

L88R05 Series

5 V, 1 A Voltage-regulator ICs with Reset Function

Overview

The L88R05 Series is a series of low-saturation voltage regulator ICs that are equipped with a function that generates a reset signal when the power supply for a microcontroller system is turned on or off.

Applications

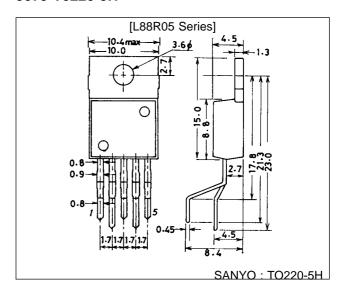
- Prevents malfunction when the microcontroller power supply is turned on or off.
- Designed to handle malfunction caused by momentary power interruptions.
- Suited for portable electronic equipment, mobile electronic equipment, and other battery-powered equipment with little capacity to handle fluctuation in input voltage; also suited for equipment with large fluctuations in the primary power supply.

Functions

 Power supply reset generation function; the reset threshold voltages are ranked.

L88R05C: $V_{RT} = 4.5 \text{ V}$ L88R05D: $V_{RT} = 4.2 \text{ V}$ L88R05E: $V_{RT} = 3.9 \text{ V}$

• 5 V, 1 A output characteristics


Features

- Minimum I/O voltage difference is small (0.5 V typ.), making power conservation possible, and makes smaller heatsink and transformers possible.
- External capacitor for reset signal output delay time adjustment.
- Sink/source reset output provides compatibility with logic circuitry that has an internal pull-down resistor. Active pull-up facilitates noise suppression.
- Various types of protective circuits on chip (fold back current limiting, thermal protection).
- The package is the TO220-5H; this package facilitates designs for the radiation of heat during the mounting process.

Package Dimensions

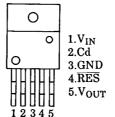
unit: mm

3079-T0220-5H

Specifications

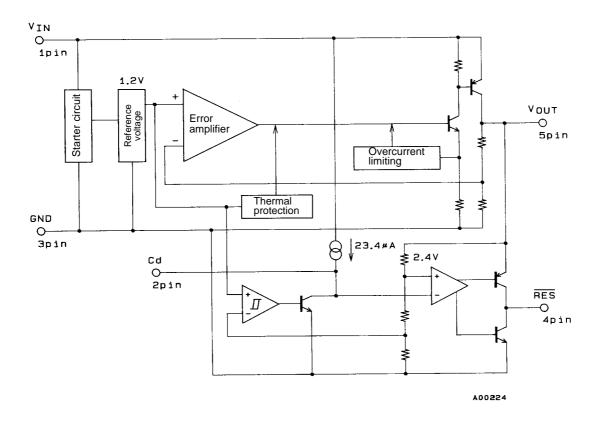
Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Symbol Conditions Ratings		Unit
Maximum input voltage	V _{IN} max		18	V
Reset pin voltage	V _{RES} max		18	V
Allowable power dissipation	Pd max	Ta ≤ 25°C, independent IC	1.75	W
		Tc ≤ 50°C, ideal radiation of heat	20	W
Junction-to-ambiet thermal resistance	Өј-а		71.4	°C/W
Junction-to-case thermal resisitance	Өј-с		5	°C/W
Operating temperature	Topr		-40 to +85	°C
Storge temperature	Tstg		-55 to +150	°C

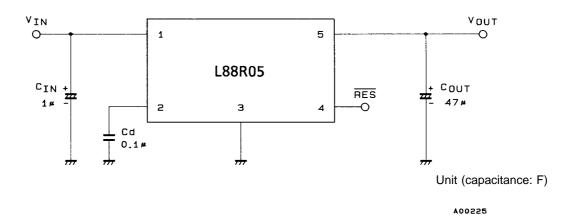

Operating Conditions at Ta = 25 °C

Parament	Symbol	Conditions	Ratings	Unit
Input voltage	V _{IN}		5.6 to 17	V
Output current	lout		0 to 1	А
Reset output source current	I _{ORH}		0 to 200	μA
Reset output sink current	I _{ORL}		0 to 2	mA

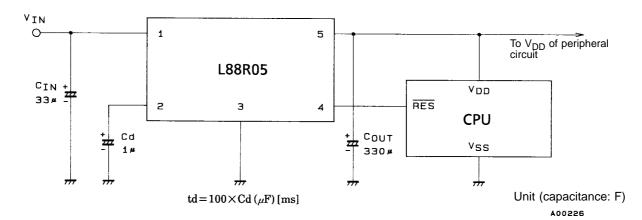
Operating Characteristics at Tj = 25 °C, V_{IN} = 8 V, I_{OUT} = 1 A, C_{OUT} = 47 μA for specified circuits


Parameter	Symbol	Condition	min	typ	max	Unit		
[Power Supply]								
Output voltage	V _{OUT}		4.85	5.0	5.15	V		
Dropout voltage	V _{DROP1}			0.5	1.0	V		
	V _{DROP2}	I _{OUT} = 300 mA		0.25	0.50	V		
Line regulation	ΔV_{OLN}	5.6 V ≦ V _{IN} ≦ 17 V		10	70	mV		
Load regulation	ΔV_{OLD}	5 mA ≦ I _{OUT} ≦ 1 A		50	150	mV		
Peak output current	I _{OP}		1	1.8		Α		
Output short-circuit current	losc			0.3	1.2	Α		
Current drain	I _{Q1}	I _{OUT} = 0		2.1	4	mA		
	l _{Q2}			32	80	mA		
Output noise voltage	V _{NO}	10 Hz ≦ f ≦ 100 kHz		70		μVrms		
Output voltage temperature coefficient	ΔVο/ΔΤα	Tj =25 to 125 °C		-0.5		mV/°C		
Ripple rejection ratio	Rrej	$f = 120 \text{ Hz}, 6 \text{ V} \le \text{V}_{1N} \le 17 \text{ V}$		60		dB		
[Reset]								
High-level reset output voltage	V _{ORH}	I _{ORH} = 200 μA, CD open	4.83	4.98	5.13	V		
Low-level reset output voltage	V _{ORL}	I _{ORL} = 2 mA, CD grounded		100	200	mV		
Reset threshold voltage	V _{RT}	C-rank	4.3	4.5	4.7	V		
		D-rank	4.0	4.2	4.4	V		
		E-rank	3.7	3.9	4.1	V		
Reset hysteresis voltage	V _{hys}		50	100	200	mV		
Output delay time	t _d	Cd = 0.1 µF	7.5	10	12.5	ms		

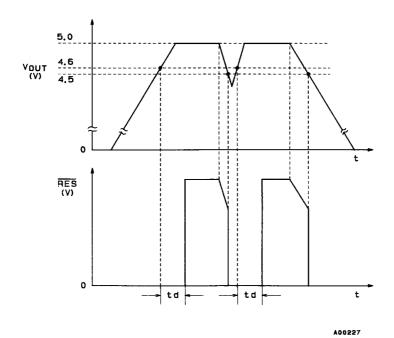
Pin Assignments

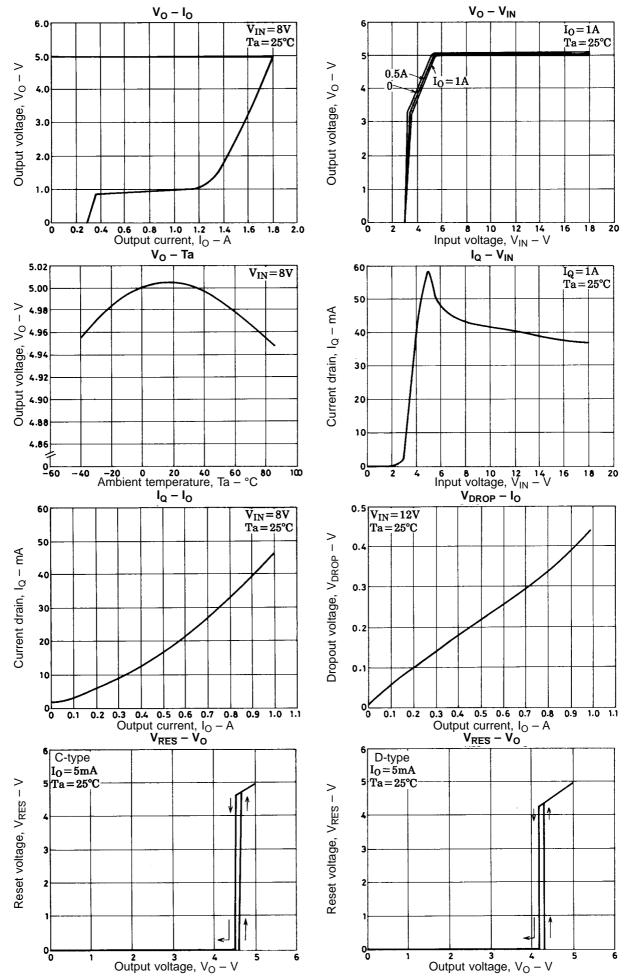


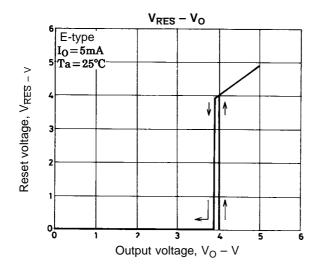
Top view

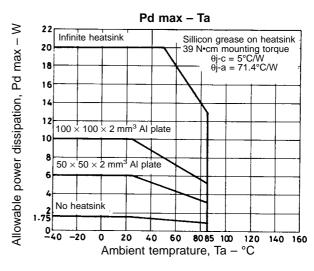

Equivalent Circuit Block Diagram

Measurement Circuit


Sample Application Circuit




Notes:


- 1. Set C_{OUT} to be 47 μF or greater and select it according to the applications.
- 2. Use the capacitators for C_{OUT} and Cd with high-temperature stability.

L88R05C's Reset Operation

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of October, 1996. Specifications and information herein are subject to change without notice.