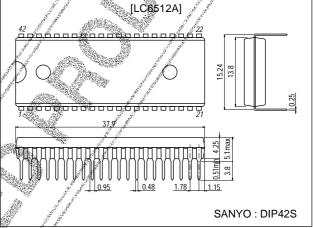


Single-Chip 4-Bit Microcomputer for Control-Oriented Applications (Low-Threshold Input, On-Chip FLT Driver)

General Description

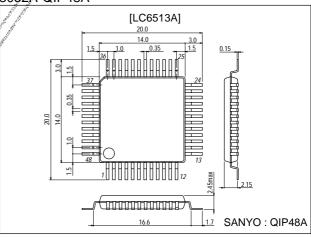
The LC6512A, 6513A are microcomputers that are dentical with FLT driver-contained microcomputers LC6502D, 6505D in instruction set but are further enhanced in performance, such as shorter cycle time, more stack levels, increased FLT drive capacity, and are partially changed in specifications for standby function. Since the LC6512A, 6513A are also pin-compatible with the LC6502D, 6505D, they can be used as similar replacements for the LC6502D, 6505D. The LC6512A, 6513A can replace the LC6502B/6502D, 6505B/6505D to enhance performances of equipment in which these microcomputers have been applied so far.

Features


- Low power dissipation CMOS single-chip microcomputer.
- Instruction set with 79 instructions common to the LC6502C, 6502B, 6502D/LC6505C, 6505B, 6505D.
- 2-source, 2-level interrupt function (external interrupt)
- 8-level stack
- 4-bit prescaler-contained 8-bit programmable timer
- FLT driver-contained output ports and low-threshold input ports
 - (1) Digits driving output ports: 10 pins
 - (2) Segments driving output ports: 8 pins
 - (3) Normal voltage input ports: 8 pins (4 pins: Low-threshold input port)
 - (4) Normal voltage input/output ports: 8-pins
- ROM. RAM
 - (1) LC6512A ROM: 2048bytes, RAM: 128×4 bits
 - (2) LC6513A ROM: 1024 bytes, RAM: 64 × 4bits
- Cycle time 1.33µs min.
 - 400kHz, 800kHz, 1MHz, 3MHz ceramic resonator OSC.
- Power-down by 2 standby modes
 - (1) HALT mode: Power dissipation saying by program standby during normal operation
 - (2) HOLD mode Power supply backup during power failure

(3) The standby function is the same as for the LC6514B and its using method is different from that of the LC6502D, 6505D, etc.

Package Dimensions


unit:mm

3025B-D42SIC

unit:mm/

3052A-QIP48A

- Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges,or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

 Differences among LC6512D, 6513D, and LC6512A, 6513A The LC6512D, 6513D and LC6512A, 6513A are different in the OSC circuit only and are the same in the basic features. The differences are shown below.

Item	LC6512A, 6513A	LC6512D. 6513D
OSC circuit configuration	1-stage inverter	5-stage inverter
OSC mode	Ceramic resonator OSC	Ceramic resonator OSC, CR/OSC, application of external clock
OSC waveform	Sine wave	Rectangular wave
Operating frequency	Ceramic resonator OSC: 500kHz, 800kHz,1MHz, 3MHz	Ceramic resonator QSQ: 400kHz; 800kHz; 1 MHz CR OSC: 400kHz; typ; 800kHz; typ; External clock: 222kHz to 1290kHz

Technical Data

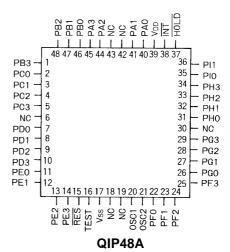
The LC6512A, 6513A are members of our LC6500 series of CMOS microcomputers. For their internal functions, refer to the LC6500 SERIES USFR'S MANUAL. Those which differ from the description in the USER'S MANUAL are described in this catalog. Carefully study features and Appendix 4 Standby Function in this catalog before using the LC6512A, 6513A.

Pin Assignments

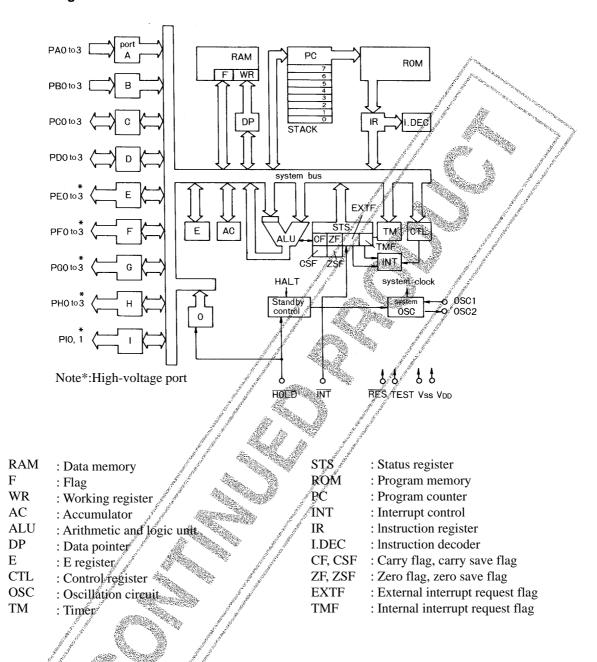
Pin Name

OSC1, OSC2: Ceramic resonator for OSC

INT : Interrupt **RES** : Reset **HOLD** : Hold PAO-3 : Input port PBO-3 : Input port B0-3 PCO-3 : Input/output common port C0-3 : Input/output common port D0-3 : Output port (High-voltage port) E0-3 PDO-3 PEO-3 : Output port (High-voltage port) PFO-3 : Output port (High-voltage port) PGO-3 PHO-3


: Output port (High-voltage port) PI0, 1 : Output port (High-voltage port)

TEST : Test


PA0 PBØ VDD (+5V) PB1 INT ₽B2 HOLD ₽B3 PI1 PCO 36 PIO 35 PH3 PC1 PC2 34 PH2 PC3 331 PH1 PD0 II 32 PHO PD1 31 PG3 PD2 PG2 PD3 ²⁹ PG1 PE0 PGO PE1 27 PF3 PE2 26 PF2 18 19 PE3 RES 24 PF0 TEST ²³ 0SC2 22 OSC1 (0V) Vss 21 DIP42S

(Note) Nothing must be connected to NC pins internally or externally.

When mounting the OIP version on the board, do not dip it in solder.

System Block Diagram

Pin Description

Pin Name	Input/Output	Function
INT //	Input	Integrupt request input pin
HOLD	Imput	HOLD mode request input pin (The LC6502, 6505 differ in function.) Capable of being used as a general-purpose single-bit input port unless the standby mode is used.
RES	Input	Reset input pin
PA ₀₋₃	Input	Input port A ₀ to A ₃ (Normal voltage, low-threshold input) Capable of 4-bit input and single-bit decision for branch Use also for HALT mode release request input

Continued on next page.

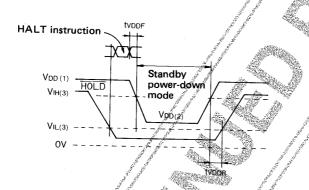
Continued from preceding page.

Pin Name	Input/Output	Function
PB ₀₋₃	Input	Input port B ₀ to B ₃ (Normal voltage) Capable of 4-bit input and single-bit decision for branch
PC ₀₋₃	Input/Output	Input/output common port C ₀ to C ₃ (Normal voltage) Capable of 4-bit input and single-bit decision for branch during input Capable of 4-bit output and single-bit set/reset during output
PD ₀₋₃	Input/Output	Input/output common port D ₀ to D ₃ (Normal voltage) Capable of 4-bit input and single-bit decision for branch during input Capable of 4-bit output and single-bit set/reset during output
PE ₀₋₃	Output	Output port E ₀ to E ₃ (Digit driver output) Capable of 4-bit output and single-bit set/reset Capable of 4-bit input of output latch contents and single-bit decision of output tatch for branch
PF ₀₋₃	Output	Output port F ₀ to F ₃ (Digit driver output) Capable of 4-bit output and single-bit set/reset Capable of 4-bit input of output latch contents and single-bit decision of output latch for branch
PG ₀₋₃	Output	Output port G ₀ to G ₃ (Segment driver output) Capable of 4-bit output and single-bit set/reset Capable of 4-bit input of output latch contents and single-bit decision of output latch for branch
PH ₀₋₃	Output	Output port H ₀ to H ₃ (Segment driver output) Capable of 4-bit output and single-bit set/reset Capable of 4-bit input of output latch contents and single-bit decision of output latch for branch
Pl _{0, 1}	Output	Output port I ₀ , I ₁ (Digit driver output) Capable of 2-bit output and single-bit set/reset Capable of 2-bit input of output latch contents and single-bit decision of output latch for branch
0SC1	Input	A ceramic resonator is connected to this pin and pin OSC2 in the internal clock mode.
0SC2	Output	Pin for externally connecting a resonance circuit for the internal clock mode
V _{DD}	Input	Power supply pin Normally connected to +\$V
VSS		Connected to 0V power supply
TEST	Input	IC test pin Normally connected to VSS(OV)

Specifications

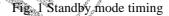
Absolute Maximum Ratings at $Ta = 25^{\circ}C$, $V_{SS} = 0V$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{DD} max		-0.3 to +7.0	V
Input voltage	Vin	Input pins other than OSC1	-0.3 to V _{DD} +0.3 (Note1)	V
Output voltage	VOUT(1)	Ports C,D OSC2	-0.3 to V _{DD} +0.3	V
Output voltage	VOUT(2)	Ports E,F,G,H,I	V _{DD} -45 to V _{DD} +0.3	V
	// I _{O(1)}	Ports C,D:Each pin	-2.0 to +2.0	mA
Peak output current	I _{O(2)}	Ports E,F,I:Each pin	-15 to 0	mA
reak output current	I _{O(3)}	Ports G, H:Each pin	-10 to 0	mA
	I _{O(4)}	All pins of ports C to I	-90 to +16	mA
Allowable power dissipation	Pd max(1)	Ta=-30 to +70°C (Flat package)	350	mW
Allowagie pawer dissipation	Pd max(2)	Ta=-30 to +70°C (DIP)	600	mW
Operating temperature	Topr		-30 to +70	°C
Storage temperature	Tstg		-55 to +125	°C


(Note1) For pin OSCI, up to oscillation amplitude generated when internally oscillated under the recommended oscillation conditions in Fig. 2 is allowable.

[Note] When mounting the QIP package version on the board, do not dip it in solder.

$\textbf{Allowable Operating Conditions} \ \ at \ Ta = -30 \ to \ +70 ^{\circ}C, \ V_{DD} = 5V \pm 10\%, \ V_{SS} = 0V,$


Parameter	Symbol	Conditions		Ratings				
Falametei	Symbol	Conditions	min	typ	max	Unit		
Operating supply voltage	V _{DD(1)}		4.5	5.0	5.5	٧		
Power-down supply voltage	V _{DD(2)}	HOLD mode: HOLD=V _{IL(3)}	/1.8	No	5.5	V		
	V _{IH(1)}	Port A	1.9	The Account of the Ac	V _{DD}	V		
Input high-level voltage	V _{IH(2)}	Ports B, C, D	0.7V _{DD}	W. W. W.	$^{\prime\prime}$ VDD	V		
	V _{IH(3)}	INT, RES, HOLD and OSC1	0.8V _D D	ă.	VDD	V		
	V _{IL(1)}	Ports B, C, D	Vss		0.3V _{DD}	V		
Input low-level voltage	V _{IL(2)}	INT, RES, OSC1	^{∵V} \$S	100	0.2V _D Ď	V		
input low-level voltage	V _{IL(3)}	HOLD,TEST: V _{DD} =1.8 to 5.5V	V _{SS}		0. 2 V _D D	V		
	V _{IL(4)}	Port A	Vss	Ž.	0.5	V		
External capacitance for ceramic resonator	C1	See Fig. 2.	é	A.	and the second			
OSC	C2	See Fig. 2.		A A A				
Allowable delay in key scan circuit	^t DH	See Figs. 3-3, 3-4 in Appendix 3,			(N-2) Xtcyc*	μs		
Allowable delay ili key Scall Circuit	^t DL				(N-2) Xtcyc*	μs		
Standby timing	tVDDF	V _{DD} =1.8 to 5.5V, See Fig. 1.	<i>f</i> 0			μs		
Standby timing	t _{VDDR}	V _{DD} =1.8 to 5.5V, See Fig. 1.	<i>j</i> 0			μs		

(Note)* tcyc: Cycle time at microcomputer running mode

[Note]

No chattering shall be applied to the HOLD pin and PA0 to 3 pins during the HALT instruction execution cycle.

Electrical Characteristics $~at~Ta=-30~to~+70^{\circ}C,~V_{DD}=5.0V\pm10\%,~V_{SS}=0V$

Parameter	Symbol	Conditions		Unit		
raiainetei	Symbol	Conditions	min	typ	max	Offic
Input high-level current	lіН	Each input pin: V _{IN} =V _{DD}			1.0	μΑ
Input low-level current	I _{IL}	Each input pin: V _{IN} =V _{SS}	-1.0	The same		μΑ
	V _{OH(1)}	Ports C, D: I _{OH} =-1mA	V _{DD} -2.0	San State of the S	A April	V
	V _{OH(2)}	Ports C, D: I _{OH} =-100μA	V _{DD} -0.5	· ·	Carlot State	V
	V _{OH(3)}	Ports E, F, I: I _{OH} =-10mA	V _{DD} −1.8		Mary Mary State of St	V
	V _{OH(4)}	Ports E, F, I: I _{OH} =–2mA	V _{DD} −1.0		3	V
Output high-level voltage	V _{OH(5)}	Ports E, F, I: I _{OH} =–1mA (Each port I _{OH} =Less than –1mA)	V _{DD} =0.5	r A		V
	VOH(6)	Ports G, H: I _{OH} =–2mA	V _{DD} -1.0	Ìò	and the second	V
	VOH(7)	PortsG, H: I _{OH} =–1mA (Each port I _{OH} =Less than J1mA)	V _{DD} =0.5			V
	V _{OH(8)}	OSC2: I _{OH} =–100μA	V _{DD} -0.5		J. Company	V
Output low-level voltage	V _{OL(1)}	Ports C, D: I _{OL} =1mA	1.00	and and	0.4	V
Output low-level voltage	V _{OL(2)}	OSC2: I _{OL} =100μA		and the second	0.4	V
	I _{OFF(1)}	Ports C, D: V _{OUT} =V _{DD} , HOLD mode	y in	J. J	1.0	μΑ
Output OFF leak current	I _{OFF(2)}	Ports C, D: V _{OUT} =V _{SS} , HOLD mode	-1,0	<u></u>		μΑ
Output Of Frieak current	I _{OFF(3)}	Ports E, F, G, H, I: V _{OUT} =V _{DD}	and the second		30	μΑ
	I _{OFF(4)}	Ports E, F, G, H, I: V _{OUT} =V _{DD} -40V	<i>I</i> / - 30			μΑ
	ımic f	OSC circuit in Fig. 2:	392	Note 2	408	kHz
Clock OSC frequency for ceramic			784	Note 2	816	kHz
resonator OSC	fCFOSC	Recommended conditions for ceramic resonator OSC	980	Note 2	1020	kHz
			2940	Note 2	3060	kHz
		Ceramic resonator OSC = 400, 800, 1000kHz		1.0	2.0	mA
Current drain	I _{DD(1)}	Operating mode f=3MH2 Recommended conditions for ceramic resonator OSC, output pin open, input pin VIN=VSS		2.7	4.0	mA
	I _{DD(2)}	HALT mode: V _{DD} =5v±10%, Test circuit in Fig. 3			10	μA
	I _{DD(3)}	HOLD mode: VDD≈1.8 to \$.5V, Test circuit in Fig. 4			10	μA
Input capacitance	CIN	Each input pin; Measure at f=1MHz. Pins not being measured: V _S S		5		pF
Output capacitance	COUT	Ports E, F,C, H, I: Measure at f=1MHz Pins not being measured: VSS		10		pF
Input/output capacitance	, C _{IO}	Ports C.D. Measure at f=\MHz, Rins not being measured NSS		10		pF
Hysteresis voltage	√V _H ≪	INT, RES HOLD		0.1V _{DD}		V

Center frequency	Ceramic resonator	C ₁ (pF)	C ₂ (pF)		
3MHz	CSA3.00MG (Murata)	33±10%			
OWI 12	KBR3.0MS (Kyocera)	KBR3.0MS (Kyocera) 22±10%			
1MHz	CSB1000K, D (Murata)	180±10%			
1101112	KBR1000H (Kyocera)	180±10%			
800kHz	CSB800K, D (Murata)	180±10%			
000M12	KBR800H (Kyocera)	180±10%			
400kHz	CSB400P (Murata)	330±10%			
1001112	KBR400B (Kyocera)	330±10%			

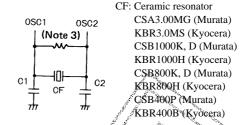
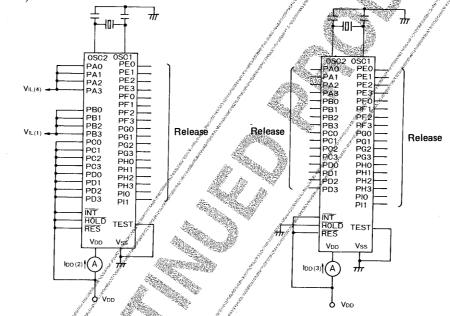



Fig. 2 Recommended OSC circuit, constants for ceramic resonator OSC

Note 2) There is a tolerance of approximately 1% between the center frequency at the ceramic resonator mode and the nominal value presented by the ceramic resonator supplier. For details, refer to the specification for the ceramic resonator.

The min., max. values of OSC frequency represent the oscillatable frequency range.

Note 3) When using the piggyback microcomputer, evaluation chip for evaluation, connect a feedback resistor (approximately $IM\Omega$).

Input/output common ports C. D: Output inhibit HALT instruction is executed to provide HALT mode.

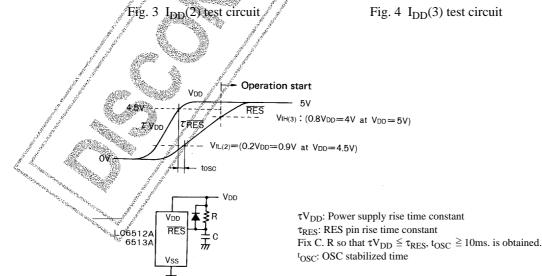


Fig. 5 Initial reset timing

Appendix 1. Support System

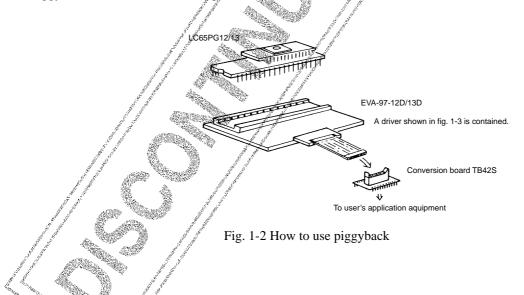
For application development of the LC6512A, 6513A, the support system for the LC6512A, 6513A is used.

1-1. Software support

The support system provides source editor, cross assembler. For cross assembler on CP/M, the "LC6502.COM", "LC6505.COM" are used, and on MS-DOS, the "LC6512.COM", "LC6513.COM" are used.

1-2. Hardware support

(1) Evaluation chip


Evaluation chip LC6597 is used. Level converters, drivers are connected to high-voltage ports (PE_0 to 3, PF_0 to 3, PG_0 to 3, PH_0 to 3, PI_0 , 1) externally.

(A dedicated adaptor is available.) Evaluation chip LC6597 PA0 to 3 PB0 to 3 PC0 to 3 PD0 to 3 PF0 to 3 PF0

Fig. 1-1 Basic evaluation system using evaluation chip

(2) Simulation chip

Piggyback LC65PG12/13 and adaptor (EVA-97-12D/13D) for the LC6512A, 6513A are used jointly.

(3) Evaluation kit

The EVA-410 and EVA-TB2 are used. For connecting with user's application equipment, adaptor (EVA-97-12D/13D) is used.

(4) Adaptor (EVA-97-12D/13D)

This is used when evaluating the LC6512A, 6513A with the aid of the evaluation chip and piggyback. This contains drivers for FLT. (See Figs. 1-3, 1-4.)

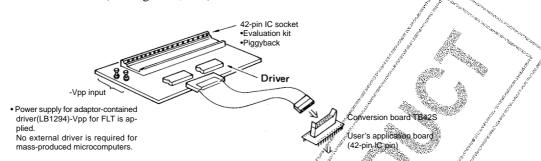


Fig. 1-3 Adaptor (EVA-97-12D/13D) for LC6512A, 6513A

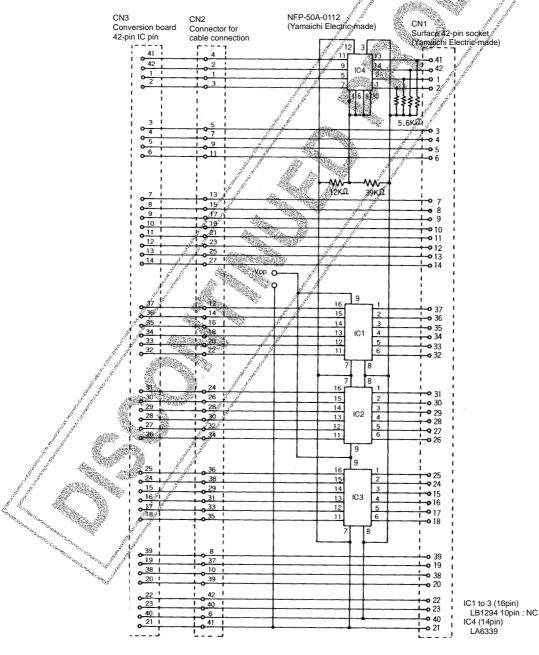


Fig. 1-4 EVA-97-12D/13D

Appendix 2. Internal Architecture of LC6512A, 6513A

The LC6512A, 6513A are identical with the LC6502C, 6505C in the internal architecture and instruction set except that output ports are of high-voltage type and port A is of low-threshold input type and the standby function is the same as for the LC6514B. For details, refer to "LC6500 SERIES USER'S MANUAL"; and for the standby function, refer to Appendix 4 "Standby Function".

2-1. PC

For the LC6512A, 6513A, this is organized with an 11-bit, 10-bit binary counter, respectively, which specifies the ROM address of an instruction to be executed next. The high-order 3(2) bits specify a page and the low-order 8 bits specify an address in the page. The page is updated automatically. () is for the LC6513A.

2-2. ROM

This is used to store user programs. For the LC6512A, 6513A,this is organized with 2048x 8 bits, 1024 x 8 bits, respectively. By using the ROM table read instruction, the whole area can be accessed and the display pattern can be programmed.

2-3. Stack

This is used to save the contents of the PC at the subroutine call of interrupt mode. This allows subroutine nesting up to 8 levels.

2-4. DP

This is a register organized with 4-bit DPL and 3-bit, 2-bit DPH for the LC6512A, 6513A, respectively. When accessing the data RAM, the DPL, DPH specify a column address, row address, respectively. When accessing input/output ports, the DPL specifies port A to port l. The DPL also specifies internal pseudo port O.

2-5. RAM

This is a static RAM used to store data. For the LC6512A, 6513A, this is organized with 128 x 4 bits, 64 x 4 bits, respectively. Row address 7H(3H) is allocated for 16 flags and 8 working registers which can be manipulated without being addressed by the DP. () is for the LC6513A.

2-6. AC, E

The AC is a 4-bit register which stores data to be processed by instructions. The E register is an auxiliary register to be back up the AC and is used as a temporary register of general-purpose register at the instruction execution mode.

2-7. ALU

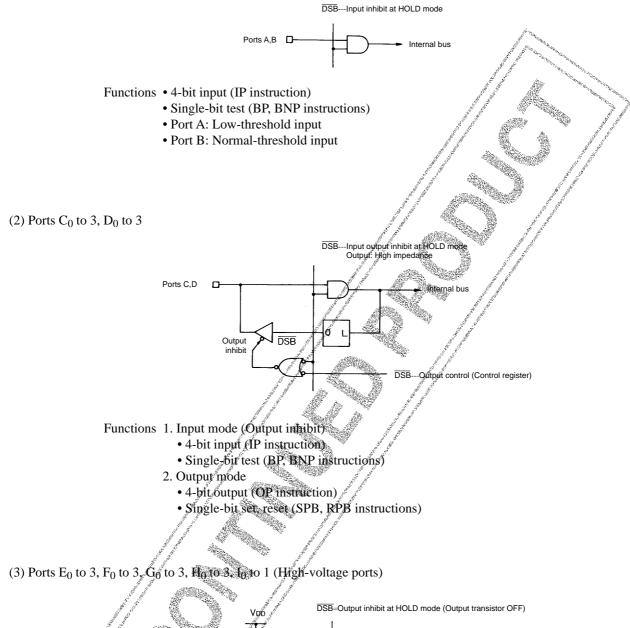
This is a circuit which performs arithmetic and logic operations specified by individual instructions. This outputs not only data of operation results but also the status of carry (C), zero (Z).

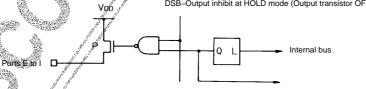
2-8. Status register

This is a 4-bit register which stores the status of carry, zero and the external interrupt, timer interrupt request. The contents of the status register can be tested by the branch instructions.

2-9. Timer

This consists of a 4-bit fixed prescaler and an 8-bit programmable timer. This counts the system clock and requests a timer interrupt when an overflow occurs.


2-10. Control register


This is a 4-bit register, 2-bits of which control input/output of input/output common ports C, D and 2-bits of which enable/disable external interrupt, internal timer interrupt.

2-1 1. Input/output ports

There are 9 ports/34 pins from port A to I. Each port is addressed by the DPL. Ports A, B are of normal-voltage input type, ports C, D are of normal-voltage input/output common type, and ports E, F, G, H, I contain FLT drivers. Port A is of low-threshold input type.

(1) Ports A_0 to 3, B_0 to 3

Functions • 4-bit (2-bit for port I) output (OP instruction)

- 4-bit (2-bit for port I) input of output latch contents (IP instruction)
- Single-bit set, reset (SPB, RPB instructions)

Set: The output represents a 1. ---- Output transistor ON Reset: The output represents a 0. ---- Output transistor OFF

- Single-bit test of output latch contents (BP, BNP instructions)
- PortsE, F, I: FLT digits drive
- Ports G, H: FLT segments drive

2-12. External interrupt

The trailing edge of the signal on the $\overline{\text{INT}}$ pin is detected and the interrupt request flag in the status register is set. The occurrence of an interrupt is controlled by the enable/disable flag in the control register.

2-13. Reset

The system is initialized by setting the RES pin to L-level. The contents to be initialized are as follows:

• PC Address 000H

• Control register 0000 → Interrupt disable, Ports C, D: Output inhibit

• Status register Timer, external interrupt flag \rightarrow Reset • Output port Output latch $(0_H) \rightarrow$ Output transistor OFF

Appendix 3. Proper Cares in Using IC

3-1. Low-threshold input port A_0 to 3 provides the input characteristic shown in Fig. 3.1

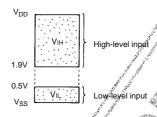


Fig. 3-1

3-2. FLT driver output

Ports E_0 to $_3$, F_0 to $_3$, I_0 to $_1$ (10 pins) are for high-current digits driver output; and ports G_0 to $_3$, H_0 to $_3$ (8 pins) are for intermediate-current segments driver outputs. Of course digits driver outputs can be used as segments driver outputs. Fig. 3-2 shows a sample application.

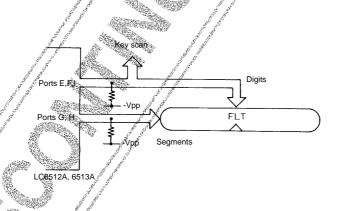


Fig. 3-2 FLT display application

Digit drive signal-used key scan

When key-scanning with the FLT digit drive signal in Fig. 3-3 and inputting the return signal to port A, the following must be observed.

- (a) Estimate voltage drop (V_{ON}) in the output transistor using the current flowing in an FLT used and the V-I characteristic of the output port of the LC6512A, 6513A.
- (b) Estimate voltage drop (V_{SW})in the switch circuit.
- (c) Check to see that $V_{ON} + V_{SW}$ meets the V_{IH}/V_{IL} requirement of the input port in Fig. 3.3

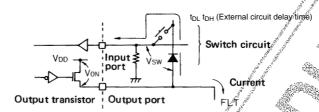
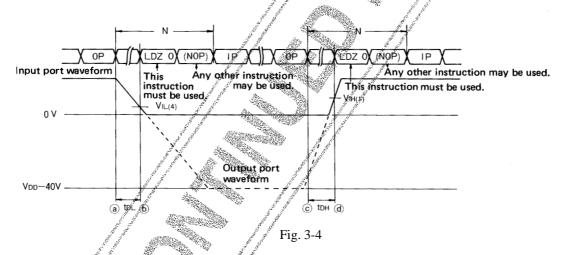



Fig. 3-3 Sample key scan application

For the key scan application in Fig. 3-3, make the program considering the delay in the external circuit and the input delay shown below.

When the IP instruction is used to input the return signal as shown above, the input delay must be considered and two instructions are placed between the IP instruction and the crossing of input port waveform and $V_{IL(4)}$, $V_{IH(1)}$, respectively. Some instructions must be placed additionally according to the length of delay (t_{DL}, t_{DH}) in the external circuit after the digit drive signal is delivered with the execution of the OP instruction (point a and point c).

N: Number of instruction cycles existing between instruction (OP, SPB, RPB) used to output data to output port and instruction (IP, BP, BNP) used to input data from input port.

(Number of instruction cycles to be programmed according to the length of t_{DL}, t_{DH})

t_{DL}, t_{DH}: Delay in external circuit from output port to input port.

Appendix 4. Standby Function

Two standby modes – HALT mode and HOLD mode – are available to minimize the power dissipation when the program is in the wait state or a power failure is backed up. Both modes are set with the execution of the HALT instruction. All the operations including the system clock generator are stopped at the standby mode. (For other models LC6502/05 of the LC6500 series, the HOLD mode is hardware-set with the $\overline{\text{HOLD}}$ pin = "L". Be careful of the difference in the mode setting method.)

The HALT mode and HOLD mode are used properly depending on the purposes. They are different in the mode setting conditions, I/O port state during standby operation, mode releasing method. The HALT mode is entered by executing the HALT instruction when the HOLD pin is at H-Level. The HALT mode is used to save the power dissipation when the program is in the wait state. The HOLD mode is entered by executing the HALT instruction when the HOLD pin is at L-Level. At the HOLD mode all I/O ports are disabled and there is no power dissipation in the interfaces with external circuits, permitting capacitor or battery-used power supply backup during power failure.

4-1. HALT mode setting

The HALT mode is entered by executing the HALT instruction when the \overline{HOLD} pin is at H-Level and all pins for port A_0 to A_3 are at L-Level. When even one of pins for port A_0 to A_3 is at H-Level, the HALT instruction is disregarded and becomes equal to the NOP instruction.

The HALT mode causes individual blocks to be placed in the following states:

- (1) Operation is stopped
 - All the operations including the system clock generator are stopped.
- (2) I/O port
 - The state immediately before setting the HALT mode is held.
- (3) Blocks to be cleared/reset
 - Timer......State where all bits are set to "1"(max.time).
 - Status flag.....The EXTF, TMF are reset (interrupt disable). The CF, ZF contents are held. An interrupt request at the HALT mode is disregarded.
- (4) Blocks to be held
 - For the registers, data RAM, port output latch, PC (except those in (3), the contents immediately before setting the HALT mode are held.
- 4-2. HOLD mode setting

The HOLD mode is entered by executing the HALT instruction when the \overline{HOLD} pin is at L-Level. In this case, the contents of port A_0 to A_3 remain unaffected.

The state in the HOLD mode is the same as that in the HALT mode, except the state of I/O port. The HOLD mode permits the undermentioned power-down mode to be entered.

I/O port

- Input ports A.B: Input inhibit
- Input/output port C. D: Input inhibit, output high impedance
- Output ports E to I: Output Pch transistor OFF
- INT, RES pins: Input inhibit

For the output latch of the output port, the contents immediately before setting the HOLD mode are held.

4-3. HOLD power-down mode setting

The HOLD mode permits the supply voltage to be lowered and also the power dissipation to be reduced <u>after mode</u> setting. The HOLD mode can be used in the capacitor or battery-used backup operation during power failure.

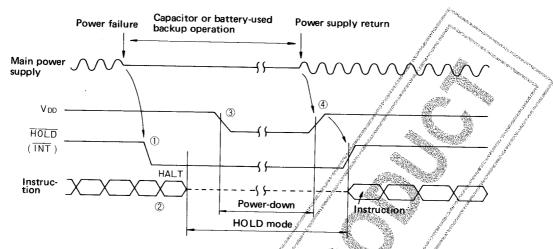


Fig. 4-1 HOLD mode and power-down

- ① A failure of the main power supply is detected and a standby request is made. This is hardware-controlled by the external circuit.
- ② The HOLD pin is software-polled or the same signal is applied to the INT pin to test the standby request by interrupt. Then, the HALT instruction is executed and the HOLD mode is entered. (Note)
- 3 After the HOLD mode is entered, power-down can be attained by lowering V_{DD}.
- 4 After V_{DD} returns to the prescribed voltage, the HOLD pin is set to H₇Level and the normal operation returns.

(Note) The \overline{HOLD} pin input signal is transferred to pseudo input port PO 0 (DPL = 0EH, 2^0 bit). Therefore, when polling the \overline{HOLD} pin, the BPO or BNPO instruction is used at DPL = 0EH. (The IP instruction cannot be used.)

When the BP0 instruction is used for testing, a branch occurs when the input voltage is at high level in the same manner as for normal input ports.

4-4. HALT mode release

Release by reset

When L-Level is applied to the RES pin, the HALT mode is released and the system reset state is entered.

When the \overline{RES} pin is set to H-Level again, the normal operation starts. Since the ceremic resonator mode is used for system clock generation, the release by reset must be performed.

- -Notes-
- Since the ceramic resonator mode is used for system clock generation, L-Level must be applied to the RES pin for 5 to 10 ms (oscillation stabilizing time).

Mode change from HALT mode to HOLD Mode

The HALT mode is entered with the execution of the HALT instruction when the \overline{HOLD} pin is at H-Level.

The HALT mode is changed to the HOLD mode automatically by setting the \overline{HOLD} pin to L-Level.

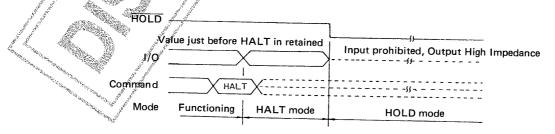


Fig. 4-2 Mode change from HALT modeto HOLD mode

4-5. HOLD mode release

Release by reset

The HOLD mode is released by setting the \overline{HOLD} pin to H-Level while applying L-Level to the \overline{RES} pin. When the \overline{RES} pin is set to H-Level again, the normal operation starts. The contents of the memories remain unaffected except the PC, I/O ports, registers which are initialized by the reset operation.

Since the ceramic resonator mode is used, the reset state must be held until oscillation is fully stabilized (10 ms after oscillation start) after the HOLD mode is released.

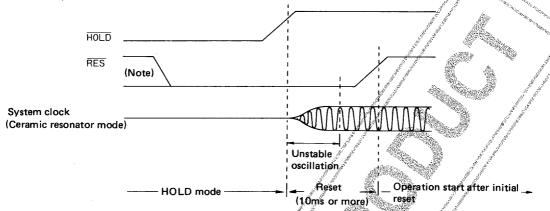


Fig. 4-3 HOLD mode release by reset

Note: With L-Level applied to the \overline{HOLD} pin as shown above, the CPU is not reserve when the \overline{RES} pin is set to L-Level. This is because the \overline{HOLD} pin is given priority less the CPU is reserved when the capacitor or battery-used backup mode causes the CPU peripherals to operate unstably and the \overline{RES} pin is set to L-Level. Be careful of the level of the \overline{HOLD} pin and \overline{RES} pin also at the initial reset mode when power is applied. When the \overline{HOLD} pin is at L-Level, no reset occurs.

4-6. Proper cares in using standby function

When using the HOLD mode, an application circuit and program must be designed with the following in mind.

- (1) The supply voltage at the standby state must not be less than specified.
- (2) Input timing of each control signal (HOLD, RES, port A, INT, etc.) at the standby initiate/release state.
- (3) Release operation must not be overlapped at the time of execution of the HALT instruction.

4-7. Sample application where the standby function is used for power failure backup

Power failure backup is an application where power failure of the main power source is detected by the HOLD pin, etc. to cause the HOLD mode to be entered so that the current drain is minimized and a backup capacitor is used to retain the contents of the internal registers even during power failure.

4-7-1. Sample application circuit (ceramic resonator OSC)

Fig. 4-4 shows a ceramic resonator OSC-applied circuit where the standby function is used for power failure backup.

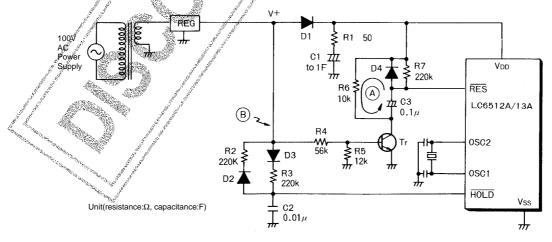
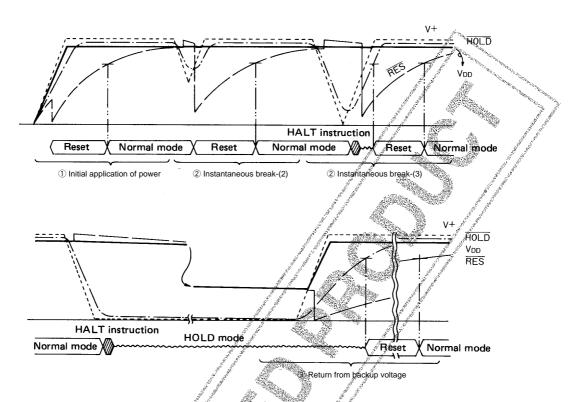



Fig. 4-4 Sample Application Circuit

4-7-2. Operating waveform

The operating waveform in the sample application circuit in Fig. 4-4 is shown below. The mode is roughly divided as

4-7-3. Operation of sample application circuit,

- 1 At the time of initial application of power
 - At the time of initial application of power A reset occurs and the execution of the program starts at address 000H of the program counter (PC).
- 2 At the time of instantaneous break
 - (1) At the time of very short instantaneous break
 - The execution of the program continues (2) At the time of instantaneous break being a little longer than (1) (When the \overline{RES} input voltage meets V_{IL} and the $\overline{\text{HOLD}}$ input voltage does not meet V_{II}).
 - A reset occurs during the execution of the program and the execution of the program starts at address 000H of the program counter (PC).
 - Since the HOLD request signal is not applied to the HOLD pin, the HOLD mode is not entered.
 - (3) At the time of long instantaneous break (When both of the \overline{RES} input voltage and \overline{HOLD} input voltage meet V_{II}.).
 - The HOLD request signal is applied to the HOLD pin and the HOLD mode is entered.
 - When V+ rises after instantaneous break, a reset occurs to release the HOLD mode and the execution of the program starts at address 000H of the program counter (PC).
- 3 At the time of return from backup voltage
 - A reset occurs and the execution of the program starts at address 000H of the program counter (PC).

4-7-4. Notes for circuit design

① How to fix C3, R6, C2, R2

Fix closed loop (A) discharge time constants C3, R6 and \overline{HOLD} pin charge time constants C2, R2 so that closed loop (A) fully discharges before the \overline{HOLD} input voltage gets lower than V_{IL} at the time of instantaneous break and the \overline{RES} input voltage is sure to get lower than V_{IL} (a reset occurs) when V+ rises after instantaneous break where the \overline{HOLD} input voltage gets lower than V_{IL} .

2 How to fix C3, R7

Fix \overline{RES} pin charge time constants C3, R7 so that when power is applied initially or the HOLD mode is released the ceramic resonator OSC oscillates normally and the \overline{RES} input voltage exceeds V_{HI} and the program starts running.

(3) How to fix R4, R5

Fix Tr bias constants R4, R5 so that when V+ rises after instantaneous break the \overline{RES} input voltage gets lower than V_{IL} (brought to L-Level) before the \overline{HOLD} input voltage exceeds V_{IH} (brought to H-Level).

4 How to fix C2, R3

Fix \overline{HOLD} pin charge time constants C2, R3 so that when the \overline{HOLD} mode is released from the backup mode the \overline{HOLD} input voltage does not exceed V_{OH} (not brought to H-Level) until the RES input voltage gets lower than V_{IL} (brought to L-Level).

Fix C3, R7 and C2, R3 so that the time interval from the moment the $\overline{\text{HOLD}}$ input voltage exceeds V_{IH} until the moment the $\overline{\text{RES}}$ input voltage exceeds V_{IH} is longer than the geremic resonator OSC stabilizing time.

(5) When the load is heavy or the polling interval is long
Since Cl discharges largely, increase the capacity of Cl or separate (B) detection from V+ and use a power supply or signal that rises faster than V+.

4-7-5. Notes for software design

When the HOLD request signal is detected, the HALT instruction is executed immediately. A concrete example is shown below.

- (1) An interrupt is inhibited before polling the HOLD request pin (HOLD pin).
- (2) Polling of the HOLD pin and the HALT instruction are programmed consecutively.

```
[ Concrete example ]

ERCTL 3 ;EXTEN, TMEN 0 (External, timer interrupt inhibit)

BPO AAA ;Polling of the HOLD pin (If H-Level, a branch occurs to AAA.)

HALT ;The HOLD mode is entered.

AAA:
```

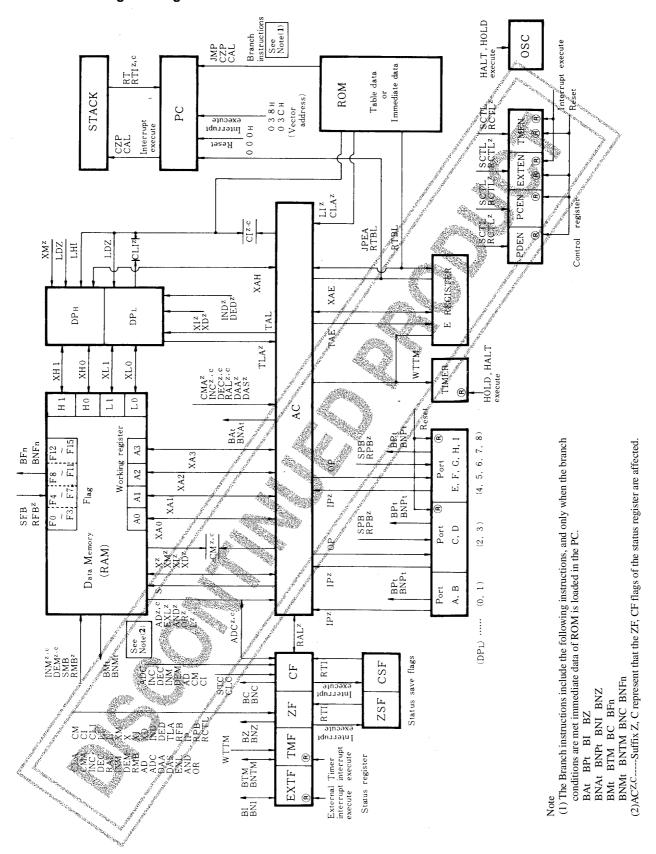
Appendix LC6500 Series Instruction Set (by Function)

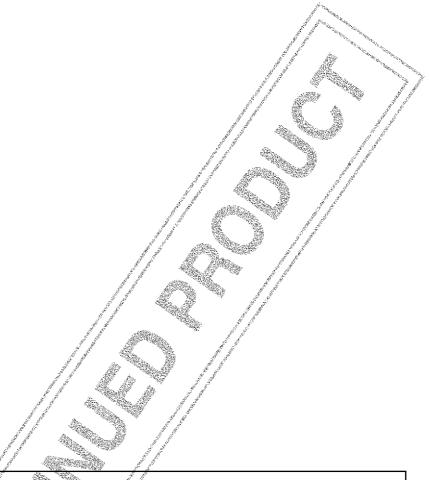
Symbols Meaning M: (),[]: Contents AC: Accumulator M(DP): Transfer and direction

Memory
Memory addressed by DP
Input/output port addressed by DPL P(DPL): Accumulator bit t ACt: Addition CF: Carry flag Program counter Subtraction PC: CTL: Control register STACK: Stack register AND DP: Data pointer TM: Timer OR v: Exclusive OR E: E register

TMF: Timer (internal) interrupt request flag
At, Ha, La: Working register EXTF: External interrupt request flag Flag bit n ZF: Zero flag Fn:

	Fn:	Flag bit n		ZF	:		Zero flag		" And State of the	Williams.
ction		Mnemonic		Instruction code		ses	Function	Description	Status	Remarks
Instruction	Willottonio		D ₇ D ₆ D ₅ D ₄	D ₃ D ₂ D ₁ D ₀	Bytes	Cycles	Function	Description	flag affected	Remarks
ω	CLA	Clear AC	1100	0000	1	1	AC ← 0	The AC contents are cleared.	ZF	* 1./
l igi	CLC	Clear CF	1110	0001	1	1	CF ← 0	The CF is reset.	CF	1342
struc	STC	Set CF	1111	0001	1	1	CF ← 1	The CF is set	ĈĘ	
Accumulator manipulation instructions	СМА	Complement AC	1110	1011	1	1	$AC \leftarrow (\overline{AC})$	The AC contents are complemented (zero bits become 1, one bits become 0)	ZF	
indi	INC	Increment AC	0000	1110	1	1	AC ← (AC)+1	The AC contents are incremented +1.	ZF CF	
man	DEC	Decrement AC	0000	1111	1	1	AC ← (AC)–1	The AC contents are decremented -1.	ZF CF	
ulator	RAL	Rotate AC left through CF	0000	0001	1	1	$AC_0 \leftarrow (CF).AC_{n+1} \leftarrow (AC_n). CF \leftarrow (AC_3)$	The AC contents are shifted left through the CF.	ZF CF	
L L	TAE	Tranfer AC to E	0000	0011	1	1	E←(AC)	The AC contents are transferred to the E.		
¥	XAE	Exchange AC with E	0000	1101	1	1	(AC) \ (E)	The AC contents and the E contents are exchanged.		
tion	INM	Increment M	0010	1110	1	1	M(DP)←[M(DP)]+1	The M(DP) contents are incremented +1.	ZF CF	
alndir	DEM	Decrement M	0010	1111	1	1	M(DP)←[M(DP)]–1	The M/DP) contents are decremented -1	ZF CF	
y mai	SMB bit	Set M data bit	0000	10B ₁ B ₀	1	1	M(DP/B/B0)-1	A single by of the M(DP) specified by B1 B0 is set.		
Memory manipulation instructions	RMB bit	Reset M data bit	0010	10B ₁ B ₀	1	1	M(DP, B ₁ B ₀)←0	A single bit of the M(DP) specified by B1 B0 is reset.	ZF	
≥.≥	AD	Add M to AC	0110	0000	1	1	AC (AC)+[M(DP)]	The AC contents and the M(DP) contents are ginary-added and the result is placed in the AC.	ZF CF	
	ADC	Add M to AC with CF	0010	0000	1	1	AC←(AC)+[M(DP)] +(CF)	The AC, CF, M(DP) contents are binary- added and the result is placed in the AC.	ZF CF	
	DAA	Decimal adjust AC in addition	1110	0110	1,7	, A	AC←(AC)+6	6 is added and to the AC contens.	ZF	
	DAS	Decimal adjust AC in Subtraction	1110	1010	1	1	AC←(AC)+10	10 is added to the AC contents.	ZF	
Suc	EXL	Exclusive or M to AC	1111	0101	1	1	AC⊷(AC)∜[M(DP)]	The AC contents and the M(DP) contents are exelusive-ORed and the result is placed in the AC.	ZF	
tructio	AND	And M to AC	1110	0 1 1 1	10	1	$AC \leftarrow (AC) \wedge [M(DP)]$	The AC contents and the M(DP) contents are ANDed and the result is placed in the AC.	ZF	
no inst	OR	Or M to AC	1110	0101	1	1	AC←(AC)√[M(DP)]	The AC contents and the M(DP) contents are ORed and the result is placed in the AC.	ZF	
Operation/comparison instructions	СМ	Compare AC with M	1111	10.11	.1		[M(DP)]+(AC)+1	The AC contents and the M(DP) contents are compared and the CF and ZF are set/reset. Comparison result	ZF CF	
	CI data	Compare AC with immediate data	0.010 0100		2	2	13 12 1 ₁ 1 ₀ +(AC)+1	The AC contents and immediate data $l_3 l_2 l_1 l_0$ are compared and the ZF and CF are set/reset.	ZF CF	
	ان ا	Compare DPL with immediate data	0010	1 1 0 0 3 2 1 1 0	2	2	(DPL)∀ I ₃ I ₂ I ₁ I ₀	The DP _L contents and immediate data I ₃ I ₂ I ₁ I ₀ are compared.	ZF	
	LI data	Load AC with immediate data	1100	⁶ l ₃ l ₂ l ₁ l ₀	1	1	AC←I ₃ I ₂ I ₁ I ₀	Immediate data $I_3 I_2 I_1 I_0$ in loaded in the AC.	ZF	*1
	s / /	Store AC to M	0,00,0	0010	1	1	$M(DP) \leftarrow (AC)$	The AC contents are stored in the M(DP).		
	K g	Load AC from M	0 0 1 0	0001	1	1	AC←[M(DP)]	The M(DP) contents are loaded in the AC.	ZF	
ons	XM data	Exchange AC with Mathen modify DPH with immediate data	1010	ом ₂ м ₁ м ₀	1	2	$(AC) \rightleftharpoons [M(DP)]$ $DPH \leftarrow (DPH) \forall$ • $0M_2M_1M_0$	The AC contents and the M(DP) contents are exchanged. Then, the DPH contents are modified with the contens of (DPH)	ZF	The ZF is set/ reset accoding to the result of (DPH)
Load/store instructions	X	Exchange AC with M	1010	0000	1	2	$(AC) \rightleftharpoons [M(DP)]$	▽0M2M1M0. The AC contents and the M(DP) contents are exchanged.	ZF	V0M2M1M0. The ZF is set/reset accoding to the DPH contents at the time of instruction execution.
Load/str	XI	Exchange AC with M. then increment DPL	1111	1110	1	2	$(AC) \rightleftharpoons [M(DP)]$ $DP_L \leftarrow (DP_L)+1$	The AC contents and the M(DP) contents are exchanged. Then, the DPL contents are incremented +1.	ZF	The ZF is set/reset accoding to the result of (DPL +1).
	XD	Exchange AC with M. then decrement DPL	1111	1111	1	2	$(AC) \rightleftharpoons [M(DP)]$ $DP_L \leftarrow (DP_L)-1$	The AC contents and the M(DP) contents are exchanged. Then, the DPL contents are decremented -1.	ZF	The ZF is set/reset accoding to the result of (DP _L -1).
	RTBL	Read table data from program ROM	0110	0011	1	2	AC. E←ROM (PCh.E. AC)	The contents of ROM addressed by the PC whose low-order 8 bits are replaced with the E and AC contents are loaded in the AC and E.		


tion			Instructi	on code	S	S			Status	
Instruction		Mnemonic		D ₃ D ₂ D ₁ D ₀	Bytes	Cycles	Function	Description	flag affected	Remarks
tions	LDZ date	Load DPH With Zero and DPL with immediate data respectively	1000	l ₃ l ₂ l ₁ l ₀	1	1	DP _H ←0 DP _L ←l ₃ l ₂ l ₁ l ₀	The DP _H and DP _L are loaded with 0 and immediate data I ₃ I ₂ I ₁ I ₀ respectively.		
Data pointer manipulation instructions	LHI data	Load DPH with immediate data	0100	l ₃ l ₂ l ₁ l ₀	1	1	DP _H ←l ₃ l ₂ l ₁ l ₀	The DP _H is loaded with immediate data 1 ₃ 1 ₂ 1 ₁ 1 ₀ .	State of the second	
lation	IND	Increment DPL	1110	1110	1	1	DP _L ←(DP _L)+1	The DP _L contents are incremented +1.	ZF	Na _{Proje}
anip	DED	Decrement DPL	1110	1111	1	1	DP _L ←(DP _L)–1	The DPL contents are decremented –1.	ZF	OF THE STATE OF TH
nter m	TAL	Transfer AC to DPL	1111	0111	1	1	DP _L ←(AC)	The AC contents are transferred to the DPL.		77
a poir	TLA	Transfer DPL to AC	1110	1001	1	1	$AC \leftarrow (DP_L)$	The DPL contents are transferred to the AC.	ZF	11
Data	XAH	Exchange AC with DPH	0010	0011	1	1	(AC)≒(DP _H)	The AC contents and the DPH. contents are exchanged.	1 de 1 de 1	A Service Control of the Control of
Working register manipulation instructions	XAt XA0 XA1 XA2 XA3	Exchange AC with working register At	1110 1110 1110 1110	t1 t0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 0	1 1 1	1 1 1 1	(AC) ≒(A0) (AC) ≒(A1) (AC) ≒(A2) (AC) ≒(A3)	The AC contents and the contents of working register A_0 , A_1 , A_2 , or A_3 specified by t_4 , t_0 are exchanged.		
egister mar	XHa XH0 XH1	Exchange DPH with working register Ha	1111 1111	a 1000 1100	1 1	1 1	(DP _H)≒(H0) (DP _H)≒(H1)	The DPH contents and the contents of working register He or H1 specified by a are exchanged.		
Working	XLa XL0 XL1	Exchange DPL with working register La	1111 1111	a 0000 0100	1	1	(DP _L)	The DPL contents and the contents of working register Lo or L1 specified by a are exchanged.		
suc	SFB flag	Set flag bit	0101	B ₃ B ₂ B ₁ B ₀	1	1	Fn←1	A flag specified by B ₃ B ₂ B ₁ B ₀ is set.		
Flag manipulation instructions	RFB flag	Reset flag bit	0001	B ₃ B ₂ B ₁ B ₀	1	1	Fn←Ø	A flag specified by B ₃ B ₂ B ₁ B ₀ is reset.	ZF	The flags are divided into 4 groups of F0 to F3,F4 to F7,F8 to F1,F12 to F15. The ZF is set/reset according to the 4 bits including a single bit specified by immediate data B3B2B1B0.
	JMP addr	Jump in the current bank	0 1 1 0 P ₇ P ₆ P ₅ P ₄	1 P ₁₀ P ₉ P ₈ P ₃ P ₂ P ₁ P ₀	2	2	PC-PC11(orPC11) P10P9P8P7P6P5 P4P3P2P1P0	A jump to an address specified by the PC11 (or PC11) and immediate data T to P0 occurs.		
ctions	JPEA	Jump in the current page modified by E and AC	1111	1010	1	1	PC7(10, 0 ← (E, AC)	A jump to an address specified by the contents of the PC whose low-order 8 bits are replaced with the E and AC contents occurs.		
Jump/subroutine instructions	CZP addr	Call subroutine in the Zero Page	1011	P3P2P1P0	1	1	STACK←(PC)+1 PC11 to 6.PC1 to 0←0 PC5 to 2←P3P2P1P0	A subroutine in page 0 of bank 0 is called.		
Jump/subro	CAL addr	Call subroutine in the zero bank	1 0 1 0 P7P6P5P4	1 P ₁₀ P ₉ P ₈ P ₃ P ₂ P ₁ P ₀	2	2	STACK (PC)+2 PC11* 6 0 OP10P9 P8P7P6P5P4P3P2P1P0	A subroutine in bank 0 is called.		
	RT	Return from subroutine	0110	0010	1	1	P€←(STACK)	A return from a subroutine occurs.		
	RTI	Returnn from interrupt routine	0010	0010	1	1,8	P.C.←(STACK) .CF ZF←CSF.ZSF	A return from an Interrupt servicing routine occurs.	ZF CF	
	BAt addr	Branch on AC bit	0 1 1 1 1 ⁹ 7 ^P 6 ^P 5 ^P 4	0 0 t ₁ t ₀ P ₃ P ₂ P ₁ P ₀	2	2	$\begin{array}{c} \text{PC}_{7 \text{ to } 0} \leftarrow \text{P}_{7} \text{P}_{6} \text{P}_{5} \text{P}_{4} \\ \qquad \qquad \qquad \text{P}_{3} \text{P}_{2} \text{P}_{1} \text{P}_{0} \\ \text{If ACt=1} \end{array}$	If a single bit of the AC specified by immediate data t1 t0 is 1,a branch to an address specified by immediate data P7 to P0 within the current page occurs.		Mnemonic is BA0 to BA3 according to the value of t.
	BNAt addr	Branch on no AC bit	0011 P7 ^P 6 ^P 5 ^P 4	0 0 t ₄ t ₀ ∕ P ₃ P ₂ P ₁ P ₀	2	2	$\begin{array}{c} \text{PC}_{7 \text{ to } 0} \leftarrow \text{P}_{7} \text{P}_{6} \text{P}_{5} \text{P}_{4} \\ \qquad \qquad \qquad \text{P}_{3} \text{P}_{2} \text{P}_{1} \text{P}_{0} \\ \text{If ACt=0} \end{array}$	If a single bit of the AC specified by immediate data t1t0 is 0,a branch to an address specified by immediate data P7 to P0 within the current page occurs.		Mnemonic is BNA0 to BNA3 according to the value of t.
Si	BMt addr	Branch on M bit	0111 P ₇ P ₆ P ₅ P ₄	0 1 t ₁ t ₀ P ₃ P ₂ P ₁ P ₀	2	2	$\begin{array}{c} \text{PC}_{7 \text{ to } 0} \leftarrow \text{P}_{7} \text{P}_{6} \text{P}_{5} \text{P}_{4} \\ \qquad \qquad \qquad \text{P}_{3} \text{P}_{2} \text{P}_{1} \text{P}_{0} \\ \text{If [M(DP.t}_{1} \text{t}_{0})]=1} \end{array}$	If a single bit of the M(DP) specified by immediate data t1t0 is 1,a branch to an address specified by immediate data P7 to P0 within the current page occurs.		Mnemonic is BM0 to BM3 according to the value of t.
Branch instructions	BNMt addr	Branch on he M bit	0 0 1 1 P ₇ P ₆ P ₅ P ₄	0 1 t ₁ t ₀ P ₃ P ₂ P ₁ P ₀	2	2	$\begin{array}{c} \text{PC}_{7 \text{ to } 0} \leftarrow \text{P}_{7} \text{P}_{6} \text{P}_{5} \text{P}_{4} \\ \text{P}_{3} \text{P}_{2} \text{P}_{1} \text{P}_{0} \\ \text{If [M(DP.t}_{1} \text{t}_{0})]=0 \end{array}$	If a single bit of the M(DP) specified by immediate data t110 is 0,a branch to an address specified by immediate data P7 to P0 within the current page occurs.		Mnemonic is BNM0 to BNM3 according to the value of t.
Brå	BPt addr	Branch on Port bit	0 1 1 1 P ₇ P ₆ P ₅ P ₄	1 0 t ₁ t ₀ P ₃ P ₂ P ₁ P ₀	2	2	$\begin{array}{c} \text{PC}_{7 \text{ to } 0} \leftarrow \text{P}_{7} \text{P}_{6} \text{P}_{5} \text{P}_{4} \\ \text{P}_{3} \text{P}_{2} \text{P}_{1} \text{P}_{0} \\ \text{If } [\text{P(DP}_{L}, \text{t}_{1} \text{t}_{0})] = 1 \end{array}$	If a single bit of port P(DPL) specified by immediate data t1 t0 is 1,a branch to an address specified by immediate data P7 toP0 within the current page occurs.		Mnemonic is BP0 to BP3 according to the value of t.
	BNPt addr	Branch on no Port bit	0 0 1 1 P7 ^P 6 ^P 5 ^P 4	1 0 t ₁ t ₀ P ₃ P ₂ P ₁ P ₀	2	2	$\begin{array}{c} \text{PC}_{7 \text{ to } 0} \leftarrow \text{P}_{7} \text{P}_{6} \text{P}_{5} \text{P}_{4} \\ \text{P}_{3} \text{P}_{2} \text{P}_{1} \text{P}_{0} \\ \text{If } [\text{P(DPL.t1t0)}] = 0 \end{array}$	If a single bit of port P(DPL) specified by immediate data t1 t0 is 0,a branch to an address specified by immediate data P7 to P0 within the current page occurs.		Mnemonic is BNP0 to BNP3 according to the value of t.
	BTTM addr	Branch on timer	0 1 1 1 P ₇ P ₆ P ₅ P ₄	1 1 0 0 P ₃ P ₂ P ₁ P ₀	2	2	PC7 to 0←P7P6P5P4 P3P2P1P0 If TMF=1 then TMF←0	If theTMF is 1,a branch to an address specified by immediate data P7 to P0 within the current page occurs.The TMF is reset.	TMF	


Instruction		Mnemonic	Instructi	on code	Bytes	Cycles	Function	Description	Status flag	Remarks
Instru		Willemonio	D ₇ D ₆ D ₅ D ₄	D ₃ D ₂ D ₁ D ₀	B	ŏ	T dilotion	Boothplion	affected	rtomano
	BNTM addr	Branch on no timer	0 0 1 1 P ₇ P ₆ P ₅ P ₄	1 1 0 0 P ₃ P ₂ P ₁ P ₀	2	2	$\begin{array}{c} \text{PC}_{7 \text{ to } 0} \leftarrow \text{P}_{7} \text{P}_{6} \text{P}_{5} \text{P}_{4} \\ \text{P}_{3} \text{P}_{2} \text{P}_{1} \text{P}_{0} \\ \text{If TMF=0} \\ \text{then TMF} \leftarrow 0 \end{array}$	If the TMF is 0, a branch to an address specified by immediate data P ₇ to P ₀ within the current page occurs. The TMF is reset.	TMF	
	BI addr	Branch on interrupt	0 1 1 1 P ₇ P ₆ P ₅ P ₄	1 1 0 1 P ₃ P ₂ P ₁ P ₀	2	2	$\begin{array}{c} \text{PC}_{7 \text{ to } 0} \leftarrow \text{P7P6P5P4} \\ \text{P3P2P1P0} \\ \text{If EXTF=1} \\ \text{then EXTF} \leftarrow 0 \end{array}$	If the EXTF is 1, a branch to an address specified by immediate data P7 to P0 within the current page occurs. The EXTF is reset.	EXTF	To the last of the
	BNI addr	Branch on no Interrupt	0 0 1 1 P ₇ P ₆ P ₅ P ₄	1 1 0 1 P ₃ P ₂ P ₁ P ₀	2	2	$\begin{array}{c} \text{PC}_{7 \text{ to } 0} \leftarrow \text{P7P6P5P4} \\ \text{P3P2P1P0} \\ \text{If EXTF=0} \\ \text{then EXTF} \leftarrow 0 \end{array}$	If the EXTF is 0, a brance to an address specified by immediate data P7 to P0 within the current page occurs. The EXTF is reset	EXTF	
instructions	BC addr	Branch on CF	0 1 1 1 P ₇ P ₆ P ₅ P ₄	1 1 1 1 P ₃ P ₂ P ₁ P ₀	2	2	$PC_{7 \text{ to } 0} \leftarrow P_{7}P_{6}P_{5}P_{4} \\ P_{3}P_{2}P_{1}P_{0} \\ \text{If } CF=1$	If the CF is 1, a branch to an address specified by immediate data R; to P0 within the current page occurs.	A Park	and the second s
Branch instr	BNC addr	Branch on no CF	0 0 1 I P7 ^P 6 ^P 5 ^P 4	1111 P ₃ P ₂ P ₁ P ₀	2	2	$PC_{7 \text{ to } 0} \leftarrow P_{7}P_{6}P_{5}P_{4} \\ P_{3}P_{2}P_{1}P_{0} \\ \text{If } CF=0$	If the GF is 0, a branch to an address specified by immediate data P_7 to P_0 within the current page occurs.		
Bra	BZ addr	Branch on ZF	0 1 1 I P ₇ P ₆ P ₅ P ₄	1110 P ₃ P ₂ P ₁ P ₀	2	2	PC ₇ to 0←P ₇ P ₆ P ₅ P ₄ P ₃ P ₂ P ₁ P ₀ If ZF=1	If the ZF is 1, a branch to an address specified by immediate data P ₇ to P ₀ within the current page occurs.	P	
	BNZ addr	Branch on no ZF	0 0 I I P7P6P5P4	1110 P ₃ P ₂ P ₁ P ₀	2	2	PC _{7 to 0} ←P ₇ P ₆ P ₅ P ₄ P ₃ P ₂ P ₁ P ₀ If ZF=0	If the ZF is 0, a branch to an address specified by immediate data P ₇ to P ₀ within the current page occurs.		
	BFn addr	Branch on flag bit	1 1 0 1 P ₇ P ₆ P ₅ P ₄	n ₃ n ₂ n ₁ n ₀ P ₃ P ₂ P ₁ P ₀	2	2	PC _{7 to 0} ←R ⁷ P ₆ P ₅ P ₄ P ₃ P ₂ P ₁ P ₀ , If Fn≠1	If a flag bit of the 16 flags specified by immediate data nanannon is fa branch to an address specified by immediate data P7 to P0 within the current page occurs.		Mnemonic is BFO to BF15 according to the value of n.
	BNFn addr	Branch on no flag bit	1 0 0 1 P7 ^P 6 ^P 5 ^P 4	n ₃ n ₂ n ₁ n ₀ P ₃ P ₂ P ₁ P ₀	2	2	PC7 to 0 - P7P6 6 P4 P3P2P1P0 / If Fn=0	find find bit of the 16 flags specified by immediate data rangent no is 1,a branch to are address specified by immediate data P7 to P0 within the current page occurs.		Mnemonic is BNFO to BNF15 according to the value of n.
ions.	IP	Input port to AC	0000	1100	1	×1	AC←[P(DPL)]	The contents of port P(DPL) are inputted to the AC.	ZF	
truct	OP	Output AC to port	0110	0001	3	/1	P(DP _L)←(AC)	The AC contents are outputted to port P(DPL)		
Input/Output instructions.	SPB bit	Set port bit	0000	0 1 B ₁ B ₀	5.747 1 7	2	P(DPL B1B0)←1	Immediate data B ₁ B ₀ - specified one bit in port p(DP _L)is set.		Mnemonic is BNFO to BNF15 according to the value of n.
Input/O	RPB bit	Reset port bit	0010	0 1 B ₁ B ₀	1	2	P(DP _L B ₁ B ₀)←0	mmediate data B ₁ B ₀ - specified one bit in port p(DP _L)is reset.	ZF	When this instruct- ion is executed,the E register contents are destroyed.
	SCTL bit	Set control register bit(S)	0010	/1 1 0 0 B ₃ B ₂ B ₁ B ₀	2	2	CTL←(CTL) V B ₃ B ₂ B ₁ B ₀	Immediate data B ₃ B ₂ B ₁ B ₀ -specified bits in the control register are set.		
instructions	RCTL bit	Reset control register bit(S)	0010	1 1 0 0 B ₃ B ₂ B ₁ B ₀	2	2	CTL←(CTL) ∧ B ₃ B ₂ B ₁ B ₀	Immediate data B ₃ B ₂ B ₁ B ₀ -specified bits in the control register are reset.	ZF	
Other ins	WTTM	Write timer	/1111	1001	1	1	TM←(E).(AC) TMF ←0	The E and AC contents are loaded in the timer. The TMF reset.	TMF	
ð	HALT	Halt A	1111	0110	1	1	Halt	All operations stop.		
	NOP	No operation	0000	0000	1/	ş:1 1	No operation	No operation is performed, but 1 machine cycle is consumed.		

*1 If the LI instruction or CLA instruction is used consecutively in such a manner as LI, LI, LI, LI,, or CLA, CLA, CLA,, the first LI instruction or CLA instruction only is effective and the following LI instructions or CLA instructions are changed to the NOP instructions.

LC6500 Series Instruction Map 2-byte instruction DEM DEC DED XDBC INM INC IND ΒZ [I] \mathbf{X} XAE Ω BI RCTL,CLI SCTL,CI 1-byte, 2-cycle instruction BTM \circ JMP CAL Ω ٧ RMB 1-cycle instruction 6 XH0 ∞ SCTL LHI CLICITAL AND HALT DAA BNM_t RPB EXL XL 1 XA1 XAH RT BA_{t} $C\Gamma C$ NOP XA0 XL_0 AD× D 9 ∞ В \circ Ш Ĺ 1st byte 2nd byte

LC6500 Series Programming Model

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co. Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products (including technical data, services) described or contained berein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of October, 2001. Specifications and information herein are subject to change without notice.