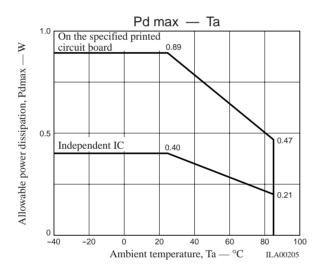


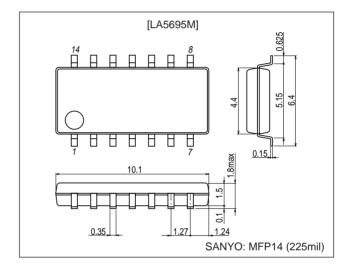
LA5695M


Dual Protection IC for Heating/Cooling and OA Equipment

Overview

The LA5695M is a protection IC for heating/cooling and OA equipment.

Functions


- Supply voltage abnormality detection circuit
- Driver output with built-in output delay circuit
- Can be controlled from 8 input pins.

Package Dimensions

unit: mm

3034A-MFP14

- Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

Specifications Maximum Ratings at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} max		18	V
Maximum output current	I _C max		5	mA
Maximum input voltage	V _{IN} max		18	V
Allowable power dissipation	Pd max	Independent IC, Design guarantee value*	0.4	W
Operating temperature	Topr	Design guarantee value*	-40 to +85	°C
Storage temperature	Tstg	Design guarantee value*	-55 to +150	°C

Note: * The design guarantee values are not measured.

Allowable Operating Ranges at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage range	V _{CC}		5 ± 0.25	V

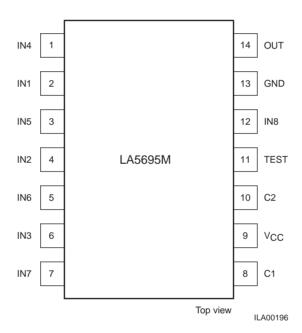
Electrical Characteristics at $Ta = 25^{\circ}C$, $V_{CC} = 5 V$

Parameter	Symbol	Conditions	Ratings			Unit		
raianietei	Syllibol	Conditions	min	typ	max	Offic		
Supply voltage	V _{CC}		3.5	5.0	6.0	V		
Output delay time	T _{DC} 1	With C fixed.	14	15	16	s		
Detection frequency setting range	fw C2		0.5		40	Hz		
Detection frequency	f C2	With C fixed.		1		Hz		
Circuit current	Icc			6.0	10	mA		
[VCC Rise/Fall Detection Block]								
Voltage rise detection level	V _{CC} THH		6		7	V		
Voltage fall detection level	V _{CC} THL		2.5	3.0	3.5	V		
	V _{CC} HYS	When detecting a rising voltage	0.05		1.0	V		
Hysteresis	V _{CC} LYS	When detecting a falling voltage	50		200	mV		
Minimum operating voltage	V _{CC} LV				2.0	V		
[Input Circuits]								
Input pull-up resistor	RPUL IN	IN1, 2, 3, 4, 5, 7, 8	14.0	16.5	19.0	kΩ		
High-level input voltage	V _{IN} H		$0.7 \times V_{CC}$		Vcc	V		
Low-level input voltage	V _{IN} L		-0.3		0.3 × V _{CC}	V		
[Test Pin]						'		
High-level output voltage	V _{TP} H	Pin 11	4.0		Vcc	V		
Low-level output voltage	V _{TP} L	Pin 11	GND		0.3	V		
Output pull-down resistor	RPUL TP	Pin 11 = GND	18.3	21.5	24.8	kΩ		
[Output Delay Circuit]						'		
High-level output voltage	V _{OUT} TH	$R_O = 2.2 \text{ k}\Omega$	4			V		
Low-level output voltage	V _{OUT} L	Pin 14, Output = Low, Isink=2.5 mA			0.4	V		
Output sink current	I _O sink	Pin 14, R _O = 2.2 kΩ	1.8			mA		
Pin 14 leakage current	I _O leak		0		10	μA		
Pin 8 inverted detection voltage	V _{TH8} H		2.3	2.5	2.7	V		
Pin 8 hold clear voltage	V _{TH8} L		0.8		1.2	V		
Pin 8 voltage (hold state)	V _{8LAT}		4.0		5.1	V		
Pin 8 voltage (hold state after a clear operation)	V _{8ULT} 1		2.5	2.7	2.9	V		
Pin 8 voltage (cleared)	V _{8ULT} 2	Pin 8 = 180 Ω	-0.05		0.1	V		
Pin 8 output resistance	R _{OUT} 8		0.8	1	1.4	kΩ		
[Frequency Detection Block]								
Pin 5 high-level input current	I _{IN} 5H	Pin 5 = V _{CC}		0	100	μA		
Pin 5 high-level input voltage	V _{IN} 5H	Pin 5 = open	4.9		5.1	V		
Pin 5 low-level input current	I _{IN} 5L		146	194	243	μA		
Pin 10 high-level voltage	V10H	Pin 5 = GND	4.7		5.1	V		
Pin 10 low-level voltage	V10L	Pin 5 = open	-0.1		0.1	V		
Pin 10 inverted detection voltage	V _{TH} 10		2.3	2.5	2.7	V		
Pin 10 source current	I _{10SRC}	Pin 5 = GND	60		110	μA		
Pin 10 sink current	I _{10SINK}	Pin 5 = open	140		240	μA		

Note: The AC characteristics are target ratings.

LA5695M

Operating Functions Table

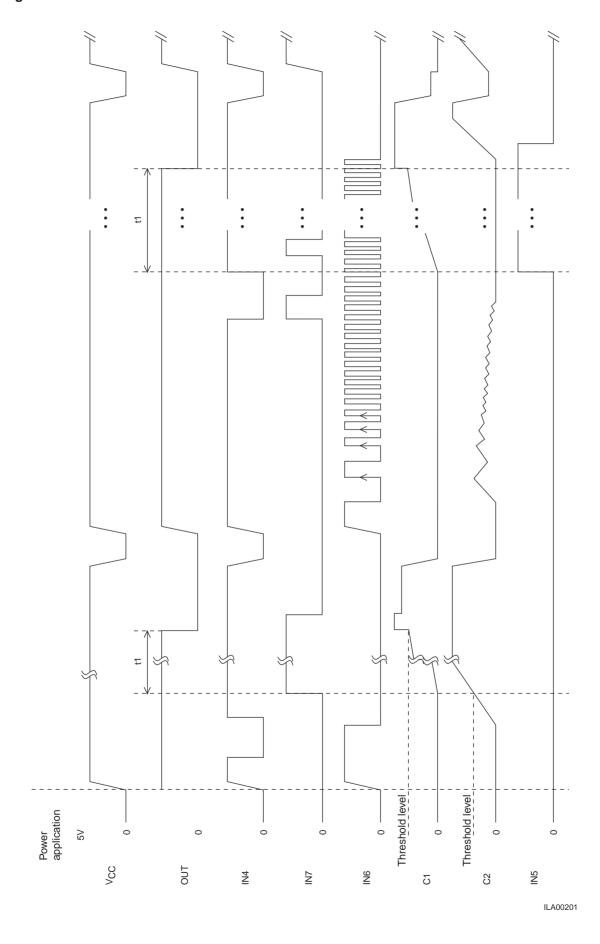

IN1	IN2	IN3	IN4	IN5	IN6	IN7	IN8	V _{CC}	OUT
Н	Н	*	*	*	*	*	*	*	L
Н	*	Н	*	*	*	*	*	*	L
*	*	*	Н	Н	*	*	*	*	L
*	*	*	Н	*	_f_1 !	Н	*	*	L
*	*	*	Н	*	*	*	Н	*	L
*	*	*	*	*	*	*	*	V _{CC} ≥ 6 V	L
								V _{CC} ≤ 3 V	L
Combinations other than the above					Н				

Notes: * The level, high or low, of items marked with an asterisk (*) have no influence on the OUT pin.

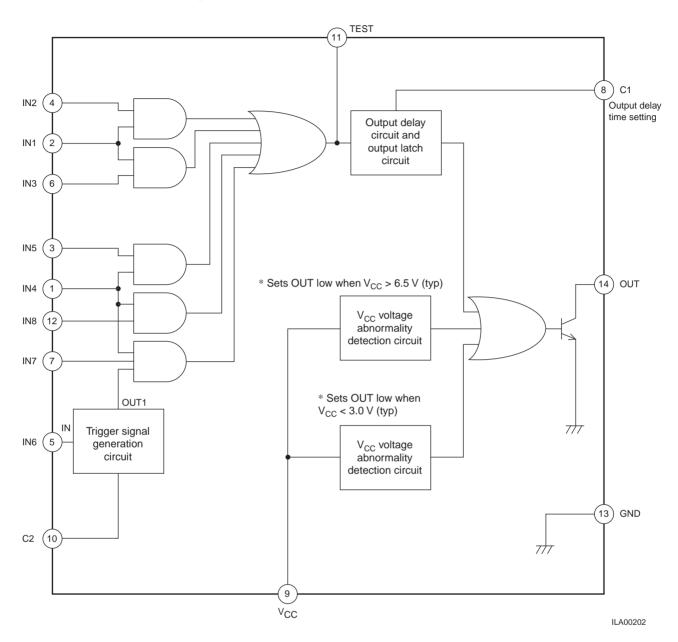
Example: When both IN1 and IN2 are high, the OUT pin will be low, regardless of other inputs.

- ! Items marked with an exclamation mark (!) apply when the input pulse frequency (with a 50% duty) is under the set value.
- .. Items marked with a double dot (..) indicate the state after the delay time has elapsed once the input conditions have been met. OUT indicates the pin 14 output.

Pin Assignment



LA5695M


Pin Functions

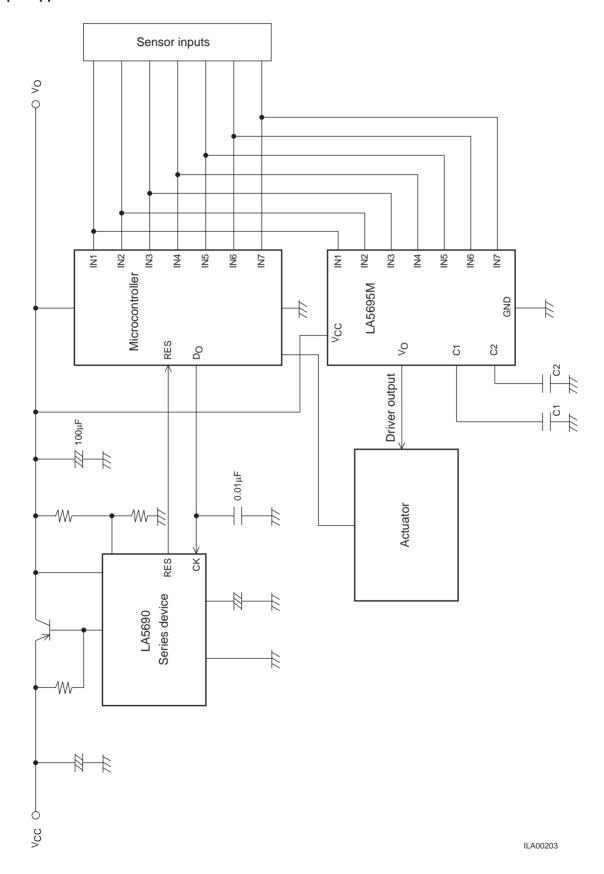
Pin No.	Pin name	Description	Equivalent circuit
2 4	IN1 IN2	Input AND and OR block. The pull-up resistance is 15 k Ω .	ILA00197
2 6	IN1 IN3	These are the same as IN1/IN2.	
1 3	IN4 IN5	These are the same as IN1/IN2.	
7	IN4 IN7	These are the same as IN1/IN2.	
1 12	IN4 IN8	These are the same as IN1/IN2.	
5 10	IN6 C2	IN6: pulse waveform input. The trigger waveform is output from the C2 capacitor (0.1 µF).	12K2) 10K2) 10K2) 10K3 10K3 10K3 10K3 10K3 10K3 10K3 10K3
8	C1	C1 is pulled up by a 220 k Ω resistor and pulled down by 100 μ F capacitor. The comparator switches 15 seconds later at about 1 Hz. Tr1 = 3 S, Tr2 = 13 S	1. Tr2 30000 1. Tr2 2. Sec. 2.
9	V _{CC}	Any condition other than 3.1 V < V _{CC} < 6.7 V is seen as an abnormal state.	
14	OUT	Output pin	
13	GND	Minimum potential for this IC.	
11	TEST	OR circuit output block. The output is pulled down by a 20 $\mbox{k}\Omega$ resistor.	1420 1420 1542 1542 1542 1743 1743 1743 1743 1743 1743 1743 1743

Timing Chart

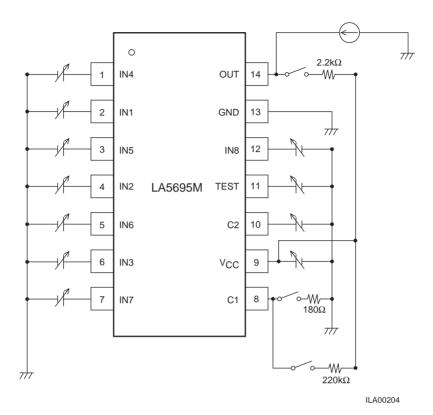
Equivalent Circuit Block Diagram

[Trigger signal generation circuit]

When the input pulse (50% duty) is held low or high, OUT1 is set high. At other times, this circuit generates the trigger signal.


[Output delay circuit and output latch circuit]

The OUT pin is set low when the delay time set by the external capacitor (connected to the output delay time setting pin) elapses after the input goes high. Furthermore, once the output goes low, it is held in that state until the power supply is turned off.


$\left[V_{CC} \text{ voltage abnormality detection circuit}\right]$

These circuits monitor the V_{CC} voltage and set OUT low if the voltage exceeds the set range.

Sample Application Circuit

Test Circuit Diagram

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of November, 2001. Specifications and information herein are subject to change without notice.