

FM NC + MPX Demodulator for Car Stereo Tuners

Overview

The LA3460M is a high performance car stereo tuner IC that includes an FM noise canceller and a stereo multiplex demodulator.

Functions

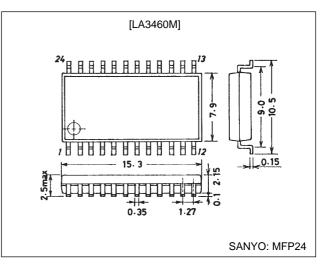
[Noise Canceller Block]

- Built-in low- and high-pass filters
- Noise AGC
- Pilot signal compensation function
- [Multiplex Block]
- Adjustment-free VCO (456 kHz)
- Level follower type pilot canceller
- SNC (stereo noise control)
- HCC (high cut control)
- · Stereo indicator driver
- VCO oscillator stop function

Features

[Noise Canceller Block]

- Improved ignition noise rejection during medium to weak field reception Adoption of a new noise AGC circuit
- Optimized gate time
- High audio quality design with malfunction prevention in the high frequency band and for overmodulated signals Improved dynamic range low-pass and high-pass filters


[Multiplex Block]

- High signal-to-noise ratio and low distortion (stereo S/N ratio: 79 dB, THD: 0.1 %)
- Good high frequency band separation (50 dB at 1 kHz and 30 dB at 10 kHz)
- Adoption of a PLL circuit with an adjustment-free VCO (456 kHz ceramic resonator)
- Improved pilot cancellation level (25 to 30 dB) using a new cancellation circuit
- Built-in 114 kHz and 190 kHz anti-birdie filters
- Adoption of new SNC characteristics to reduce multipath noise
- Reduced printed circuit board space requirements due to the adoption of a mini-flat package (MFP-24)

Package Dimensions

unit: mm

3045B-MFP24

- Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

SANYO Electric Co., Ltd. Semiconductor Bussiness Headquarters TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110-8534 JAPAN

Specifications

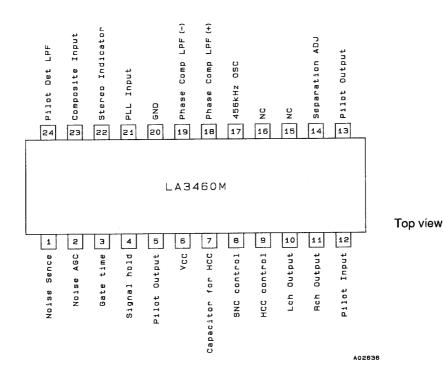
Maximum Ratings at $Ta=25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} max		10	V
Lamp influx current	I _L max		30	mA
Allowable power dissipation	Pd max	Ta = 85°C	490	mW
Operating temperature	Topr		-40 to +85	°C
Storage temperature	Tstg		-40 to +150	°C

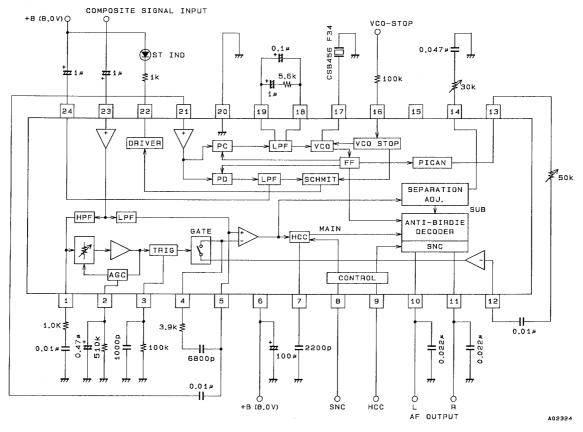
Operating Conditions at $Ta=25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Recommended supply voltage	V _{CC}		8.0	V
Operating supply voltage range	V _{CC} op		7.0 to 9.0	V

Operating Characteristics

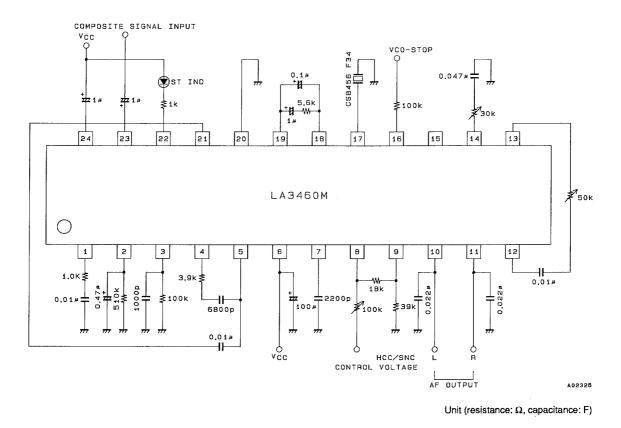

at Ta = 25°C, V_{CC} = 8.0 V, V_{IN} = 300 mVrms, f = 1 kHz, L + R = 90%, pilot = 10% modulation, VSNC (V8) = 3 V, VHCC (V9) = 3 V

		Conditions		Ratings		
Parameter	Symbol		min	typ	max	Unit
Quiescent current	lcco	No input	15	25	35	mA
Channel separation	SEP		30	50		dB
Total harmonic distortion	THD	MONO		0.06	0.5	%
Lamp lit level	VL	Pilot signal	4.0	7.3	13.0	mVrms
Lamp hysteresis	hy			3.0	6.0	dB
Demodulator output	Vo	MONO	260	330	410	mVrms
S/N ratio	S/N	$Rg = 0 \Omega$, MONO	70	85		dB
Channel balance	СВ	MONO 20 \times log (L/R)	-1.0	0	+1.0	dB
Pilot cancellation	PC	30 mVrms pilot signal	10	26		dB
Gate time	tgate	1 μs 100 mVp-o, pulse input, f = 1 kHz		30	60	μs
Noise sensitivity	S _N	1 μs pulse input, f = 1 kHz		30	60	mVp-o
	SNC (1)	V = 1.2 V, separation L \rightarrow R	30	50		dB
SNC	SNC (2)	V = 0.6 V, separation L \rightarrow R	6.0	8.5	11.0	dB
	SNC (3)	V = 0.1 V, separation L \rightarrow R		0.5	2.0	dB
	HCC (1)	V = 1.2 V, f = 10 kHz, left output	-1.0	0	+1.0	dB
HCC	HCC (2)	V = 0.6 V, f = 10 kHz, left output	-8.0	-5.0	-2.0	dB
	HCC (3)	V = 0.1 V, f = 10 kHz, left output	-14.0	-10.0	-6.0	dB

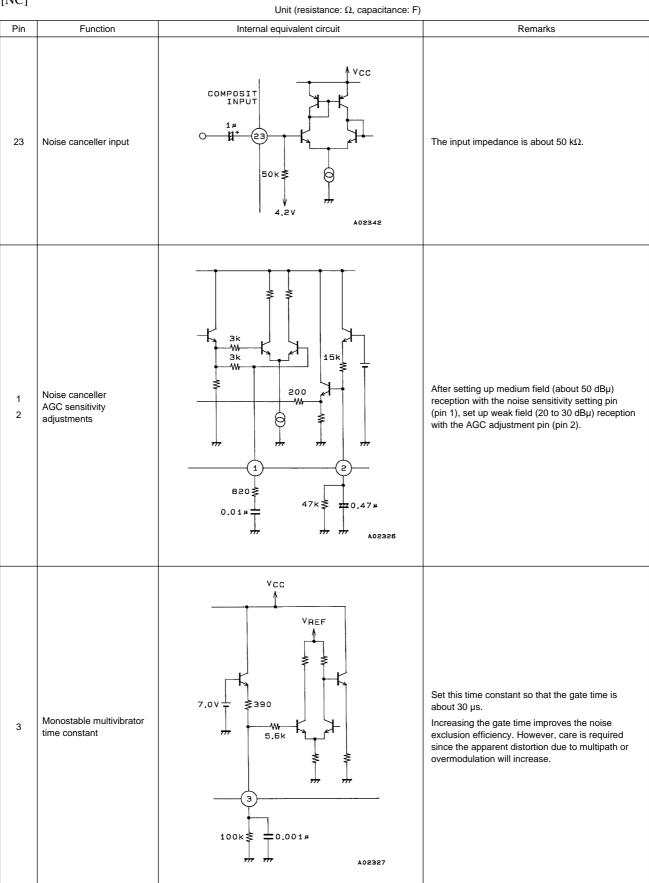

Pin Functions

Pin No.	Function	Description
1	Noise sensitivity	Noises sensitivity adjustment
2	Noise AGC	
3	Gate time	
4	Hold circuit	
5	Pilot output	
6	V _{CC}	$V_{CC} = +8.0 V$
7	HCC capacitor	High cut filter
8	SNC control	
9	HCC control	
10	Left channel output	
11	Right channel output	
12	Pilot canceller input	
13	Pilot canceller output	
14	Separation adjustment	
15	NC	
16	NC	
17	456 kHz oscillator circuit	Ceramic resonator
18	Phase comparator L.P.F (+)	Phase comparator low-pass filter
19	Phase comparator L.P.F (-)	Phase comparator low-pass filter
20	GND	
21	PLL input	PLL input
22	Stereo indicator	Active low
23	Composite input	Composite signal input
24	Pilot detector lpf	

Pin Assignment



Equivalent Circuit Block Diagram

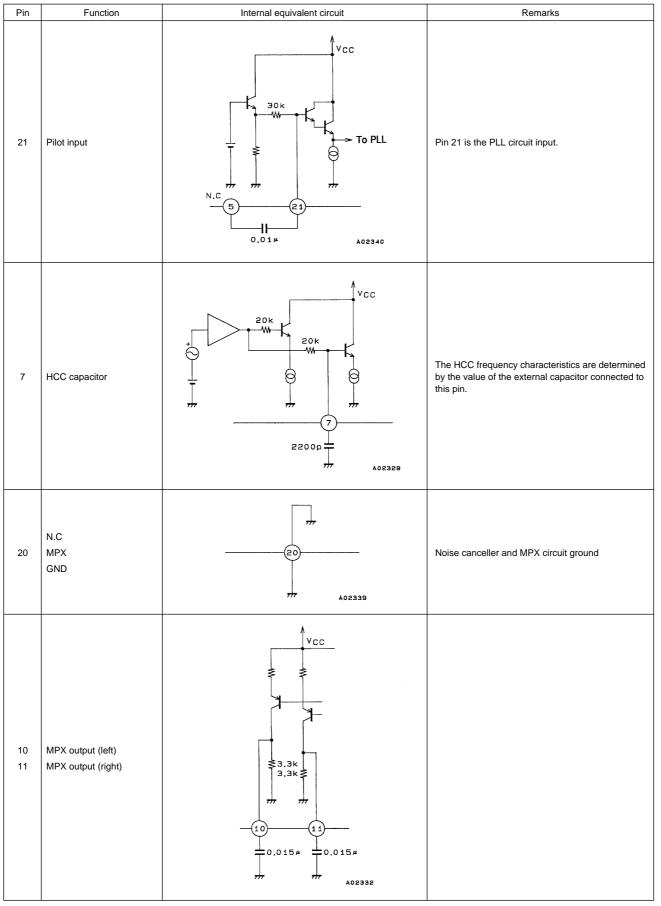

Unit (resistance: Ω , capacitance: F)

Sample Application Circuit

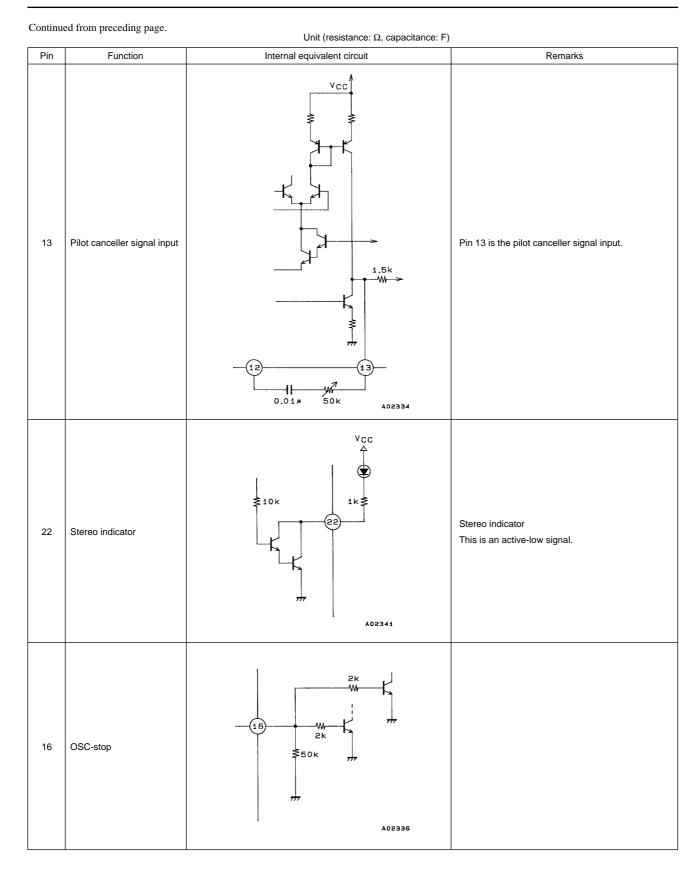
Pin Functions

[NC]

Continued on next page.

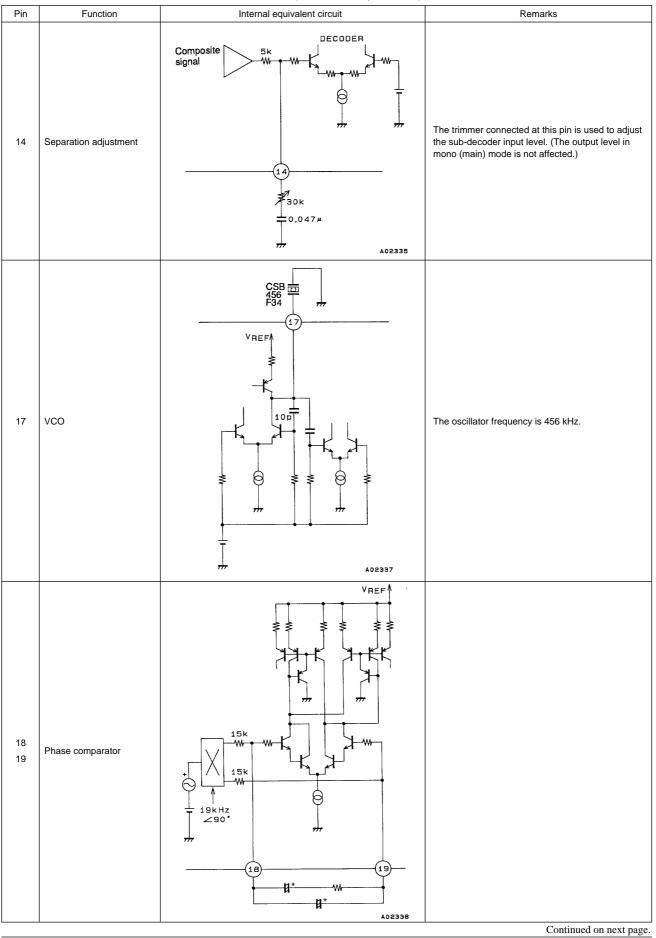

Continued from preceding page.

Unit (resistance: Ω , capacitance: F)


		Unit (resistance: Ω, capacitance: F)	
Pin	Function	Internal equivalent circuit	Remarks
4 5	Memory circuit connection	0.01# 5800p 3.9k (2) () () () () () () () () () (Memory circuit used during noise canceller operation
12	Pilot canceller signal input	Vсс	The pilot signal level requires adjustment due to variations in the IF output level and other parameters.

[MPX]

Unit (resistance: Ω, capacitance: F)

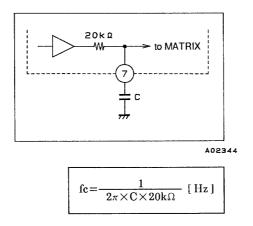

Continued on next page.



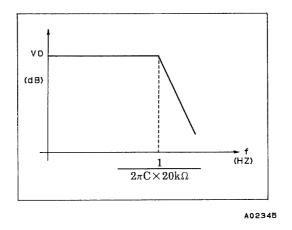
Continued on next page.

Continued from preceding page.

Unit (resistance: Ω , capacitance: F)

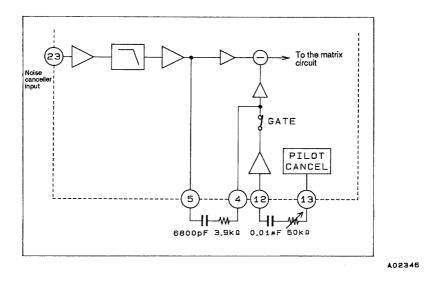


Usage Notes

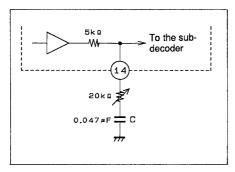

- 1. Noise Canceller Block
 - The noise canceller input (pin 23) has an input impedance of about 50 k Ω . Carefully consider low-area frequency characteristics when determining the value of the coupling capacitor. In an application circuit that uses a 1 μ F capacitor, fc will be about 3 Hz.
 - Pins 1 and 2 are used to set the noise detector sensitivity and the noise AGC level. Setting up these values is easier if the noise sensitivity is set with pin 1 for a medium field strength (an antenna input of about 50 dB μ) first, and then the AGC is adjusted with pin 2 for a weak field strength (20 to 30 dB μ). A point that requires caution is that although the AGC action is improved if the noise detector sensitivity is increased, the weak field sensitivity will, inversely, be lowered.
 - The time constant of the monostable multivibrator (pin 3) will be about 30 μ s when C is 0.001 μ F and R is 100 k Ω . The noise exclusion efficiency increases if the gate time is increased. However, distortion due to multipath and overmodulation is increased.

2. MPX Block

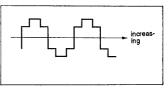
• HCC (high cut control) frequency characteristics (pin 7)



The value of the external capacitor connected to pin 7 determines the output signal frequency characteristics during HCC control.


• Pilot canceller adjustment (pins 12 and 13)

The pin 13 pilot canceller signal waveform is a 19 kHz signal that does not include the third harmonic component, as shown in the figure below. There is no need for a capacitor between pin 13 and ground, since this signal has the same phase as the pilot signal. Since it does not include a third harmonic component, good pilot cancellation in the left and right channel outputs can be obtained by adjusting the variable resistor.



• Separation adjustment (pin 14)

The separation is adjusted by varying the sub-decoder input level with the variable resistor connected to pin 14. When the variable resistor is changed, only the sub-demodulation level is changed, and the mono (main) output level is not changed. The decoder high band separation will not be degraded in the sub-signal frequency band (23 to 53 kHz) if the value of the external capacitor C is made sufficiently small relative to the impedance of the variable resistor.

A02347

A02348

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of August, 1998. Specifications and information herein are subject to change without notice.