SANYO

No. 5112

LC72132, 72132M

AM/FM PLL Frequency Synthesizer

Overview

The LC72132 and LC72132M are PLL frequency synthesizers for use in tuners in radio/cassette players. They allow high-performance AM/FM tuners to be implemented easily.

Functions

- · High-speed programmable dividers
 - FMIN: 10 to 160 MHzpulse swallower (built-in divide-by-two prescaler)
 - AMIN: 2 to 40 MHzpulse swallower
 0.5 to 10 MHzdirect division
- · IF counter
 - IFIN: 0.4 to 12 MHzAM/FM IF counter
- · Reference frequencies
 - Twelve selectable frequencies
 (4.5 or 7.2 MHz crystal)
 1,3,5,9,10,3.125,6.25,12.5,15,25,50 and 100 kHz
- · Phase comparator
 - Dead-zone control
 - Unlock detection circuit
 - Deadlock clear circuit
- Built-in MOS transistor for forming an active low-pass filter
- · I/O ports
 - Dedicated output ports: 2
 - Input or output ports: 2
 - Support clock time base output
- · Serial data I/O
 - Support CCB format communication with the system controller.
- · Operating ranges
 - Supply voltage......4.5 to 5.5 V
 - Operating temperature.....40 to +85°C
- Packages
 - DIP16/MFP16
 - CCB is a trademark of SANYO ELECTRIC CO., LTD.
 - CCB is SANYO's original bus format and all the bus addresses are controlled by SANYO.

Package Dimensions

unit: mm

3006B-DIP16

3035A-MFP16

Pin Assignment

Block Diagram

Specifications

Absolute Maximum Ratings at Ta = 25°C, V_{SS} = 0 V

Parameter	Symbol	Pins	Ratings	Unit
Supply voltage	V _{DO} max	V _{DD}	-0.3 to +7.0	٧
	V _{IN} 1 max	CE, CL, DI	-0.3 to +7.0	ν
Maximum input voltage	V _{IN} 2 max	XIN, FMIN, AMIN, IFIN	-0.3 to V _{DO} + 0.3	٧
	V _{IN} 3 max	101, 102	-0.3 to +15	V
	V _O 1 max	DO	-0.3 to +7.0	V
Maximum output voltage	V _O 2 max	XOUT, PD	-0.3 to V _{DD} + 0.3	٧
as in the second	V _O 3 max	BO1, BO2, IO1, IO2	-0.3 to +15	N
	l _O 1 max	BO1	0 to +3.0	mA
Maximum output current	l _O 2 max	DO	0 to +6.0	mA
	I _O 3 max	BO2, IO1, IO2	0 to +10,0	mA
Allowable power dissipation	Pd max	Ta ≤ 85°C [LC72132] DIP16 Ta ≤ 85°C [LC72132M] MFP16	300 140	mW
Operating temperature	Topr		-40 to +85	°C
Storage temperature	Tstg		-55 to +125	°C

Allowable Operating Ranges at $Ta = -40 \text{ to } +85^{\circ}\text{C}$, $V_{SS} = 0 \text{ V}$

Parameter	Symbol	Pins	Conditions	min	typ	max	Unit
Supply voltage	V _{DD}	V _{DD}		4.5		5.5	٧
Input high-level voltage	V _{IH} 1	CE, CL, DI		0.7 V _{DD}		6.5	V
Inhar India-iever vorrade	V _{IH} 2	101, 102		0.7 V _{DD}		13	V
Input low-level voltage	V _{IL}	CE, CL, DI, 101, 102		0		0.3 V _{DD}	٧
Output voltage	V _O 1	DO		0		6.5	٧
Output voltage	V _O 2	BO1, BO2, IO1, IO2,		٥		13	٧
	f _{IN} 1	XIN	V _{IN} 1	1		8	MHz
	f _{IN} 2	FMIN	V _{IN} 2	10		160	MHz
Input frequency	f _{IN} 3	AMIN	V _{IN} 3, SNS = 1	2		40	MHz
	f _{IN} 4	AMIN	V _{IN} 4, SNS ≈ 0	0,5		10	MHz
	f _{IN} 5	IFIN	V _{IN} 5	0.4		12	MHz
	V _{IN} 1	XIN	f _{IN} 1	400		1500	mVrms
	V _{IN} 2-1	FMIN	f = 10 to 130 MHz	40		1500	mVrms
	V _{IN} 2-2	FMIN	f = 130 to 160 MHz	70		1500	mVrms
Input amplitude	V _{IN} 3	AMIN	f _{IN} 3, SNS = 1	40		1500	mVrms
	V _{IN} 4	AMIN	/ _{IN} 4, SNS = 0	40		1500	mVrms
	V _{IN} 5-1	IFIN	f _{IN} 5, IFS = 1	40		1500	mVrms
	V _{IN} 5-2	IFIN	! _{IN} 6, IFS = 0	70		1500	mVrms
Supported crystals	Xtal	XIN, XOUT	•	4.0		8.0	MHz

Note: * Recommended crystal oscillator CI values:

CI ≤ 120 Ω (For a 4.5 MHz crystal) CI ≤ 70 \(\Omega\) (For a 7.2 MHz crystal)

<Sample Oscillator Circuit>
Crystal oscillator: HC-49/U (manufactured by Kinseki, Ltd.), CL = 12 pF

The circuit constants for the crystal oscillator circuit depend on the crystal used, the printed circuit board pattern, and other items. Therefore we recommend consulting with the manufacturer of the crystal for evaluation and reliability.

Electrical Characteristics for the Allowable Operating Ranges at Ta = -40 to +85°C, $V_{SS} = 0$ V

Parameter	Symbol	Pins	Conditions	min	typ	max	Unit
	Rf1	XIN			1.0		MΩ
S that I state to the	Rf2	FMIN			500		kΩ
Built-in feedback resistance	Rf3	AMIN			500		kΩ
	Rf4	IFIN			250		kΩ
O. Ship and damage spirit	Rpd1	FMIN			200		kΩ
Built-in pull-down resistor	Rpd2	AMIN			200		kΩ
Hysteresis	VHIS	CE, CL, DI, 101, 102			0.1 V _{DD}		٧
Output high level voltage	V _{OH} 1	PD	l _O = −1 mA	V _{DD} - 1.0			٧
	V _{OL} 1	PD	I _O = 1 mA			1.0	>
	V 0		I _O = 0.5 mA			0.5	٧
	V _{OL} 2	BOT	I _O = 1 mA			1.0	٧
Outer a few bound welters	V 0	DO	1 ₀ = 1 mA			0.2	٧
Output low level voltage	V _{OL} 3		l _O = 5 mA			1.0	V
			l _O = 1 mA			0.2	٧
	V _{OL} 4	BO2, IO1, IO2	l _O = 5 mA			1.0	V
			I _O = 8 mA			1.6	٧
	I _{IH} 1	CE, CL, DI	V ₁ = 6.5 V			5.0	μΑ
	I _{IH} 2	101, 102	V ₁ = 13 V			5.0	μА
Input high level current	I _{IH} 3	XIN	$V_1 = V_{DD}$	2.0		11	μΑ
	I _{IH} 4	FMIN, AMIN	$V_{i} = V_{DD}$	4.0		22	μΑ
	I _{IH} 5	IFIN	$V_1 = V_{DD}$	8.0		44	μΑ
	I _{fL} 1	CE, CL, DI	V ₁ = 0 V			5.0	μΑ
	l _k 2	101, 102	V ₁ = 0 V			5.0	μА
Input low level current	I _{IL} 3	XIN	V ₁ = 0 V	2.0		11	μΑ
	I _{IL} 4	FMIN, AMIN	V ₁ = 0 V	4.0		22	μΑ
	I _{IL} 5	IFIN	V ₁ = 0 V	8.0		44	μА
Output off leakage current	l _{OFF} 1	BO1, BO2, IO1, IO2	V _O = 13 V			5.0	μA
Output off leakage current	IOF#2	DO /	V _O = 6.5 V			5.0	μΑ
High level three-state off leakage current	loffh	PD	$V_0 = V_{00}$		0.01	200	nA
Low level three-state off leakage current	loffL	PD	V _O = 0 V		0.01	200	nA
Input capacitance	C _{IN}	FMIN			6		ρF
	I _{DD} 1	V _{DD}	Xtal = 7.2 MHz, $f_{IN}2 = 130 \text{ MHz},$ $V_{IN}2 = 40 \text{ mVrms}$		5	10	mA
Current drain	l ₀₀ 2	V _{DD}	PLL block stopped (PLL INHIBIT), Xtal oscillator operating (Xtal = 7.2 MHz)		0.5		mA
	1003	V _{DD}	PLL block stopped Xtal oscillator stopped			10	μА

Pin Functions

Symbol	Pin No. (MFP pin Nos. are in parentheses.)	Туре	Functions	Circuit configuration
XIN XOUT	1 16	Xtal OSC	Crystal resonator connection (4.5/7.2 MHz)	A92598
FMIN	12	Local oscillator signal input	FMIN is selected when the serial data input DVS bit is set to 1. The input frequency range is from 10 to 160 MHz. The input signal passes through the internal divide-bytwo prescaler and is input to the swallow counter. The divisor can be in the range 272 to 65535. However, since the signal has passed through the divide-by-two prescaler, the actual divisor is twice the set value.	A02589
AMIN	11	Local oscillator signal input	AMIN is selected when the serial data input DVS bit is set to 0. When the serial data input SNS bit is set to 1: The input frequency range is 2 to 40 MHz. The signal is directly input to the swallow counter. The divisor can be in the range 272 to 65535, and the divisor used will be the value set. When the serial data input SNS bit is set to 0: The input frequency range is 0.5 to 10 MHz. The signal is directly input to a 12-bit programmable divider. The divisor can be in the range 4 to 4095, and the divisor used will be the value set.	A02599
CE	2	Chip enable	Set this pin high when inputting (DI) or outputting (DO) serial data.	DS>
CL	4	Clock	Used as the synchronization clock when inputting (DI) or outputting (DO) serial data.	S A02600
DI	/// (Data input	Inputs serial data transferred from the controller to the LC72132.	A02500
po <	5	Data output	Outputs serial data transferred from the LC72132 to the controller. The content of the output data is determined by the serial data DOC0 to DOC2.	A02501
V _{DD}	13	Power supply	The LC72132 power supply pin. (V _{DD} = 4.5 to 5.5 V) The power-on reset circuit operates when power is first applied.	

Continued on next page.

Continued from preceding page.

Symbol	Pin No. (MFP pin Nos. are in parentheses.)	Туре	Functions	Circuit configuration					
V _{SS}	15	Ground	The LC72132 ground	_					
801 802	6 7	Output port	Dedicated output pins The output states are determined by BO1, BO2 bits in the serial data. Data: 0 = open, 1 = low A time base signal (8 Hz) can be output from the BO1 pin. (When the serial data TBC bit is set to 1.) Care is required when using the BO1 pin, since it has a higher on impedance that the other output port (BO2). All output ports are set to the open state following a power-on reset.						
IO1 IO2	8 10	I/O port	VO dual-use pins The direction (input or output) is determined by bits IOC1 and IOC2 in the serial data. Data: 0 = input port, 1 = output port When specified for use as input ports: The state of the input pin is transmitted to the controller over the DO pin. Input state: low = 0 data value high = 1 data value When specified for use as output ports: The output states are determined by the IO1 and IO2 bits in the serial data. Data: 0 = open, 1 = low These pins function as input pins following a power on reset.	AOZEOZ					
PD	14	Charge pump output	PLL charge pump output When the frequency generated by dividing the local oscillator frequency by N is higher than the reference frequency, a high level is output from the PD pin. Similarly, when that frequency is lower, a low level is output. The PD pin goes to the high impedance state when the frequencies match.	A02603					
IFIN	9	IF counter	 Accepts an input in the frequency range 0.4 to 12 MHz. The input signal is directly transmitted to the IF counter. The result is output starting the MSB of the IF counter using the DO pin. Four measurement periods are supported: 4, 8, 32, and 64 ms. 	A02599					

Serial Data I/O Methods

The LC72132 inputs and outputs data using the Sanyo CCB (computer control bus) audio LSI serial bus format. This LSI adopts an 8-bit address format CCB.

	I/O mode					ress	,			Function
		Bo	B1	B2	B3	A0	A1	A2	A3	. 1,51511
1	IN1 (82)	0	0	o	1	0	1	0	0	Control data input mode (serial data input) 24 data bits are input. See the "DI Control Data (serial data input) Structure" item for details on the meaning of the input data.
2	IN2 (92)	1	0	0	1	0	4	0	0	Control data input mode (serial data input) 24 data bits are input. See the "DI Control Data (serial data input) Structure" item for details on the meaning of the input data.
3	OUT (A2)	0	1	0	1	0	1	0	0	Data output mode (serial data output) The number of bits output is equal to the number of clock cycles. See the "DO Output Data (Serial Data Output) Structure item for details on the meaning of the output data.
		e1		9:	3	AO	Ai]	AZ		First Date OUT First Date OUT Access

- 1. DI Control Data (Serial Data Input) Structure
 - IN1 Mode

• IN2 Mode

2. DI Control Data Functions

No.	Control block/data		Related data				
	Programmable divider data	Data that					
	P0 to P15	A binary v					
		DVS and					
		DVS					
		1	*	P0	272 to 65535	Twice the value of the setting	
		0	1	P0	272 to 65535	The value of the setting	
				The value of the setting			
(1)				-	hen P4 is the LSB.	//	
	DVS, SNS	 Selects the signal input pin (AMIN or FMIN) for the prograte input frequency range. (*: don't care) 		programmable divider, switches			
		DVS	SNS	Input	pin	Input frequency range	
		1		FM	IN	10 to 160 MHz	
	,	0	1	AM		2 to 40 MHz	
		O Sa	0 *ha#D	AM		0.5 to 10 MHz	//
	Reference divider data	Reference			e Divider" item for mor	e information.	
	R0 to R3			· · · ·	, ,,		7
		R3	R2	R1		Reference frequency (kHz)	
		0	0	0	0	100	
		ő	Ö	1	0 //	25	
		0	0	1	1 //	25	
		0	1	0	0	12.5 6.25	
		0	1	1	0	3.125	
		0	1	1		3,125	
		1	0	0	0	10	
(0)		1	ŏ	1//	o	5	
(2)		1	0	/1/	1		
		1 1	1	0	0	3 15	
		- 	1//	1		L INHIBIT + Xtal OSC STOP	
		+	/1/		1 //	PLL INHIBIT	
		Note: PLI					
						iter block are stopped, the FMIN,	
			to the hig			ate (ground), and the charge pump	
	xs	Crystal res					
		XS = 0; 4.					
		XS = 1:7. The 7.2 M		nev je sele	ected after the power-c	n reset	
	IF counter control data	• IF counter					
	CTE	CTE = 1:0	Counter st	art	-		
	//	CTE = 0: (///			
	GT0, GT1	Determine	s the IF o	ounter me	asurement period.		IFS
10)		GT1	GT0	Mea	surement time (ms)	Wait time (ms)	
(3)		0 0 4		3 to 4			
		0 1 8 3 to 4 1 0 32 7 to 8					
		1 1	0	7 to 8			
		1//	1		64	7 to 8	
	100 and 100 an				m for more information		
(4)	I/O port specification data IOC1, IOC2	 Specifies 1 Data: 0 = i 			the bidirectional pins \overline{K}	on and IO2.	
	Output port data					IOT and IO2 output ports	
(5)	BO1, BO2, IO1, IO2	Data: 0 = 0				· · · · · · · · · · · · · · · · · · ·	1001
		• The data	= 0 (open)	state is se	elected after the power	-on reset.	IOC2

Continued on next page.

Continued from preceding page.

No.	Control block/data				Functions		Related data				
	DO pin control data	Data that	determine	s the DO	pin output						
	DOC0, DOC1, DOC2	DOC2	DOC1	DOCO	1	DO pin state					
		0	0	0	Open	DO pin state					
		Ö	ŏ	1	Low when the unlock	state is detected					
		0	1	0	end-UC*1						
		0	0	0	Open Open						
		1 1									
		1	0	0	The IO1 pin state*2 The IO2 pin state*2		7/				
		11									
		The open									
		, , , , ,			F counter measuremen	t completion					
(6)			***************************************				ULO, UL1,				
(6)		~	pin		••		OTE, 1001, 1002				
			•			000000					
		① Counter start ② Counter ③ CE: high complete									
			⊕ When	end-HC is	set and the IF counter i	A02608 is started (i.e., when CTE is changed					
			from z	ero to one), the DO pin automatic	ally goes to the open state.					
					nter measurement comp nt completion state.	pletes, the DO pin goes low to indicate	8				
					1	the DO pin goes to the open state.	Aller Control				
						ified to be an output port.					
		1			/ / - ' ' '	od (an IN1 or IN2 mode period with C					
		i .				he DO control data (DOC0 to DOC2) an OUT mode period with CE high)	• [
		w	ill output ti	ne content	s of the internal DO seri	al data in synchronization with the					
	Unlock detection data			-/-/		O control data (DOC0 to DOC2).	(
	ULO, UL1				detection width for check a specified detection wid	th is seen as an unlocked state.					
		UL1	ULO	a	E detection width	Detector output					
		0	0	Stopped	L detection water	Open Detector botput	DOCO,				
(7)		0	//1	0		øE is output directly	DOC1,				
		1	0	±0.55 μs		øE is extended by 1 to 2 ms	DOC2				
		1//	1	±1.11		øE is extended by 1 to 2 ms					
					e DO pin goes low and	the UL bit in the serial data					
	Dhan anni	///	omes zer								
	Phase comparator control data			winparate	or dead zone.						
	DZ0, DZ1	DZ1	DZ0		Dead zo	one mode					
		0	0	DZA							
(8)		0	1	DZB							
		1	0	DZC							
			1//	DZD							
		Dead zon	e widths: [DZA < DZI	B < DZC < DZD						
(0)	Clock time base	Setting TE	C to one	causes an	8 Hz, 40% duty clock ti	ime base signal to be output	PO4				
(9)	TBC				s invalid in this mode.)		BO1				
	Charge pump control data DLC	Forcibly co	ontrols the	charge p	ump output.						
		DI	LC		Charge p	ump output					
		0 Normal operation									
(10)			1	Forced lo	· · · · · · · · · · · · · · · · · · ·						
						ge (Vtune) going to zero and the VCO					
					dlock can be cleared by 5 V _{CC+} (This is the dead	forcing the charge pump output to lillock clearing circuit.)					
L					~ ~	- ,					

Continued on next page.

Continued from preceding page.

No.	Control block/data	Functions	Related data
(11)	IF counter control data IFS	 Note that if this value is set to zero the system enters input sensitivity degradation mode, and the sensitivity is reduced to 10 to 30 mV rms. See the "IF Counter Operation" item for details. 	
(12)	LSI test data TEST 0 to 3	LSI test data TEST0 TEST1 TEST2 These values must all be set to 0.	
	·	These test data are set to 0 automatically after the power-on reset.	
(13)	DNC	Don't care. This data must be set to 0.	

3. DO Output Data (Serial Data Output)

• OUT Mode

4. DO Output Data

No.	Control block/data	Functions	Related data
(1)	I/O port data I2, (1	Latched from the pin states of the 101 and 102 1/0 ports. (These values follow the pin states regardless of the input or output setting.) 11 ← 101 pin state	IOC1, IOC2
(2)	PLL unlock data UL	Latched from the state of the unlock detection circuit. UL ← 0: Unlocked UL ← 1: Locked or detection stopped mode	ULO, UL1
(3)	IF counter binary data C19 to C0	Latched from the value of the IF counter (20-bit binary counter). C19 ← MSB of the binary counter C0 ← LSB of the binary counter	CTE, GTO, GT1

5. Serial Data Input (IN1/IN2) t_{SU} , t_{HD} , t_{EL} , t_{ES} , $t_{EH} \ge 0.75~\mu s$, $t_{LC} \le 0.75~\mu s$

① CL: Normal high

② CL: Normal low

6. Serial Data Output (OUT) t_{SU} , t_{HD} , t_{EL} , t_{ES} , $t_{EH} \ge 0.75 \,\mu s$, t_{DC} , $t_{DH} \le 0.35 \,\mu s$

① CL: Normal high

Note: Since the DO pin is an n-channel open-drain circuit, the time for the data to change (t_{DC} and t_{DH}) will differ depending on the value of the pull-up resistor and printed circuit board capacitance.

7. Serial Data Timing

Parameter Symbol Conditions Pins min Unit typ max Data setup time DI, CL 0.75 tsu μs Data hold time 1HD DI, CL 0.75 μs Clock low-level time CL 0.75 **I**CL μs Clock high-level time CL 0.75 ¹CH μs CE wait time CE, CL 0.75 İΕL μs CE setup time CE, CL 0.75 †ES μs CE hold time CE, CL 0.75 t_{EH} μs Data latch change time ¹LC 0.75 μs Differs depending on the DO, CL ^tDC value of the pull-up resistor Data output time 0.35 μs and the printed circuit board DO, CE capacitances.

Programmable Divider Structure

	DVS	SNS	Input pin	Set divisor	Actual divisor: N	Input frequency range (MHz)
Α	1		FMIN	272 to 65535	Twice the set value	10 to 160
В	0	1	AMIN	272 to 65535	The set value	2 to 40
С	0	0	AMIN	4 to 4095	The set value	0.5 to 10

Note: * Don't care.

- 1. Programmable Divider Calculation Examples
 - FM, 50 kHz steps (DVS = 1, SNS = *, FMIN selected)

FM RF = 90.0 MHz (IF = +10.7 MHz)

FM VCO = 100.7 MHz

PLL fref = 25 kHz (R0 to R1 = 1, R2 to R3 = 0)

100.7 MHz (FM VCO) + 25 kHz (fref) + 2 (FMIN: divide-by-two prescaler) = $2014 \rightarrow 07DE$ (HEX)

		<u> </u>		,		2				<u> </u>	_		ر	_			Ζ.						
0	1	1	1	1	0	1	1	4	4	1	0	٥	0	Ô	0	¥	1			1	1	0	0
8	P.I	22	ьд	₽ d	E L	98	р7	84	60	P10	P11	514	P13	P14	P15	SMS	SAG	CTE	8X	RO	H.	R2	нз

402817

• SW, 5 kHz steps (DVS = 0, SNS = 1, AMIN high-speed side selected)

SW RF = 21.75 MHz (IF = +450 kHz)

SW VCO = 22.20 MHz

PLL fref = 5 kHz (R0 = R2 = 0, R1 = R3 = 1)

22.2 MHz (SW VCO) + 5 kHz (fref) = $4440 \rightarrow 1158$ (HEX)

		_5		_			/	Z	_		<u>_</u>		_	_	<u>.</u>									
L	٥	0	0	1	1	0	1	0	1	0	0	0	1	٥	O	0	1	0			٥	1	0	1
	Od	1 d	٤d	£d	78	Se	PB	Ь7	80	64	P10	P11	P12	P13	P14	P15	SNS	640	CTE	S ×	80	R1	H2	нз

A02616

MW, 10 kHz steps (DVS = 0, SNS = 0, AMIN low-speed side selected)

MW RF = 1000 kHz (IF = +450 kHz)

MW VCO = 1450 kHz

PLL fref = 10 kHz (R0 to R2 = 0, R3 = 1)

 $1450 \text{ kHz (MW VCO)} + 10 \text{ kHz (fref)} = 145 \rightarrow 091 \text{ (HEX)}$

		•		_		<u>. </u>		_	ڙ	_	_		ئ_	٠									
*	*	*	*	1	0	0	0	1	0	٥	1	0	٥	o	0	0	٥			٥	0	0	1
og.	P1	ps	£d	₽d	100	96	2 d	84	6d	P10	P11	51d	619	51 d	91d	SNS	SAG	CTE	SX	06	H.	92	нз

YOSBIB

IF Counter Structure

The LC72132 IF counter is a 20-bit binary counter. The result, i.e., the counter's msb, can be read serially from the DO pin.

0.74	OT0	Measurement time								
GT1	GT0	Measurement period (GT) (ms)	Wait time (twu) (ms)							
0	0	4	3 to 4							
0	1	8	3 to 4							
1	0	32	7 to 8							
1	1	64	7 to 8							

The IF frequency (Fc) is measured by determining how many pulses were input to an IF counter in a specified measurement period, GT.

$$Fc = \frac{C}{GT} \qquad (C = Fc \times GT)$$

C: Count value (number of pulses)

- 1. IF Counter Frequency Calculation Examples
 - When the measurement period (GT) is 32 ms, the count (C) is 53980 hexadecimal (342400 decimal): IF frequency (Fc) = 342400 + 32 ms = 10.7 MHz

AGREE

• When the measurement period (GT) is 8 ms, the count (C) is E10 hexadecimal (3600 decimal): IF frequency (Fc) = 3600 + 8 ms = 450 kHz

405456

2. IF Counter Operation

Before starting the IF count, the IF counter must be reset in advance by setting CTE in the serial data to 0.

The IF count is started by changing the CTE bit in the serial data from 0 to 1. The serial data is latched by the LC72132 when the CE pin is dropped from high to low. The IF signal must be supplied to the IFIN pin in the period between the point the CE pin goes low and the end of the wait time at the latest. Next, the value of the IF counter at the end of the measurement period must be read out during the period that CTE is 1. This is because the IF counter is reset when CTE is set to 0.

Note: When operating the IF counter, the control microprocessor must first check the state of the IF-IC SD (station detect) signal and only after determining that the SD signal is present turn on IF buffer output and execute an IF count operation. Autosearch techniques that use only the IF counter are not recommended, since it is possible for IF buffer leakage output to cause incorrect stops at points where there is no station.

IFIN minimum input sensitivity standard

(MHz)

IFS	0.4 ≤ f < 0.5	0.5 ≤ f < 8	8≤f≤12		
1: Normal mode	40 mVrms (0.1 to 3 mVrms)	40 mVrms	40 mVrms (1 to 10 mVrms)		
0: Degradation mode	70 mVrms (10 to 15 mVrms)	70 mVrms	70 mV/ms (30 to 40 mV/ms)		

Note: Value in parentheses are actual performance values presented as reference data.

Unlock Detection Timing

1. Unlock Detection Determination Timing

Unlocked state detection is performed in the reference frequency (fref) period (interval). Therefore, in principle, unlock determination requires a time longer than the period of the reference frequency. However, immediately after changing the divisor N (frequency) unlock detection must be performed after waiting at least two periods of the reference frequency.

Figure 1 Unlocked State Detection Timing

For example, if fref is 1 kHz, i.e., the period is 1 ms, after changing the divisor N, the system must wait at least 2 ms before checking for the unlocked state.

Figure 2 Circuit Structure

3. Unlocked State Data Output Using Serial Data Output

In the LC72132, once an unlocked state occurs, the unlocked state serial data (UL) will not be reset until a data input (or output) operation is performed. At the data output ① point in Figure 3, although the VCO frequency has stabilized (locked), since no data output has been performed since the divisor N was changed the unlocked state data remains in the unlocked state. As a result, even though the frequency has stabilized (locked), the system remains (from the standpoint of the data) in the unlocked state.

Therefore, the unlocked state data acquired at data output ①, which occurs immediately after the divisor N was changed, should be treated as a dummy data output and ignored. The second data output (data output ②) and following outputs are valid data.

Locked State Determination Flowchart

4. Directly Outputting Unlocked State Data from the DO Pin (Set by the DO pin control data)

Since the locking state (high = locked, low = unlocked) is output directly from the DO pin, the dummy data processing described in section 3 above is not required. After changing the divisor N, the locking state can be checked after waiting at least two reference frequency periods.

Clock Time Base Usage Notes

The pull-up resistor used on the clock time base output pin ($\overline{BO1}$) should be at least 100 k Ω . Also, to prevent chattering we recommend using a Schmitt input at the controller (microprocessor) that receives this signal.

This is to prevent degrading the VCO C/N characteristics when a loop filter is formed using the built-in low-pass filter transistor. Since the clock time base output pin and the low-pass filter have a common ground internal to the IC, it is necessary to minimize the time base output pin current fluctuations and to suppress their influence on the low-pass filter.

Other Items

1. Notes on the Phase Comparator Dead Zone

DZ1	DZ0	Dead-zone mode	Charge pump	Dead zone
0	0	DZA	ON/ON	0 s
0	1	DZB	ON/ON	-0 s
1	0	DZC	OFF/OFF	+0 s
1	1	DZD//	OFF/OFF	+ +0 s

Since correction pulses are output from the charge pump even if the PLL is locked when the charge pump is in the ON/ON state, the loop can easily become unstable. This point requires special care when designing application circuits.

The following problems may occur in the ON/ON state.

- · Side band generation due to reference frequency leakage
- · Side band generation due to both the correction pulse envelope and low frequency leakage

Schemes in which a dead zone is present (OFF/OFF) have good loop stability, but have the problem that acquiring a high C/N ratio can be difficult. On the other hand, although it is easy to acquire a high C/N ratio with schemes in which there is no dead zone, it is difficult to achieve high loop stability. Therefore, it can be effective to select DZA or DZB, which have no dead zone, in applications which require an FM S/R ratio in excess of 90 to 100 dB, or in which an increased AM stereo pilot margin is desired. On the other hand, we recommend selecting DZC or DZD, which provide a dead zone, for applications which do not require such a high FM signal-to-noise ratio and in which either AM stereo is not used or an adequate AM stereo pilot margin can be achieved.

Dead Zone

The phase comparator compares fp to a reference frequency (fr) as shown in Figure 4. Although the characteristics of this circuit (see Figure 5) are such that the output voltage is proportional to the phase difference \emptyset (line A), a region (the dead zone) in which it is not possible to compare small phase differences occurs in actual ICs due to internal circuit delays and other factors (line B). A dead zone as small as possible is desirable for products that must provide a high S/N ratio.

However, since a larger dead zone makes this circuit easier to use, a larger dead zone is appropriate for popularly-priced products. This is because it is possible for RF signals to leak from the mixer to the VCO and modulate the VCO in popularly-priced products in the presence of strong RF inputs. When the dead zone is narrow, the circuit outputs correction pulses and this output can further modulate the VCO and generate beat frequencies with the RF signal.

2. Notes on the FMIN, AMIN, and IFIN Pins

Coupling capacitors must be placed as close as possible to their respective pin. A capacitance of about 100 pF is desirable. In particular, if a capacitance of 1000 pF or over is used for the IF pin, the time to reach the bias level will increase and incorrect counting may occur due to the relationship with the wait time.

3. Notes on IF Counting → SD must be used in conjunction with the IF counting time When using IF counting, always implement IF counting by having the microprocessor determine the presence of the IF-IC SD (station detect) signal and turn on the IF counter buffer only if the SD signal is present. Schemes in which auto-searches are performed with only IF counting are not recommended, since they can stop at points where there is no signal due to leakage output from the IF counter buffer.

4. DO Pin Usage Techniques

In addition to data output mode times, the DO pin can also be used to check for IF counter count completion and for unlock detection output. Also, an input pin state can be output unchanged through the DO pin and input to the controller.

5. Power Supply Pins

A capacitor of at least 2000 pF must be inserted between the power supply V_{DD} and V_{SS} pins for noise exclusion. This capacitor must be placed as close as possible to the V_{DD} and V_{SS} pins.

Pin States After the Power-ON Reset

Application System Example

- ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
- ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of October, 1995. Specifications and information herein are subject to change without notice.