CMOS IC

LC4104C-T2A

LCD Dot Matrix Segment Driver for STN Displays

Preliminary

Overview

The LC4104C-T2A is a segment driver IC for large-scale dot matrix LCD displays. The LC4104C-T2A latches 160bits of display data transferred from the controller over a 4- or 8-bit parallel interface and generates the LCD drive signals. In conjunction with the LC4102C-T2A common driver, the LC4104C-T2A forms a chip set that can drive large-screen LCD panels.

Features

- High-voltage CMOS (P-sub) process
- LCD drive voltage: 36 V
- Logic system power-supply voltage: 2.7 to 5.5 V
- Maximum fcp: 12 MHz ($V_{DD} = 5 \text{ V} \pm 10\%$),
 - $10 \text{ MHz} (V_{\text{DD}} = 2.7 \text{ to } 4.5 \text{ V})$
- Parallel input circuit can be switched between 4 and 8 bits.
- Output directionality switching
- DISPOFF function (Holds the LCD drive voltage at a fixed level.)
- Display duty ratios: 1/160 to 1/480
- Package: TCP (Tape Carrier Package)

Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.

SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

SANYO Electric Co., Ltd. Semiconductor Company TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110-8534 JAPAN

Block Diagram

Specifications

The following electrical characteristics apply when sealed in a SANYO standard PGA-208 package.

Absolute Maximum Ratings at \mathbf{V}_{SS} = 0 \mathbf{V}

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{DD} max		–0.3 to +7	V
Maximum supply voltage	V _{DDH} max		-0.3 to +40	V
Maximum supply voltage	V _{SS} max		-0.3 to +0.3	V
Input voltage	V _{IN}	D0 to D7, LOAD, CP, R/L, TEST, DISP, M, EIO1, EIO2, BS	-0.3 to V _{DD} + 0.3	V
Input voltage	V0, V2	V0, V2	$V_{DDH} - 7$ to $V_{DDH} + 0.3$	V
Input voltage	V3	V3	–0.3 to V _{SS} + 7	V
Input voltage	V5	V5	-0.3 to +0.3	V
Operating temperature	Topr		-20 to +75	°C
Storage temperature	Tstg		-55 to +125	°C

Note: V0, V2, V3, and V5 must obey the following relationships: $V_{DDH} \ge V0 \ge V2 \ge V_{DDH} - 7$ V, and 7 V \ge V3 \ge V5 \ge V_{SS}.

Allowable Operating Ranges at Ta = –20 to +75 $^{\circ}C,$ V_{SS} = 0 V

Parameter	Symbol	Conditions		Unit		
Parameter	Symbol	Conditions	min	typ	max	Unit
Supply voltage	V _{DD}		2.7		5.5	V
Supply voltage	V _{DDH}		14		36	V
Supply voltage	V _{SS}			0		V
Input high-level voltage	V _{IH}	D0 to D7, LOAD, CP, R/L, M, TEST, DISP, BS, EIO1, EIO2	0.8 V _{DD}		V _{DD}	V
Input low-level voltage	VIL	D0 to D7, LOAD, CP, R/L, M, TEST, DISP, BS, EIO1, EIO2	0		0.2 V _{DD}	V
Input voltage	V0, V2	V0, V2	V _{DDH} - 7		V _{DDH}	V
Input voltage	V3	V3	0		V _{SSH} + 7	V
Input voltage	V5	V5		0		V

Note: V0, V2, V3, and V5 must obey the following relationships: $V_{DDH} \ge V0 \ge V2 \ge V_{DDH} - 7$ V, and 7 V $\ge V3 \ge V5 \ge V_{SS}$.

At power on: First turn on the logic system power supply and then turn on the high-voltage system power supply; alternatively, turn both on at the same time.

At power off: First turn off the high-voltage system power supply and then turn off the logic system power supply; alternatively, turn both off at the same time.

Allowable Operating Ranges at Ta = –20 to +75°C, V_{SS} = 0 V, V_{DD} = 5 V ± 10%

Parameter	Symbol	Conditions		- Unit		
Falameter	Symbol	Conditions	min	min typ		Unit
CP clock frequency	fcp	СР			12	MHz
High-level load pulse width	tw (IdH)	LOAD	50			ns
High-level clock pulse width	tw (cpH)	СР	20			ns
Low-level clock pulse width	tw (cpL)	СР	20			ns
LOAD/CP setup time	tsu (ld)	LOAD, CP	100			ns
LOAD/CP hold time	tho (ld)	LOAD, CP	200			ns
DATA/CP setup time	tsu (cp)	CP, D0 to D7	10			ns
DATA/CP hold time	tho (cp)	CP, D0 to D7	10			ns
EIO input setup time	tsu (ei)	CP, EIO1, EIO2	24			ns
Clock rise time	tr	LOAD, CP*			50	ns
Clock fall time	tf	LOAD, CP*			50	ns

Note: * The clock rise time (tr) and fall time (tf) must obey inequalities ① and ② below.

$$\textcircled{0: tr, tf < \frac{1}{fcp} - tw (cph) - tw (cpl)}{2}}$$

②: tr, tf ≤ 50 ns

Allowable Operating Ranges at Ta = -20 to $+75^{\circ}$ C, $V_{SS} = 0$ V, $V_{DD} = 2.7$ to 4.5 V

Parameter	Symbol	Conditions		- Unit		
Parameter	Symbol	Conditions	min	typ	max	Unit
CP clock frequency	fcp	СР			10	MHz
High-level load pulse width	tw (IdH)	LOAD	50			ns
High-level clock pulse width	tw (cpH)	CP	37			ns
Low-level clock pulse width	tw (cpL)	СР	37			ns
LOAD/CP setup time	tsu (ld)	LOAD, CP	100			ns
LOAD/CP hold time	tho (ld)	LOAD, CP	200			ns
DATA/CP setup time	tsu (cp)	CP, D0 to D7	35			ns
DATA/CP hold time	tho (cp)	CP, D0 to D7	35			ns
EIO input setup time	tsu (ei)	CP, EIO1, EIO2	30			ns
Clock rise time	tr	LOAD, CP*			50	ns
Clock fall time	tf	LOAD, CP*			50	ns

Note: * The clock rise time (tr) and fall time (tf) must obey inequalities ① and ② below.

$$\textcircled{1}{1:tr, tf < \frac{\frac{1}{fcp} - tw (cph) - tw (cpl)}{2}}$$

②: tr, tf ≤ 50 ns

Deservation	O wash al	Querte al		Ratings		1.1 14
Parameter	Symbol	Conditions	min	typ	max	Unit
Input high-level current	IIH	$V_{IN} = V_{DD}$: D0 to D7, LOAD, CP, R/L, M, DISP, EIO1, EIO2, BS, TEST			5	μΑ
Input low-level current	I _{IL} 1	I _{IL} 1 V _{IN} = V _{SS} : D0 to D7, LOAD, CP, R/L, M, DISP, EIO1, EIO2, BS				μA
	I _{IL} 2	V _{IN} = V _{SS} : TEST	-500			1
Output high-level voltage	V _{OH}	I _O = -0.4 mA: EIO1, EIO2	V _{DD} - 0.4		V _{DD}	V
Output low-level voltage	V _{OL}	I _O = 0.4 mA: EIO1, EIO2	V _{SS}		0.4	V
Output on resistance	R _{OUT}	$ \begin{array}{l} V_{\text{DDH}} = 36 \ V^{*1}, \ VO - V_{O} = 0.5 \ V, \ V2 - V_{O} = 0.5 \ V, \\ V_{O} - V3 = 0.5 \ V, \ V_{O} - V5 = 0.5 \ V: \ O1 \ to \ O160 \end{array} $		1	3	kΩ
	I _{DD}	V _{DD} = 2.7 to 5.5 V			5.0	mA
Current drain		V _{DD} = 2.7 to 5.5 V, V _{DDH} = 32 V*2,			2.0	mA
	IDDH	$V_{DD} = 5 V \pm 10\%, V_{DDH} = 36 V$			2.0	mA
	I _{ST}	*3			500	μA

Note: 1. V_O is the voltage applied for an on output, V0 = V_{DDH}, V2 = 18/20 (V_{DDH} - V_{SS}), V3 = 2/20 (V_{DDH} - V_{SS}), V5 = V_{SS} - V_S

2. LOAD = 28 kHz, CP = 10 MHz, M = 75 Hz

Alternatively: No output load and with the inputs $V_{IH} = V_{DD}$ and $V_{IL} = V_{SS}$. 3. The current drain in standby mode. Note that the EIOn pins must be held at V_{DD} .

Switching Characteristics at Ta = -20 to $+75^{\circ}$ C, $V_{SS} = 0$ V, $V_{DD} = 5$ V \pm 10%

Parameter	Symbol	Conditions		Unit			
	Symbol		min	typ	max	Unit	
EIO output delay time	td (eo)	30 pF capacitive load: CP, EIO1, EIO2			40	ns	
LD/EIO output delay time	td (leo)	30 pF capacitive load: LOAD, EIO1, EIO2			70	ns	
LOAD/on delay time	td (ldo)	100 pF capacitive load: LOAD, O1 to O160			3	μs	
M/on delay time	td (mo)	100 pF capacitive load: M, O1 to O160			3	μs	

Switching Characteristics at Ta = -20 to $+75^{\circ}$ C, $V_{SS} = 0$ V, $V_{DD} = 2.7$ to 4.5 V

Parameter	Symbol	Conditions		Linit		
	Symbol	Conditions	min	typ	max	Unit
EIO output delay time	td (eo)	30 pF capacitive load: CP, EIO1, EIO2		ns		
LD/EIO output delay time	td (leo)	30 pF capacitive load: LOAD, EIO1, EIO2			130	ns
LOAD/on delay time	td (Ido)	100 pF capacitive load: LOAD, O1 to O160			3	μs
M/on delay time	td (mo)	100 pF capacitive load: M, O1 to O160			3	μs

Timing Chart

Pin Functions

Symbol	I/O	Function													
		LCD driv	ve outpu	uts											
				Data	DIOD		0	7							
		<u>М</u> Н		Data H	DISP H		On V0	-							
O1 to O160	0	н н			Н		V0	-							
01100100		L		L	Н		V3	1							
		L		Н	н		V5								
		*		*	L		V5								
		*: Don't	care.												
V0	I	V0 level	V0 level drive voltage supply (selected level)												
V2	I	V2 level	V2 level drive voltage supply (unselected level)												
V3	I	V3 level	drive vo	oltage supp	oly (unsele	ected lev	vel)								
V5	I	V5 level	drive vo	oltage supp	oly (selecte	ed level)									
V _{DDH}	_	High-vol	High-voltage system power supply.												
V _{DD}	_	Logic sy	stem po	ower supply	у.										
V _{SS}	_	GND													
DISP	I	LCD off	LCD off function. All outputs go to the V5 level when this pin is low.												
М	I	Alternati	on signa	al input											
		Enable I/O													
510.4		R/L		EIO1 In	EIO2 Out	_									
EIO1 EIO2	1/O 1/O			Out	In	_									
			6	The enable enable out Connected	put from th	ne prece	ding stag	ge.					input is c	onnected	to the
CP	I	Data acc	quisition	clock (falli	ing edge)										
LOAD	I	Data loa	d clock	(falling edg	ge)										
TEST	I	Test inpu	ut. Must	t be tied hig	gh in norm	al use.*									
		Data shift direction setting													
		R/L	BS				O1 1	to O160 o	utputs				7		
				01	02	O3	04	$\rightarrow \dots$	O157	O158	O159	O160			
		L		↑ D7	↑ D6	↑ D5	↑ D4		↑ D3	↑ D2	↑ D1	↑ D0			
			н	O1	02	O3	O4	←	O157	O158	O159	O160	1		
R/L	I	Н		↑ D0	↑ D1	↑ D2	↑ D3		↑ D4	↑ D5	↑ D6	↑ D7			
				01	02	03	04	$\rightarrow \dots$	0157	O158	O159	O160	-		
		L		↑	\uparrow	\uparrow	\uparrow		\uparrow	\uparrow	\uparrow	\uparrow			
			L	D3 01	D2 02	D1 03	D0 04	· · · · ←	D3 0157	D2 0158	D1 0159	D0 0160	-		
		н		↑	\uparrow	\uparrow	\uparrow	→	\uparrow	\uparrow	\uparrow	\uparrow			
				D0	D1	D2	D3		D0	D1	D2	D3			
	1	Parallel	data inp	outs											
D0 to D7		- aranor (

Pin Assignment

A13678

Note: This figure shows the chip pattern surface as seen from abobe. This figure dose not stipulate the TCP package.

Package Dimensions

unit: mm **LC4104C-T2A**

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of February, 2002. Specifications and information herein are subject to change without notice.