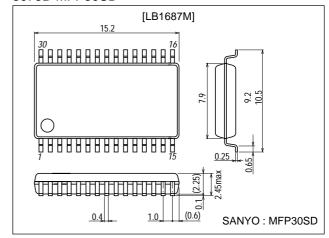


3-Phase Brushless Motor Driver

Overview

The LB1687M is a 3-phase brushless motor driver IC ideally suited for use in VCR capstan motor, drum motor drive applications.


Features and Functions

- 120° voltage linear type.
- Soft switching type eliminating noises caused by current switching and making the value of external capacitors smaller (comparable to those of chip capacitors).
- On-chip FG amplifier.
- On-chip thermal shutdown circuit.
- FG signal can be used to detect the rotational speed of a motor so that the hall amplifier gain is changed in two steps, thus reducing torque ripple and noise.
- Motor drivable at voltage down to motor supply voltage 5V.

Package Dimensions

unit:mm

3073B-MFP30SD

Specifications

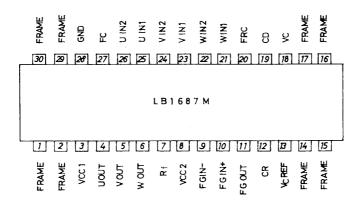
Absolute Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} 1 max		20	V
Waximum supply voltage	V _{CC} 2 max		7.0	V
Output voltage	VOUT.V.W		22	V
Output current	lout		1.5	Α
Allowable power dissipation	Pd max		1.05	W
Operating temperature	Topr		-20 to +75	°C
Storage temperature	Tstg		-55 to +125	°C

Allowable Operating Ranges at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage range	V _{CC} 1		5 to 18	V
Supply voltage range	V_{CC^2}		4.3 to 6.5	V

- Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges,or other parameters) listed in products specifications of any and all SANYO products described or contained herein.


LB1687M

Electrical Characteristics at $Ta = 25^{\circ}C$, $V_{CC}1=12V$, $V_{CC}2=5V$

		T					
Parameter	Symbol	Conditions	Ratings			Unit	
T drameter	Oymboi	Conditions	min	typ	max	Onit	
[Power supply]							
Supply current 1	I _{CC} 1	V _C =0, R _L =∞		17	30	mA	
Supply current 2	I _{CC} 2	V _C =0		6.5	9.5	mA	
[Output]							
Output saturation voltage	V _{O(sat)} 1	I _{OUT} =0.5A, sink+source		1.6	2.2	V	
Output Saturation Voltage	V _{O(sat)} ²	I _{OUT} =1.0A, sink+source		2.0	3.0	V	
Output TRS withstand voltage	V _{O(sus)}	I _{OUT} =20mA *	20			V	
Output static voltage	V _{OQ}	V _C =0	5.8	6.1	6.4	V	
[Hall input-output]							
Hall amplifier input offset voltage	V _H offset		-5		+5	mV	
Hall amplifier input bias current	I _H bias			1	5	μΑ	
Hall amplifier common-mode input voltage range	V _H ch		1.3		3.7	V	
Hall input-output voltage gain	G _{VHO} 1			56		dB	
Haii input-output voitage gain	G _{VHO} 2			43		dB	
[Control-output]	•						
Control amplifier input impedance							
Control-output drive gain	G _{VCO}		38	41	44	dB	
Control-output CH difference	∆G _{VCO}		-2		+2	dB	
[FG amplifier]	•						
FG amplifier input offset voltage	VFG offset		-8		+8	mV	
Open loop voltage gain	G _{VFG}	f=1kHz		60		dB	
Source output saturation voltage	V _{FG} OU	I _O =2mA	3.7			V	
Sink output saturation voltage	V _{FG} OD	I _O =-2mA			1.3	V	
Common-mode signal rejection ratio	CHR	*		80		dB	
FG amplifier common-mode input voltage range	V _{FG} CH		0		3.5	V	
Phase margin		*		20		deg.	
[Motor detection]				'			
Motor detection amplifier hysteresis width			35	50	65	mV	
CR pin threshold voltage		VCR low to high	2.35	2.5	2.65	V	
[Thermal shutdown]							
Thermal shutdown temperature	T _{SD}	*	150	180	210	°C	
Thermal shutdown hysteresis	ΔT _{SD}	*		15		°C	

Note: * indicates design goals not measured values.

Pin Assignment

Note: All FRAME pins are connected to GND

LB1687M

Truth Table

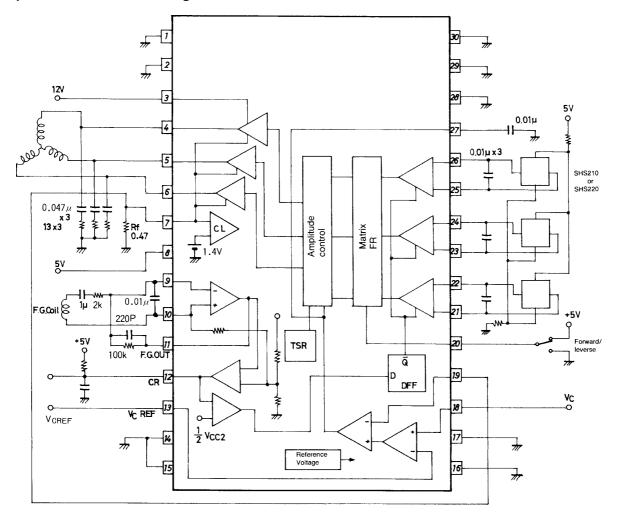
Item	Source → sink		Input	i	Forward/ reverse control	
Source → Sink		U	V	W		
1	$\text{W phase} \rightarrow \text{V phase}$	нь	Н	L	L	
'	$V \; \text{phase} \; \to W \; \text{phase}$	'''	П		Н	
2	W phase \rightarrow U phase		1	1	L	
2 U phase → W phase		Н	_	L	Н	
3	$V \; \text{phase} \; \to \; W \; \text{phase}$		L	Н	L	
3	$\text{W phase} \rightarrow \text{V phase}$	_			Н	
4	$\mbox{U phase } \rightarrow \mbox{V phase}$,	Н		L	
4	$V \; phase \; \rightarrow \; U \; phase$	_		J	Н	
5	$V \; phase \; \rightarrow \; U \; phase$	Н	L	Н	L	
5	U phase \rightarrow V phase	"			Н	
6	U phase \rightarrow W phase	_	Н	Н	L	
6	$\text{W phase} \to \text{U phase}$	_			Н	

Input:

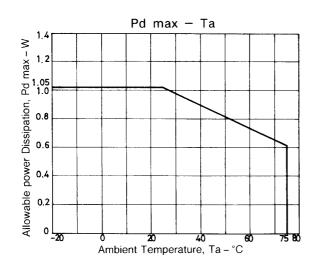
 $High: Each \ phase \ input \ 1 \ is \ more \ than \ 0.2V \ higher \ than \ each$

ase input 2.

Low: Each phase input 1 is more than 0.2V lower than each


phase input 2. Forward/reverse control:

High: 2.0 to V_{CC}2 Low: 0 to 0.3V


Pin Function

Pin	Pin No.	Functions
U _{IN} 1, U _{IN} 2	25, 26	U phase Hall element input pin ; 'H' of logic ; V _{IN} 1>V _{IN} 2
$V_{IN}1, V_{IN}2$	23, 24	V phase Hall element input pin ; 'H' of logic ; V _{IN} 1>V _{IN} 2
W_{IN} , W_{IN} 2	21, 22	W phase Hall element input pin; 'H' of logic; V _{IN} 1>V _{IN} 2
U _{OUT}	4	U phase output pin
Vout	5	V phase output pin
W _{OUT}	6	W phase output pin
V _{CC} 1	3	Power supply pin for applying output
V _{CC} ²	8	Power supply pin for applying voltage section other than output section; this voltage must be
		stabilized to be free from ripple, noise, etc.
Rf	7	Output current detect pin; by connecting Rf across this pin and ground, output current is detected as
		voltage. The result is used to control the overcurrent protection circuit.
C _D	19	Pin for fetching current (voltage) detected with Rf; to take feed back for Rf, the control-output voltage
		gain can be reduced; when not using, ground.
F _C	27	Frequency characteristic correction pin
V _C	18	Speed-phase control pin
		Control is of voltage-controlled type that controls output voltage.
VCREF	13	Control reference voltage.
GND	28	Ground except for output
		The minimum output transistor potential is at Rf pin.
F/RC	20	Foward/reverse control pin
		By setting this pin to high (more than 2V) or low (less than 0.3V), truth value is changed to perform
		forward and reverse rotation.
FGin-, FGin+	9, 10	FG signal input pin
FG _{OUT}	11	FG amplifier output pin
CR	12	The voltage at this pin can be used to change the hall input gain. Connection of an external resistor
		and capacitor makes it possible to detect the rotational speed of a motor and change the hall input-
		output voltage gain in two steps.

Equivalent Circuit Block Diagram

Unit (resistance: Ω , capacitance: F)

LB1687M

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of February, 2001. Specifications and information herein are subject to change without notice.