+450$ kHz)

SW VCO = 22.20 MHz

PLL fref =
$$5 \text{ kHz}$$
 (R0 = R2 = 0 , R1 = R3 = 1)

22.2 MHz (SW VCO) \div 5 kHz (fref) = 4440 \rightarrow 1158 (HEX)

		3			5	5				<u> </u>	$\overline{}$			<u> </u>									
0	0	0	1	1	0	1	0	1	0	0	0	1	0	0	0	1	0			0	1	0	1
ЬО	P.1	24	ь	4	P5	96	Ь7	8 d	64	P10	P11	P12	P13	P14	P15	SNS	DVS	CTE	s×	ВО	н 1	R2	ВЗ

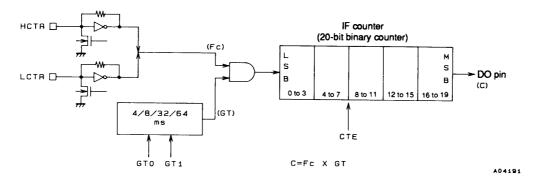
A02516

• MW, 10 kHz steps (DVS = 0, SNS = 0, AMIN low-speed side selected)

MW RF =
$$1000 \text{ kHz}$$
 (IF = $+450 \text{ kHz}$)

MW VCO = 1450 kHz

PLL fref =
$$10 \text{ kHz}$$
 (R0 to R2 = 0 , R3 = 1)

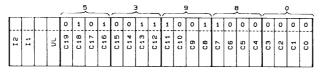

1450 kHz (MW VCO) \div 10 kHz (fref) = 145 \rightarrow 091 (HEX)

					_:	1	_				_			_	_								
*	*	*	*	1	0	0	0	1	0	0	1	0	0	0	0	0	0			0	0	0	1
0 d	P1	P2	ьз	P.4	50	96	Р7	8 d	9 d	P10	P11	P12	P13	P14	P15	SNS	SAO	CTE	s×	ВО	н 1	F 2	нз

A02619

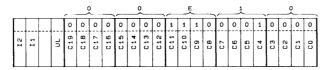
IF Counter Structure

The LC72135M IF counter is a 20-bit binary counter that accepts an IF input from either the HCTR pin (for FM or AM IF counting) or the LCTR/I1 pin (for AM IF counting). The result of the count can be read out serially through the DO pin starting with the MSB.

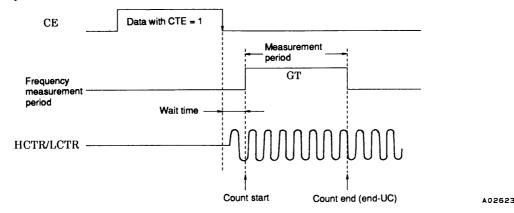


GT1	GT0	Measurement time							
	910	Measurement period (GT) (ms)	Wait time (t _{WU}) (ms)						
0	0	4	3 to 4						
0	1	8	3 to 4						
1	0	32	7 to 8						
1	1	64	7 to 8						

The IF frequency (Fc) is measured by determining how many pulses were input to an IF counter in a specified measurement period, GT.


$$Fc = \frac{C}{GT}$$
 (C = Fc × GT) C: Count value (number of pulses)

- 1. IF Counter Frequency Calculation Examples
 - When the measurement period (GT) is 32 ms, the count (C) is 53980 hexadecimal (342400 decimal): IF frequency (Fc) = $342400 \div 32$ ms = 10.7 MHz


A0262

• When the measurement period (GT) is 8 ms, the count (C) is E10 hexadecimal (3600 decimal): IF frequency (Fc) = $3600 \div 8 \text{ ms} = 450 \text{ kHz}$

A0252

2. IF Counter Operation

Before starting the IF count, the IF counter must be reset in advance by setting CTE in the serial data to 0.

The IF count is started by changing the CTE bit in the serial data from 0 to 1. The serial data is latched by the LC72135M when the CE pin is dropped from high to low. The IF signal must be supplied to the HCTR and LCTR pins in the period between the point the CE pin goes low and the end of the wait time at the latest. Next, the value of the IF counter at the end of the measurement period must be read out during the period that CTE is 1. This is because the IF counter is reset when CTE is set to 0.

Note: When operating the IF counter, the control microprocessor must first check the state of the IF-IC SD (station detect) signal and only after determining that the SD signal is present turn on IF buffer output and execute an IF count operation. Autosearch techniques that use only the IF counter are not recommended, since it is possible for IF buffer leakage output to cause incorrect stops at points where there is no station. Note that the LC72135M input sensitivity can be controlled with the IFS bit in the serial data. Reduced sensitivity mode (IFS = 0) must be selected when this IC is used in conjunction with an IF-IC that does not provide an SD output and auto-search is implemented using only IF counting.

HCTR minimum input sensitivity standard

f (MHz)

IFS	$0.4 \le f < 0.5$	0.5 ≤ f < 8	8 ≤ f ≤ 12			
1: Normal mode	40 mVrms (0.1 to 3 mVrms)	40 mVrms	40 mVrms (1 to 10 mVrms)			
0: Degradation mode	70 mVrms (10 to 15 mVrms)	70 mVrms	70 mVrms (30 to 40 mVrms)			

Note: Values in parentheses are actual performance values presented as reference data.

Unlock Detection Timing

1. Unlock Detection Determination Timing

Unlocked state detection is performed in the reference frequency (fref) period (interval). Therefore, in principle, unlock determination requires a time longer than the period of the reference frequency. However, immediately after changing the divisor N (frequency) unlock detection must be performed after waiting at least two periods of the reference frequency.

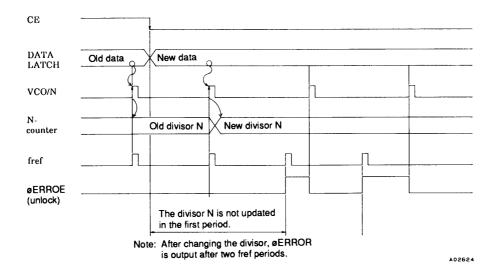


Figure 1 Unlocked State Detection Timing

For example, if fref is 1 kHz, i.e., the period is 1 ms, after changing the divisor N, the system must wait at least 2 ms before checking for the unlocked state.

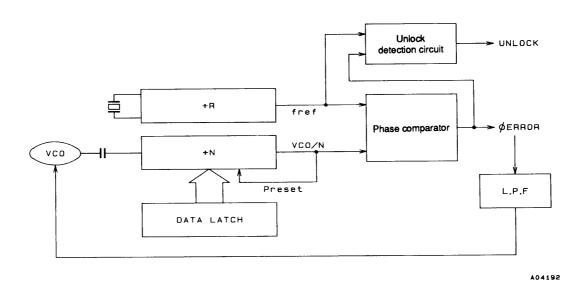
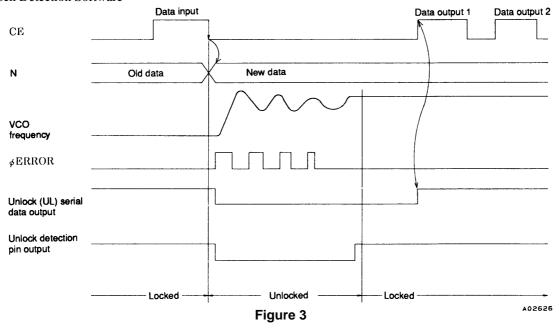
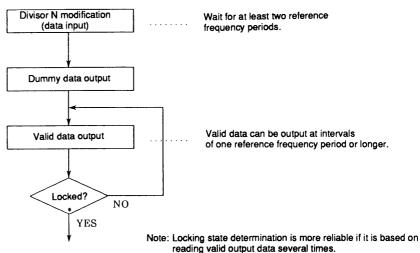



Figure 2 Circuit Structure

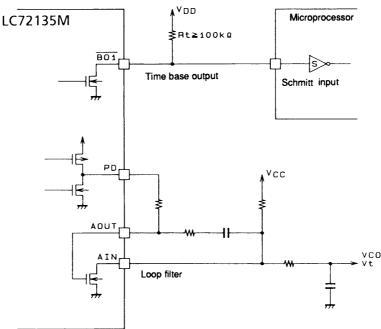

2. Unlock Detection Software

3. Unlocked State Data Output Using Serial Data Output

In the LC72135M, once an unlocked state occurs, the unlocked state serial data (UL) will not be reset until a data input (or output) operation is performed. At the data output ① point in Figure 3, although the VCO frequency has stabilized (locked), since no data output has been performed since the divisor N was changed the unlocked state data remains in the unlocked state. As a result, even though the frequency has stabilized (locked), the system remains (from the standpoint of the data) in the unlocked state.

Therefore, the unlocked state data acquired at data output 1, which occurs immediately after the divisor N was changed, should be treated as a dummy data output and ignored. The second data output (data output 2) and following outputs are valid data.

Locked State Determination Flowchart


4. Directly Outputting Unlocked State Data from the DO Pin (Set by the DO pin control data)

Since the locking state (high = locked, low = unlocked) is output directly from the DO pin, the dummy data processing described in section 3 above is not required. After changing the divisor N, the locking state can be checked after waiting at least two reference frequency periods.

Clock Time Base Usage Notes

The pull-up resistor used on the clock time base output pin ($\overline{BO1}$) should be at least 100 k Ω .

This is to prevent degrading the VCO C/N characteristics when a loop filter is formed using the built-in low-pass filter transistor. Since the clock time base output pin and the low-pass filter have a common ground internal to the IC, it is necessary to minimize the time base output pin current fluctuations and to suppress their influence on the low-pass filter. Also, to prevent chattering we recommend using a Schmitt input at the controller (microprocessor) that receives this signal.

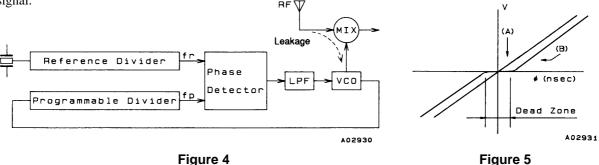
Other Items

DZ1	DZ0	Dead zone mode	Charge pump	Dead zone
0	0	DZA	ON/ON	0 s
0	1	DZB	ON/ON	−0 s
1	0	DZC	OFF/OFF	+0 s
1	1	DZD	OFF/OFF	+ +0 s

1. Notes on the Phase Comparator Dead Zone

Since correction pulses are output from the charge pump even if the PLL is locked when the charge pump is in the ON/ON state, the loop can easily become unstable. This point requires special care when designing application circuits.

The following problems may occur in the ON/ON state.


- Side band generation due to reference frequency leakage
- Side band generation due to both the correction pulse envelope and low frequency leakage

Schemes in which a dead zone is present (OFF/OFF) have good loop stability, but have the problem that acquiring a high C/N ratio can be difficult. On the other hand, although it is easy to acquire a high C/N ratio with schemes in which there is no dead zone, it is difficult to achieve high loop stability. Therefore, it can be effective to select DZA or DZB, which have no dead zone, in applications which require an FM S/R ratio in excess of 90 to 100 dB, or in which an increased AM stereo pilot margin is desired. On the other hand, we recommend selecting DZC or DZD, which provide a dead zone, for applications which do not require such a high FM signal-to-noise ratio and in which either AM stereo is not used or an adequate AM stereo pilot margin can be achieved.

Dead Zone

The phase comparator compares fp to a reference frequency (fr) as shown in Figure 4. Although the characteristics of this circuit (see Figure 5) are such that the output voltage is proportional to the phase difference \emptyset (line A), a region (the dead zone) in which it is not possible to compare small phase differences occurs in actual ICs due to internal circuit delays and other factors (line B). A dead zone as small as possible is desirable for products that must provide a high S/N ratio.

However, since a larger dead zone makes this circuit easier to use, a larger dead zone is appropriate for popularly-priced products. This is because it is possible for RF signals to leak from the mixer to the VCO and modulate the VCO in popularly-priced products in the presence of strong RF inputs. When the dead zone is narrow, the circuit outputs correction pulses and this output can further modulate the VCO and generate beat frequencies with the RF signal.

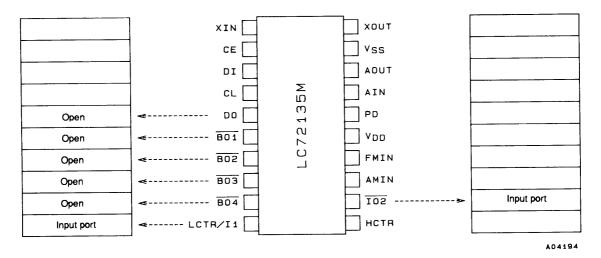
2. Notes on the FMIN, AMIN, HCTR and LCTR/I1 Pins

Coupling capacitors must be placed as close as possible to their respective pins. A capacitance of about 100 pF is desirable. In particular, if a capacitance of 1000 pF or over is used for the HCTR and LCTR/I1 pins, the time to reach the bias level will increase and incorrect counting may occur due to the relationship with the wait time.

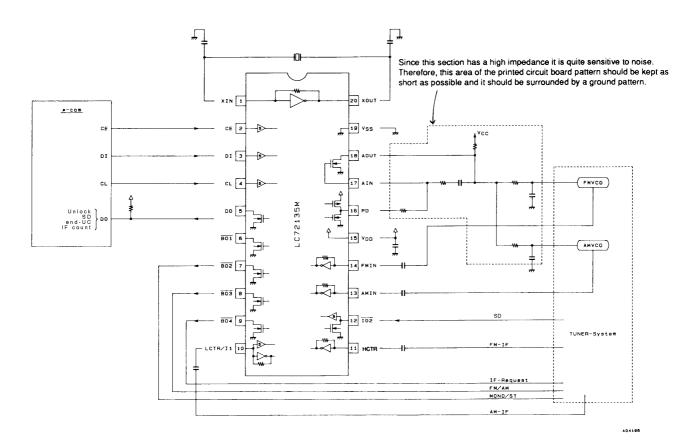
3. Notes on IF Counting → SD must be used in conjunction with the IF counting time When using IF counting, always implement IF counting by having the microprocessor determine the presence of the IF-IC SD (station detect) signal and turn on the IF counter buffer only if the SD signal is present. Schemes in which auto-searches are performed with only IF counting are not recommended, since they can stop at points where there is no signal due to leakage output from the IF counter buffer.

4. DO Pin Usage Techniques

In addition to data output mode times, the DO pin can also be used to check for IF counter count completion and for unlock detection output. Also, an input pin state can be output unchanged through the DO pin and input to the controller.


5. Power Supply Pins

A capacitor of at least 2000 pF must be inserted between the power supply V_{DD} and V_{SS} pins for noise exclusion. This capacitor must be placed as close as possible to the V_{DD} and V_{SS} pins.


6. VCO Setup

Applications must be designed so that the VCO (local oscillator) does not stop, even if the control voltage (Vtune) goes to 0 V. If it is possible for the oscillator to stop, the application must use the control data (DLC) to temporarily force Vtune to V_{CC} to prevent deadlock from occurring. (Deadlock clear circuit)

Pin States after the Power ON Reset

Application System Example

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any and all SANYO products described or contained herein fall under strategic products (including services) controlled under the Foreign Exchange and Foreign Trade Control Law of Japan, such products must not be exported without obtaining export license from the Ministry of International Trade and Industry in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of August, 1998. Specifications and information herein are subject to change without notice.