LC5812

4-Bit Microcomputer with Internal LCD Driver

Overview

The LC5812 series models are 4-bit, single-chip, high-performance microcomputers equipped with LCD drivers. They are produced by CMOS technology. Their numerous features include low-voltage operation and low current drain.

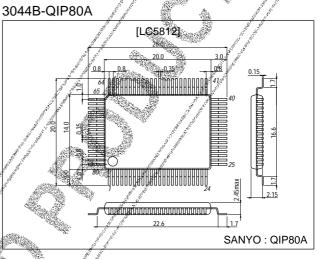
A 4 bit parallel-processing ALU, program memory (ROM), data memory (RAM), input and output ports, a timer, a clock generator, and LCD drivers, among other things, are integrated on a single chip.

A set of 134 instructions, including the operation and processing instructions executable in 4-bit units and various conditional branch instructions and LCD driver data transfer instructions form an easy-to-use and effective instruction system.

In HALT mode the user can readily implement the clock/ function during low-power dissipation. To minimize the current required, overall internal operation is stopped except for the oscillation and frequency divider circuits and the LCD drivers.

In HOLD mode the operation of the system clock oscillation is stopped so that the current drain becomes much less. The LC5812 is very useful for controlling electronic tuners, cameras, and other portable devices at low voltage, with low power dissipation.

Features


• A wide supply voltage range

~			AL.		8 M
	Cycle time	Supply yolta	ge range	Remar	ks
LC5812	122µs	V _{\$\$2} =-2.0	to −3,6V	🔅 32k čry	štal
	122µs	V _{\$\$2} =-2,0	to -5.0V	32k čry:	stal
LC5812H	61µs	V _{SS2} =-23	to –5.0V	65k cry	stal
LCJ01211	40µs	V _{SS2} =-3.5	to -5.0V	400k ceramic	resonator
	20µs	V _{SS2} =-4.5	to –5.0V	800k ceramic	resonator
	ã é		8	1	

Continued on next page.

Package Dimensions

unit:mm

Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.

SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

SANYO Electric Co., Ltd. Semiconductor Company TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110-8534 JAPAN

• Micro-level oprerating current.

Only micro-level current is needed to operate the equipment if the HALT function is used efficiently. Although the exact current drain depends on the oscillation frequency (and the oscillator) and the program structure, a typical current requirement is about 5μ A to run the clock program if the optimum technique is used to design the program.

- Enhanced HALT/HOLD release and interrupt functions.
 - \cdot Five types of HALT/HOLD release functions and five types of interrupt functions.
 - · External interrupt function (included in the above 5 interrupt functions).
 - \cdot Up to 8 levels of subroutine nesting (common with interrupts).
- Enhanced hardware for greater processing capability.

• Built-in segment PLA circuit : Is able to join the LCD driver outputs to any patterns on the LCD panel without software.

- \cdot Built-in decimal up/down counter.
- Built-in 8-bit programmable timer.
- \cdot The entire RAM area can be used as a working area (bank switching).
- · Built-in data pointer.
- \cdot All instructions per step operation.
- \cdot Built-in clock oscillator and frequency divider circuit.

• Various LCD output terminals for LCD panel drive (42 terminals)

	LCD panel	Number of LCD segments		
1/3 bias	1/3 duty	126 segments (max.)		
1/2 bias	1/3 duty	126 segments (max.)		
1/2 bias	1/2 duty	84 segments (max.)		
Static		42 segments (max.)		

• The LCD panel drive output terminal can be switched to the general-purpose output terminal.

- A number of input and output terminals are provided.
 - Input dedicated port :2 ports/8 pinsInput/output port :2 ports/8 pinsOutput dedicated port :1 port/4 pins
- An initial reset terminal is provided.
- Built-in oscillation circuit for system clock. Two kinds of oscillation circuits are available : one for the system clock and the other for clock oscillation.
- Number of instructions : 134
- ROM : 2,048×16bits
- RAM : 152×4bits
- Form of shipment : QIP80 (or chip)

Application Development Support System

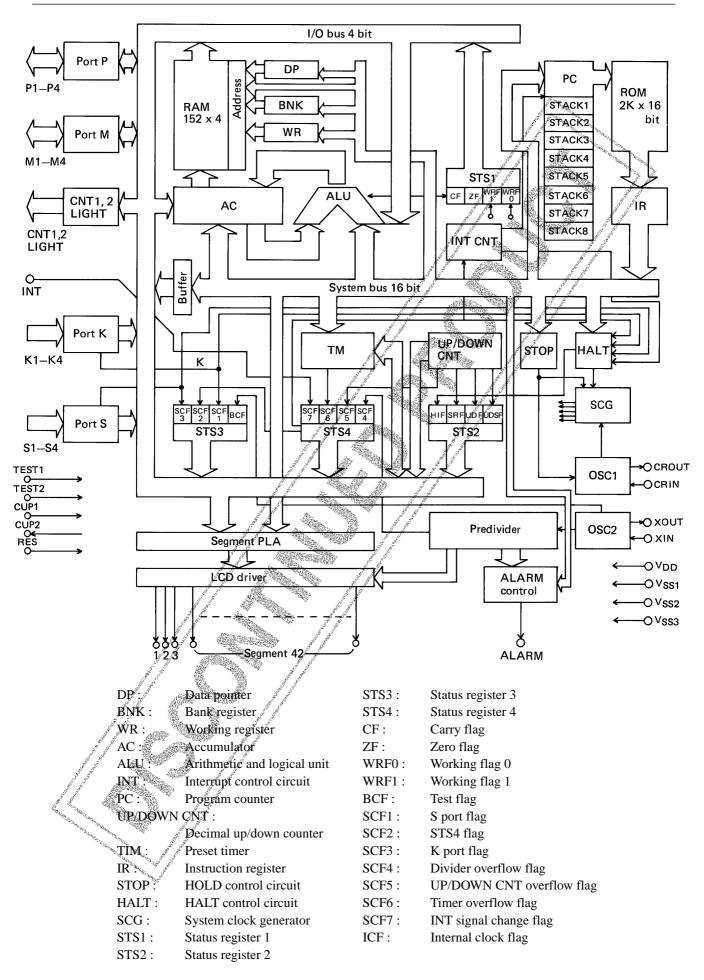
An evaluation chip (LC5897) and special devices for the application development tool will be provided.

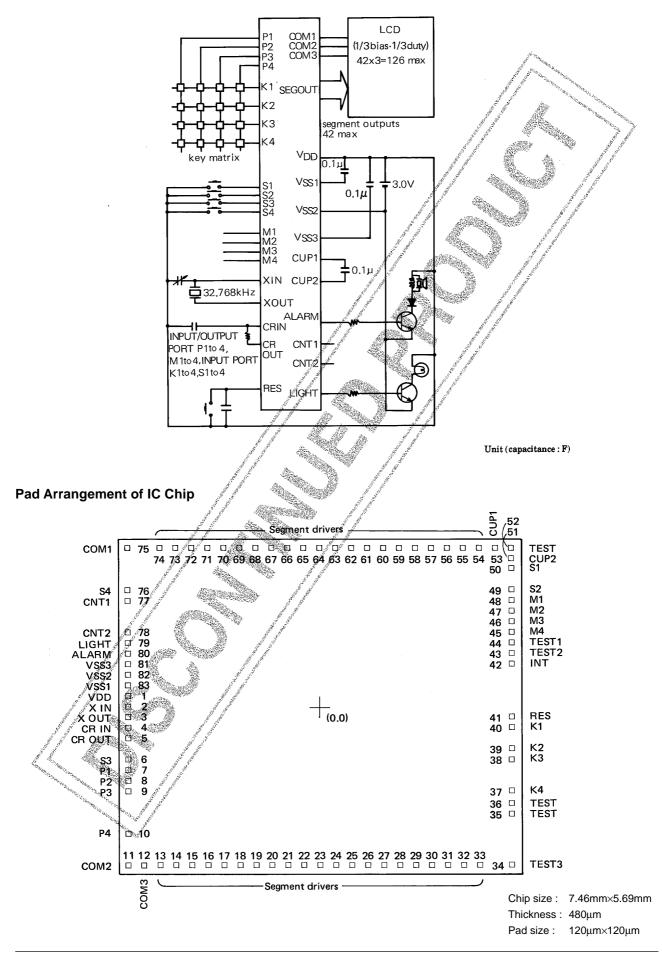
• SDS410 system

Enables the user to create an application development program in assembler language (edit-assembling).

• EVA510+TB5812+DCB1+Application Evaluation Board+LC5897 Modification and debugging of the application development program are possible by connecting to the SDS410. The EVA510 is identical with the EVA410 except that the control ROM has been replaced.

TB5812+DCB1+Application Evaluation Board+LC5897


Load and evaluation is possible using the EPROM (2732) in which the data for the application development program is contained.


Note) The application evaluation board is created by the user.

Either LEDs or on LCD can be used as the display element.

Application Examples

- Portable equipment (camera control, various card controls, high-quality electric calculators and timers).
- Acoustic equipment (electronic control, electronic tuning, and clocks).
- Household electrical apparatus (remote control, and timer control).
- Telephone equipment (telephone control, and display control).

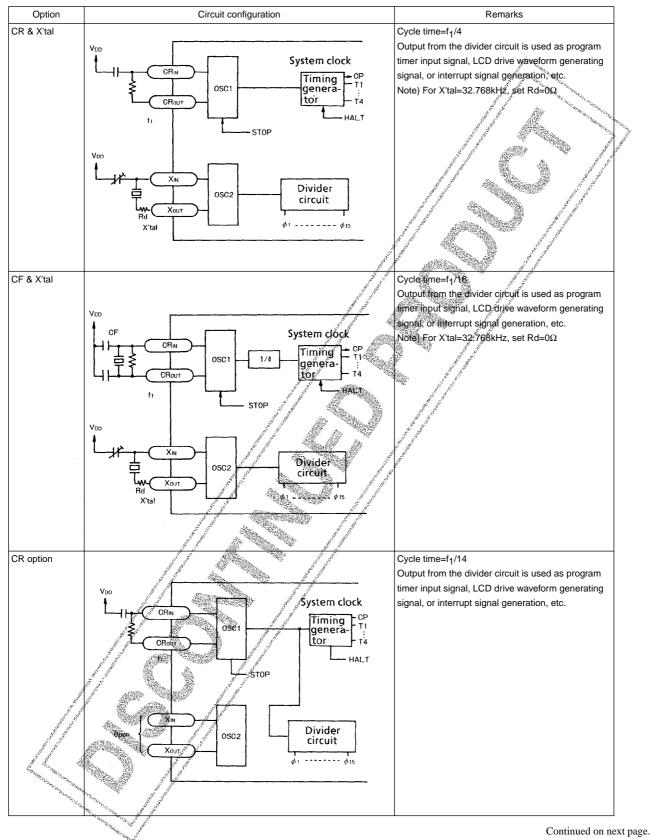
Application Circuit – Example (1/3 bias – 1/3 duty)

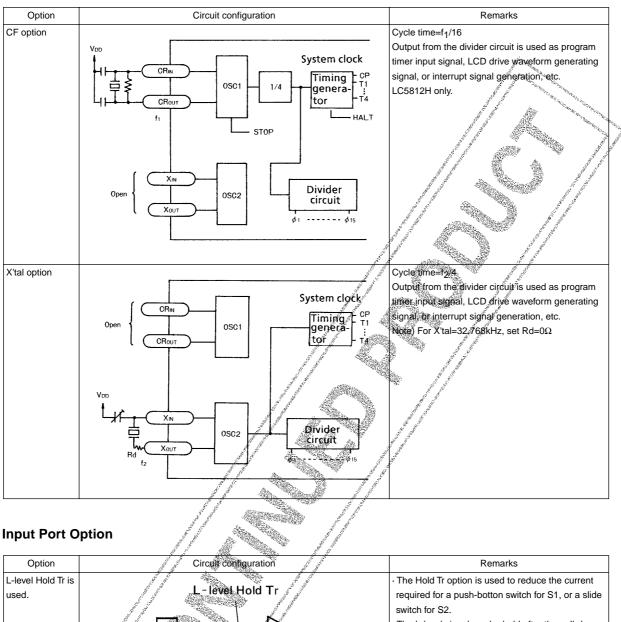
Pin Layout

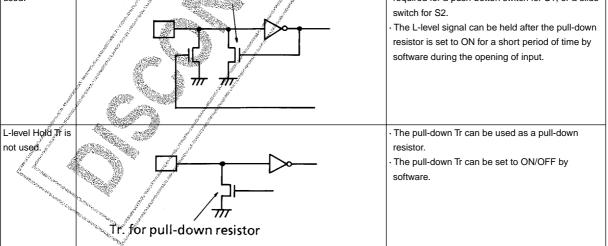
Pad name and coordinates

	QI	P80 pin arr	angement]		QI	P80 pin arr	angement		
	Pad	Pad	Х	Y			Pad	Pad	Х	Y	
	No.	Name	(μm)	(μm)			No.	Name	(μm)	(μm)	
72	1	V _{DD}	-3581	+ 214		32	43	TEST2	+ 3581	+ 878	a second and a second
73	2	X _{IN}	-3581	+ 3		33	44	TEST1	+3581	+1105	
74	3	XOUT	-3581	- 176		34	45	M4	+3581	+1285	
75	4	CRIN	-3581	- 369		35	46	M3	+ 3581	+1465	
76	5	CROUT	-3581	- 549		36	47	M2	+ 3581	+ 1645	
77	6	S3	-3581	- 1048	1	37	48	M1	+ 3581	+1825	
78	7	P1	-3581	-1228		38	49	S2	+ 3581	+2005	
79	8	P2	-3581	-1408		39	50	S1	+3581	+2317	
80	9	P3	-3581	- 1588		40	51	CUP2	+ 3581	+2497	1 20 1 20 1 1
1	10	P4	-3581	-2380		-	52	TEST	+ 3581	+2696	
2	11	COM2	-3581	-2696		41	53	CUP1	+3300	+2696	1/
3	12	COM3	-3367	-2696		42	54	Seg	+ 3059	+2696 🔊	11
4	13	Seg	-2823	-2696		43	55	Seg	+2764	+2696	V 11
5	14	Seg	-2528	-2696		44	56	Seg	+2469	+2696	
6	15	Seg	-2233	-2696		45	57	Seg	+2174	+2696	and the second
7	16	Seg	-1938	-2696		46	58	Seg	+1878	+ 2696	
8	17	Seg	-1643	-2696		47	59	Seg	+ 1583	4 2696	
9	18	Seg	-1347	-2696		48	60	Seg	+1288	+2696	
10	19	Seg	-1052	-2696		49	61	Seg	+ 993	+2696	No. 11
11	20	Seg	- 757	-2696		50	62	Seg	4 6 87	+2696	
12	21	Seg	- 462	-2696		51	63	Seg	+ 381	+2696	
13	22	Seg	- 156	-2696		52	64	Seg 🥖	+ 75	+ 2696	NY JA JA
14	23	Seg	+ 150	-2696		53	65	Seg 🖉 🦯	- 231	+2696	
15	24	Seg	+ 456	-2696		54	66	Seg	- 537	+2696	Jø J
16	25	Seg	+ 762	-2696		55	67	Seg	- 843	+2696	and a second
17	26	Seg	+1068	-2696	1	56	68	Seg	- 1149	+ 2696	l f
18	27	Seg	+1374	-2696		57	69	Seg 🎡	- 1455	+ 2696	¢ j
19	28	Seg	+1680	-2696		58	⁷⁰	Seg	-1761	+2696	
20	29	Seg	+1986	-2696		59,	71	Seg	- 2067	+2696	
21	30	Seg	+2292	-2696		60	72	Seg	-2373	+ 2696	
22	31	Seg	+2598	-2696		61	73	Seg 🔬	-2679	4 2696	
23	32	Seg	+2904	-2696		62	74	Seg 🕺	-2985	# 2696	
24	33	Seg	+3210	-2696		63	75	COM1	- 3581	+ 2696	
25	34	TEST3	+3581	-2696	A STATE STATE	64	76	\$4	- 3581	+2101	
-	35	TEST	+3581	- 1795	and all	65	77	CNT1	-3581	+ 1849	
-	36	TEST	+3581	- 1584	and the second se	66	78	GNT2	-3581	+1298	
26	37	K4	+3581	-1402	ui'	67	79	LIGHT 🖉	- 3581	+1114	
27	38	К3	+3581	- 1049		68	80	ALARM	- 3581	+ 934	
28	39	K2	+3581	- 868		69	81	V _{SS3}	- 3581	+ 754	
29	40	K1	+3581	- 515		70	82	VSS2	- 3581	+ 574	
30	41	RES	+3581	- 335	42.000 2004 - 42.465	71	83 ۽	VSS1	- 3581	+ 394	
31	42	INT	+3581	+ 698			. Start	u.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			

• The values (X, Y) indicate the coordinates of each pad center with the center of the chip as the origin. • The TEST terminal should be open during normal operation. • If the chip is used, the substrate must be tied to V_{DD} .


Pin Function


Terminal name	Input/ Output	Circuit configuration	Function	Option	Status during rese
X IN	Input		Connects 32.768kHz or 65.536kHz crystal between X _{IN} and X _{OUT} for oscillation. Used for the timer reference clock and system	(1) For 32K (2) For 65K * Option (2) is available only on the	
(OUT	Output	₽ <mark>ЧŢ_</mark> XOUT VSS2	clock. X_{OUT} incorporates a 20pF capacitor to V_{DD} .	LC5812H.	A STANDARD AND A STANDARD AND AND AND AND AND AND AND AND AND AN
51 52 53 54	Input	mask option	Input-dedicated port. Has a 7ms or 32ms chatter removal circuit. By applying V_{DD} to S1 through S4 simultaneously, the internal IC devices are reset (mask option). (The chatter removal time is for the 32.768kHz option.)	 Selection of L-level Hold Tr. Use of initial reset by simultaneous application of Von to St through S4. 	Pull-down esistances on during reset.
22 23 24 W1 W2 W3 W4	Input/ Output	A Control Cont	 I/O port with mode switched by instructions to perform the following operations : (1) Input port : Writes data in RAM. (2) Output port : Outputs data from RAM. 	Selection of L-fevel Hold Tr	de ^{de}
<1 <2 <3 <4	Input	mask option	 (1) Used to send data to RAM via 7ms or 32ms chatter removal circuit. (2) Is able to operate the decimal counter in the IC circuit with a K2 and K4 signal, according to instruction. (The chatter removal time is for the 32.768kHz option.) 	Selection of L4evel Hold Tr.	
NT	Input	mask option	Controls the external intertupt request. (The mask option interflocks with port K.)	Selection of L-level Hold Tr.	
RES	Input	vpb vpb option	Resets the internal IC devices	 (1) Reset at the H-level (with pull-down resistor) (2) Reset at L-level (with pull-up resistor) 	
CNT1 CNT2	Output	-TVB	Oùtput-dedicated port	 (1) "L" output during reset. (2) "H" output during reset. * Options 1 and 2 can be specified for each of CNT1 and CNT2. 	"L" or "H" output (according to mask option).
IGHT	Øutput		Output-dedicated port. Suitable for outputting the signals which drive the light transistor.	(1) "L" output during reset.(2) "H" output during reset.	"L" or "H" output (according to mask option).
		$\geq //$		Co	ontinued on next pa

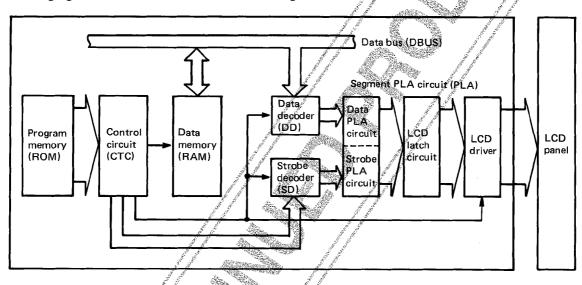

Terminal name	Input/ Output	Circuit configuration	Function	Option	Status during reset
ALARM	Output		Output-dedicated port. Is able to output a 4kHz, 2kHz, or 1kHz modulating signal, according to instruction. Can also output nonmodulating signals. (The modulating frequency is for the 32.768kHz option.)	 (1) "L" output during reset. (2) "H" output during reset. 	"L" or "H" output (according to mask option).
V _{DD}			(+) supply voltage terminal.	// 《��	
V _{SS3} V _{SS2} V _{SS1}			V_{SS2} is a supply terminal. V_{SS1} and V_{SS3} are used to supply LCD driving power.		Star and a second s
CUP1 CUP2			Connection terminal for voltage rise (fall) capacitor.		A CONTRACT OF
COM1 COM2 COM3	Output		Output port for common electrodes of LCD panel. Use of terminals varies. (The alternating frequency is for the 32.768kHz option.) Static 1/2 duty COM1 O COM2 O COM3 O Alternating requency 32Hz 32Hz 32Hz	(1) Lighting specification Static 1/2 bias 1/3 duty Duplex 1/3 bias 1/3 duty	
Segment driver (A group)	Output	A potion option	LCD panel segment output port. • The terminal can be switched to the output dedicated port dependeing on the mask option • If the internal IC devices are reset, the static lighting signal is fed to COM1 through COM3 and to each of the LCD segment outputs, and all LCD panel segments do on or go off. (on/off : to be specified by mask option). • The segment PLA system is used to draw all patterns on the LCD panel.		To be specified by mask option ① Lighted mode · Lighted mode (LCD use) · H-level (DC use) ② Unlighted mode · Unlighted mode (LCD use) · L-level (DC use)
Segment driver (B group)	Output		LCD panel segment output port. The terminal can be switched to the output dedicated port dependeing on the mask option. If the internal IC devices are reset the static lighting signal is fed to COM1 through COM3 and to each of the ECD segment outputs, and all LCD panel segments go on or go off. (on/off : to be specified by mask option). The segment PLA system is used to draw all patterns on the LCD panel.		To be specified by mask option ① Lighted mode (LCD use) · H-level (DC use) ② Unlighted mode (LCD use) · L-level (DC use)
TEST3 TEST TEST2 TEST1 TEST CR IN CR OUT			Test terminals (the user should not use these terminals). CB oscillation port. The oscillation can be stopped by the HOLD instruction.		

Note) \bigoplus Indicates the connection to V_{SS2} .

Oscillation Circuit Option

These options are provided for the S, K, M, and P ports. Be sure to specify NOT USED for the M or P port when using it as an output port.

LCD Output Options


LCD output options for the LCD drive, the CMOS output port and the Pch open drain can be selected.

Option	Output Form
LCD drive	Terminal for LCD segment drive. The drive method is determined according to the LCD lighting system specified separately. The LCD lighting system is common to all terminals, and can be selected from among the static, duplex, 1/2 bias-1/3 duty and 1/3 bias-1/3 duty methods.
CMOS output port	General-purpose CMOS type output port.
Pch open drain output port	General-purpose Pch open drain type output port. Usable according to the PLA option for the predetermined ports.

Alternating waveform for the LCD driver for LCD output is generated by hardware logica.

Segment PLA Circuit

The following figure is a schema of the structure of the segment PLA circuit.

The contents of data memory are sent to the LCD latch circuit for display either as is or after being decoded by the data decoder. The PLA circuit is used to rearrange the input data to output it to the display latch. With this circuit, data memory can be edited to suit LCD panel specifications without software processing. The PLA circuit can be specified by ROM for PLA, which is supplied with program ROM.

Alarm Output

The following frequency divider output can be used directly as an alarm output :

- 1) Output signal either as ϕ 3 or ϕ 4 or ϕ 5.
- 2) Any combination output signal at $\phi 10/\phi 11$, $\phi 12$, $\phi 13$, $\phi 14$ and $\phi 15$.

3) Modulating output signal of 1) or 2).

These signals can be output by software.

 ϕN indicates the output at the Nth step of the oscillator frequency divider.

Resetting Internal logic

There are three functions for resetting internal logic :

- 1 Built-in power-ON clear circuit
 - Use of this option can be determined by the mask option.
- 2 Reset terminal **RES**
- ③ Simultaneous operation of S1 through S4
 - Use of this option can be determined by the mask option.

These reset functions are explained below.

1) Built-in power-ON clear circuit

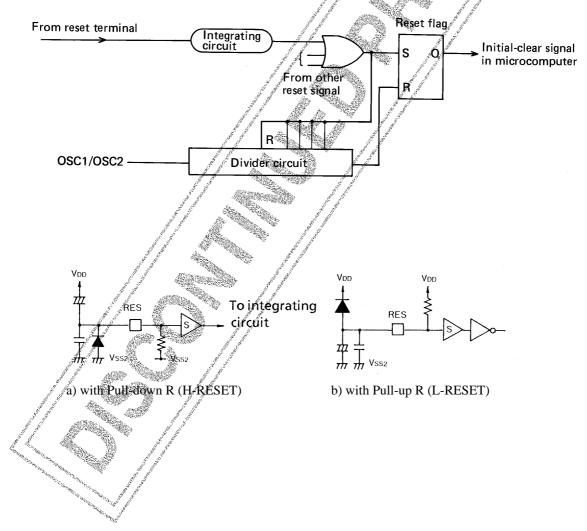
The initial-clear circuit provided in the microcomputer automatically operates and resets internal logic when power is turned on. This function is very useful in that it can be activated without external devices. But it has the two disadvantages listed below. It is, therefore, recommended that this function be used with other reset functions, or that other methods be used according to applications.

Disadvantages :

a) The circuit may not operate under certain power-rise conditions during the power-ON sequence or due to chatter. b) Malfunctions may take place due to pulse noise in the power or a sudden change in status.

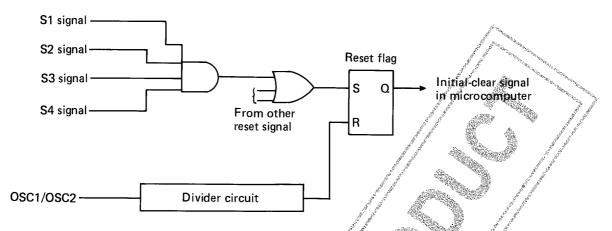
One of the following two reset options can be selected :

INHIBIT:


The built-in power-ON clear circuit is not used Use this option where malfunctions due to pulse noise in the power may take place. The built-in power-ON clear circuit is used.

NORMAL ACTION :

.... This option should be selected only when pulse noise does not affect the power.

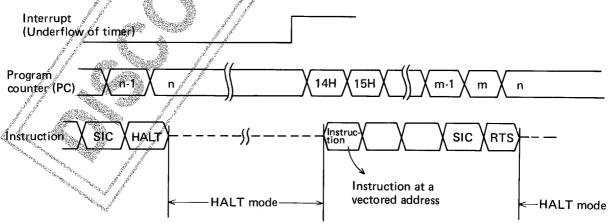

2) Reset terminal RES

When the reset signal is fed to the reset terminal, the reset flag in the microcomputer is set and part of the divider circuit is reset. Internal logic is reset by the internal reset flag, which is reset by the overflow signal from the divider circuit. The reset status of the logic circuit is released and the program countiner starts operating .

3) Simultaneous operation of S1 through S4

By applying V_{DD} level voltage to S1 through S4 simultaneously, internal logic can be cleared (initial clear). (Use of this option can be specified by the mask option.)

Interrupt Function


- Five factors and four vector addresses are provided for the interrupt function.
 - External interrupt terminal (INT)
 - Change of signal to port S or K Same vector address
 - Underflow of programmable timer
 - Overflow of divider circuit
 - Overflow/underflow of decimal UP/DOWN counter

HALT function

- Can stop the CPU's system clock in HALT mode with the HALT instruction.
- Reduces the operating current to the oscillation circuit + HALT release signal + LCD drive circuit current during HALT.
- The following five factors cause HALT release request signals :
 - External interrupt terminal (INT)
 - Change of signal to port S or K³
 - Underflow of programmable timer
 - Overflow of divider circuit
 - Overflow or underflow of decimal UP/DOWN coupter

The factors for the HALT release request signal are the same as those for the interrupt request signal, but the use of any factor can be specified in programs

If an interrupt occurs in HALT mode, the operation called for by the interrupt is performed, and the CPU returns to HALT mode.

HOLD Function

- Can stop the operation of the oscillation circuit (OSC1) in HOLD mode with the STOP instruction.
- Reduces the current drain to the minimum during HOLD because OSC1 and CPU are stopped.

ce	lationship betw	een the oscil	ration option	is and the HC	JLD release functions
	Item	Reset signal (RES/RES)	Interrupt request signal	HALT release request signal	Note
	CR & X'tal option	0	0	0	
	CF & X'tal option	0	×	×	
	CR option	0	×	×	1/1 (19) $1/2$
	CF option	0	×	×	<u> </u>
	X'tal option	×	×	×	HOLD function can not be used.

Relationship between the oscillation options and the HOLD release functions

 \bigcirc : can be used to release HOLD. ×: cannot be used to release HOLD.

Decimal UP/DOWN Counter Function

A hardware function that counts external pulse or the internal reference pulse in decimal potation. One of the following three operations can be selected by software :

- ① The counting of pulses from port K4 with UP and DOWN switched by the signal level of port K2.
- (2) The counting of pulses from port K4 with UP and DOWN switched by the phase difference signal of port K2.
- ③ The counting of divider circuit signals of the oscillator in ascending order. With this function, a chrono counter in units of 1/100 second can be implemented by using a 32.768kHz crystal oscillatior.

Open List

pen List			<i>, , , , , , , , , , , , , , , , </i>		
			LC5812	LC5812H	Remarks
	LCD	lighting method	Static	Static	Select "Unused" when the LCD output ports are
			Duplex	Duplex	all used as general-
			1/2 bias 1/3 duty	1/2 bias 1/3 duty	
			1/3 bias 1/3 duty	1/3 bias 1/3 duty	-
			Unused	Unused	
		S ports (S1 to S4)	L-level Hold Tr is used L-level Hold Tr is not used.	L-level Hold Tr is used.	
	ld Tr	M ports (M1 to M4)	L-level Hold Tr is used. L-level Hold Tr is not used.	L-fevel Hold Tr is used. L-level Hold Tr is not used.	
	L-level Hold Tr	K ports (K1 to K4)	L-level Hold Tr is used.	L-level Hold Tr is used. L-level Hold Tr is not used.	
		INT port	L-level Hold Tr is used L-level Hold Tr is not used.	L-level Hold Tr is used. L-level Hold Tr is not used.	
		P ports (P1 to P4)	L-level Hold Tr is used. L-level Hold Tr is not used.	L-level Hold Tr is used. L-level Hold Tr is not used.	
	Oscill	ator selection	CR & XTAL	CR & XTAL	Do not specify CF on the LC5812, because it is
		11 1 1	CR	CF &XTAL	not allowed to use CF on
	and the second second	/ san Wand	XTAL	CR	the model.
	and the second	n Million wrann		CF	
ţ.				XTAL	
and the second second	Antern functi	al power-on reset on	,Unused Used	Unused Used	
		taneous operation of	Used Unused	Used Unused	
Re		tion of RES polarity	H-level reset (Pull-down) L-level reset (Pull-up)	H-level reset (Pull-down) L-level reset (Pull-up)	
	Selec of out termin polari	put CNT1	H-level during reset (Normal H) L-level during reset (Normal L)	H-level during reset (Normal H) L-level during reset (Normal L)	
	N VICE HILFERD	CNT2	H-level during reset (Normal H) L-level during reset (Normal L)	H-level during reset (Normal H) L-level during reset (Normal L)	
		ALARM	H-level during reset (Normal H) L-level during reset (Normal L)	H-level during reset (Normal H) L-level during reset (Normal L)	
		LIGHT	H-level during reset (Normal H) L-level during reset (Normal L)	H-level during reset (Normal H) L-level during reset (Normal L)	

Specifications

Absolute Maximum Ratings at V_{DD} =0V, 1/2bias, 1/2duty

Parameter	Symbol	Conditions	Terminal	Ratings	Unit			
	V _{SS1}			-4.0 to +0.3	V			
Maximum supply voltage	V _{SS2}	V _{SS2} =V _{SS3}	1	-4.0 to +0.3	V			
Maximum input voltage	V _{IN1}		and the second sec	V _{SS2} -0,3 to +0.3				
Maximum output voltage	VOUT1		Jes John	V _{SS2} =0.3 to +0.3	V			
Operating temperature	Topr			-20 to,+70	°C			
Storage temperature	Tstg			-30 to +125) C			
Allowable Operating Conditions at Ta =-20 to +70°C, V _{DD} =0V								

Allowable Operating Conditions at Ta =-20 to $+70^{\circ}$ C, V_{DD}=0V

Parameter	Symbol	Conditions	Terminal	min	Ratings	max	Unit
Power supply voltage	V _{SS} 1		and and	3.6		-1.3	V
Fower supply voltage	V _{SS} 2	V _{SS2} =V _{SS3}		-3.6		2.0	V
	V _{IH1}		RES	0.25×V _{SS2}	and a start of the second	0	V
Input high-level voltage	V _{IH2}		Input terminals other than RES	0.3×V _{SS2}	and the second		V
	V _{IL1}		R₽S∕	V _{SS2}	A. A	0.75×V _{SS2}	V
Input low-level voltage	V _{IL2}	and the second se	Input terminals other than RES	V _{SS2}	e de la companya de l	0.7×V _{SS2}	V
Operation frequency	fopg1	V _{SS2} =-2.0 to -3.6V	XIN/XOUT	/ 32		33	kHz
	fopg2	V _{SS2} =-2.3 to -3.6V	CRIN/CROUT	J 17	33	50	kHz

Electrical Characteristics at Ta = -20 to $+70^{\circ}$ C, $V_{pD}=0$ V

Deremeter	Symbol	Conditions	Terminal		Ratings		Unit
Parameter	Symbol		reminar	min	typ	max	Unit
	R _{IN1A}	V _{SS2} ≠-2.9V, V _{IN} ≠0.8V _{SS2}	Level hold 7r *1, Fig. 1	50		500	kΩ
	R _{IN1B}	V\$\$2=-2.9V, VIN=VDD	L-level pull in Tr *1, Fig. 1	200	500	2000	kΩ
Input resistance	R _{IN2A}	V _{SS2} =−2,9V, V _{IN} =0.8V _{SS2}	L-level hold Tr *2, Fig. 1	50		500	kΩ
	R _{IN2B}	V _{SS2} =-2.9W, V _{IN=} V _{DD}	L-level pull-in Tr *2, Fig. 1	200		2000	kΩ
	R _{IN3}	V\$\$2=2.9V	RES, TEST1, TEST2	10	80	400	kΩ
Output high-level voltage	Уон1	V _{SS2} =-2.4V I _{OH} =-0.4mA	ALARM, LIGHT, CNT1, CNT2	-1	-0.3		V
Output low-level voltage	VOLA	VSS2=-2.4V, IQL=0.4mA	ALARM, LIGHT, CNT1, CNT2		V _{SS2} +0.3	V _{SS2} +1	V
Output high-level voltage	^V он2	V _{SS2} =−2.4V, 1 _{ØH} =−90µA	Port M, port P	-1	-0.3		V
Output high-level voltage	VOH3	V _{SS2} =-2,4V,1 _{OH} =-50µA	Port M, port P	-0.6	-0.2		V
Output low-level voltage	VOL3	V _{SS2} =+2,4V, I _{OL} =0.1mA	Port M, port P		V _{SS2} +0.3	V _{SS2} +1	V
Output high-level voltage	V _{OH4}	V _{SS2} =-2.4V, I _{OH} =-20µA	Segment	-1	-0.3		V
Output high-level voltage	V _{OH5}	V _{SS2} =–2.4V, J _{OH} =–0.4µA	PAD No. 13 to 21, 54 to 61	-0.2			V
Output low-level voltage	V _{OL4}	V _{SS2} =-2.4V, I _{OL} =40µA	QIP80 pin number		V _{SS2} +0.3	V _{SS2} +1	V
Output low-level voltage	V _{OL5}	V _{SS2} =–2.4V, I _{OL} =0.4µA	4 to 12, 42 to 49			V _{SS3} +0.2	V
Output high level voltage	VOHe	V _{SS2} =-2.4V, I _{OH} =-5µA	Segment	-1	-0.3		V
Output high-level voltage	V _{ÓH7}	V _{SS2} =-2.4V, I _{OH} =-0.4µA	PAD No. 22 to 33, 62 to 74	-0.2			V
Output low-level voltage	VOL6	V _{SS2} =–2.4V, I _{OL} =20µA	QIP80 pin number		V _{SS2} +0.3	V _{SS2} +1	V
Output low-level voltage	VOL7	V _{SS2} =-2.4V, I _{OL} =0.4µA	13 to 24, 50 to 62			V _{SS2} +0.2	V
Output high-level voltage	V _{OH8}	V _{SS2} =2.4V, I _{OH} =4µA	Common 1-2	-0.2			V
Output middle-level voltage	VOM	V_{SS2} =-2.4V, I_{OH} =-4 μ A, I_{OL} =4 μ A	Common 1-2	V _{SS2/2} -0.2		V _{SS2/2} +0.2	V
Output low-level voltage	V _{OL8}	V _{SS2} =2.4V, I _{OH} =4µA	Common 1-2			V _{SS2} +0.2	V
Output voltage	V _{SS1}	V _{SS2} =-2.9V	C1=C2=0.1µF, fopg=32.768kHz			-1.35	V
Power supply current	I _{DD}	V _{SS2} =–2.9V, Ta=25°C, STOP	C1=C2=0.1 μ F, CI=25k Ω , fopg=32.768kHz, Co=Cg=20pF Fig.2			5	μA

Continued on next page.

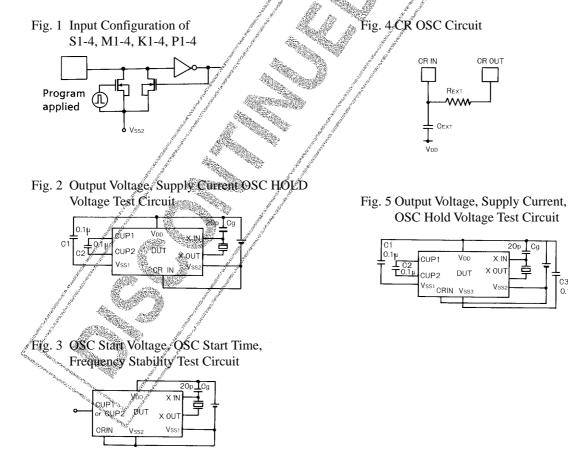
Parameter	Symphol	Conditions	Terminal		Unit		
Parameter	Symbol	Conditions	reminai	min	typ	max	Unit
Oscillation start voltage	Vstt		Co=Cg=20pF Fig.3			2.2	V
Oscillation hold voltage	IV _{HOLD}		Co=Cg=20pF Fig.3		1 marsh	2.0	V
Oscillation start time	tstt	V _{SS2} =-2.9V	Co=Cg=20pF Fig.3	,	a principal and	10	s
Oscillation correcting capacity	20P	V _{SS2} =-2.9V	XOUT pin	18	22.	26	pF
CR oscillation characteristics	fCR	V _{SS2} =-2.3V to -3.6V	R _{EXT} =510kΩ, C _{EXT} =30pF Fig. 4	16 Mar 16	33	50	kHz
Specifications Absolute Maximum Ratii	a de de la composition de la compositio			to and the second			

Specifications

Absolute Maximum Ratings at V_{DD} =0V, 1/2bias, 1/3duty

Parameter	Symbol	Conditions	Terminal	Ratings	Unit
Maximum supply voltage	V _{SS1}		1	• -4.0 to +0.3	V
	V _{SS2}	V _{SS2} =V _{SS3}		4.0 to +0.3	V
Maximum input voltage	VIN1	Ĵ.		V _{\$2} -0.3 to +0.3	V
Maximum output voltage	VOUT1	and the second	MARKS NOW	NSS2-0.3 to +0.3	V
Operating temperature	Topr			–20 to +70	°C
Storage temperature	Tstg		<u>k. (1</u>	-30 to +125	°C

Allowable Operating Conditions at Ta = -20 to $+70^{\circ}$ C, $V_{DD}=0$ V


Parameter	Symbol	Conditions	Terminal	Ratings			Unit
	Symbol		i en initiaria	min	typ	max	Unit
Power supply voltage	V _{SS} 1	and a second second		-3.6		-1.3	V
	V _{SS} 2	V _{SS2} =V _{S83}		-3.6		-2.0	V
				-5.0		-3.9	V
H-level input voltage	VIH1		RES	0.25×V _{SS2}		0	V
	V _{IH2}		Input terminals other than RES	0.3×V _{SS2}			V
L-level input voltage	V _{IL1}		RES	V _{SS2}		$0.75 \times V_{SS2}$	V
	V _{IL2}		Input terminals other than RES	V _{SS2}		0.7×V _{SS2}	V
Operation frequency	fopg1	V _{SS2} =-2.0 to -3.6V	XIN/XOUT	32		33	kHz
	fopg2	V _{SS2} =-2.3 to3.6V	CRIN/CROUT	16	33	50	kHz

Electrical Characteristics at Ta =–20 to +70 °C; V_{DD}=0 V

Parameter	Symbol	Conditions	Terminal		Unit		
Falameter	Symbols	reminai	min	typ	max	Unit	
State of the second	RINTA	V _{SS2} =-2,9V, V _{IN} =0.8V _{SS2}	L-level hold Tr *1, Fig. 1	50		500	kΩ
	R _{IN1B}	V _{SS2} =-2.9V, V _{IN=} V _{DD}	L-level pull-in Tr *1, Fig. 1	200	500	2000	kΩ
Input resistance	RIN2A	VSS2=−2.9V, ∛IN=0.8VSS2	L-level hold Tr *2, Fig. 1	50		500	kΩ
//	R _{IN2B}	V _{SS2} =-2.9V, V _{IN=} V _{DD}	L-level pull-in Tr *2, Fig. 1	200		2000	kΩ
- // «Cara	R _{IN3}	V _{SS2} =-2.9V	RES, TEST1, TEST2	10	80	400	kΩ
Output high-level voltage	VQH1	V _{SS2} =-2.4V, I _{OH} =-0.4mA	ALARM, LIGHT, CNT1, CNT2	-1	-0.3		V
Output low-level voltage	e ^{der} v ^e VOL1	V _{SS2} =-2.4V, I _{OL} =0.4mA	ALARM, LIGHT, CNT1, CNT2		V _{SS2} +0.3	V _{SS2} +1	V
Output high-level voltage	VOH2	V _{SS2} =-2.4V, I _{OH} =-90µA	Port M, port P	-1	-0.3		V
Output high-level voltage	V _{OH3}	V _{SS2} =-2.4V, I _{OH} =-50µA	Port M, port P	-0.6	-0.2		V
Output low-level voltage	V _{OL3}	V _{SS2} =-2.4V, I _{OL} =0.1mA	Port M, port P		V _{SS2} +0.3	V _{SS2} +1	V
Output high-level voltage	V _{OH4}	V _{SS2} =-2.4V, I _{OH} =-20µA	Segment	-1	-0.3		V
Output high-level voltage	V _{OH5}	V _{SS2} =–2.4V, I _{OH} =–0.4µA	PAD No. 13 to 21, 54 to 61	-0.2			V
Output low-level voltage	V _{OL4}	V _{SS2} =-2.4V, I _{OL} =40µA	QIP80 pin number		V _{SS2} +0.3	V _{SS2} +1	V
Output low-level voltage	V _{OL5}	V _{SS2} =-2.4V, I _{OL} =0.4µA	4 to 12, 42 to 49			V _{SS3} +0.2	V

Continued on next page.

Parameter	Symbol	Conditions	Terminal	Ratings			Unit
Output high-level voltage (at CMOS output port)	V _{OH6}	V _{SS2} =-2.4V, I _{OH} =-5µA	Segment	-1	-0.3		V
Output high-level voltage	V _{OH7}	V _{SS2} =-2.4V, I _{OH} =-0.4µA	PAD No.	-0.2			v
Output low-level voltage (at CMOS output port)	V _{OL6}	V _{SS2} =-2.4V, I _{OL} =20µA	22 to 33, 62 to 74 QIP80 pin number	1	V _{SS2} +0.3	V _{SS2} +1	V
Output low-level voltage	V _{OL7}	V _{SS2} =-2.4V, I _{OL} =0.4µA	13 to 24, 50 to 62	all at	f sta	V _{SS2} +0.2	V
Output high-level voltage	V _{OH8}	V _{SS2} =-2.4V, I _{OH} =-4µA	Common 1-3	-0.2		and the second second	V
Output middle-level voltage	V _{OM}	V _{SS2} =-2.4V, I _{OH} =-4µA, I _{OL} =4µA	Common 1-3	V\$\$\$2/2-0.2		V _{SS2/2} +0.2	V
Output low-level voltage	V _{OL8}	V _{SS2} =-2.4V, I _{OL} =4µA	Common 1-3		A.	V _{SS3} +0.2	V
Output voltage	V _{SS1}	V _{SS2} =-2.9V	C1=C2=0.1µF, fopg=32.768kHz		Ang St	-1.35	V
Power supply current	I _{DD}	V _{SS2} =–2.9V, Ta=25°C, STOP	C1=C2=0.1 μ F, CI=25k Ω , fopg=32.768kHz, Co=Cg=20pF Fig.5			State Stat	μA
Oscillation start voltage	Vstt		Co=Cg=20pF Fig.3		and the second second	2.2	V
Oscillation hold voltage	V _{HOLD}		Co=Cg=20pF Fig 3		and a second	2.0	V
Oscillation start time	tstt	V _{SS2} =-2.9V	Co=Cg=20pF Fig.3		Street and the second	10	s
Oscillation correcting capacity	20P	V _{SS2} =-2.9V	XOUT pin	18	²²	26	pF
CR oscillation characteristics	fCR	V _{SS2} =-2.3V to -3.6V	REXT=510kΩ CEXT=30pF Pig. 4 CBM CROUT First Ef CX CRUT Comparison Ef Comparison Ef	And a start of the	33	50	kHz

Unit (capacitance : F)

СЗ 0.1µ

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co., Ltd. stoves to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only ; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of November, 2001. Specifications and information herein are subject to change without notice.