SGS-THOMSON SLIC KITS AND COMBO II by W. Rossi ### 1. INTRODUCTION One of the main feature of COMBO II is the possibility to program TX and RX gains and to perform the two to four wire conversion (echo cancellation). In particular the echo cancellation feature allows you to save external components in the SLIC circuitry. In the following tables you can find different values for COMBOII hybrid balance filter in order to satisfy different administrations requirements. Three SLIC KITS are analyzed: L3000N/L3030 L3000N/L3092 L303X(L3035/6/7) for each administration also the external components are specified. If you need more specific informations the complete Application Note is available, ask for it to our sales office. In the complete Application Note you can find all the details for each country in particular: - Echo measurements - Combo II simulation software results - Bench measurements with PCM-4 Wandel & Goltermann Table 1. | | Administration | R. L. Test
Netw. | SLIC Ext. Comp. | THL. Test Netw. | COMBO II
Hybal Coeff. | |----|---------------------------------|--------------------------------------|--|--------------------------------------|--------------------------| | 1. | Germany/Austria/
Switzerland | R1 = 220Ω
R2 = 820Ω
C1 = 115nF | ZAC = (1)
RPC = 60Ω
ZA = 2K
ZB = $6.19K$
CCOMP = $10nF$
(1): $160W + (820\Omega//115nF)$ | R1 = 220Ω
R2 = 820Ω
C1 = 115nF | EC; 32; C4 | Figure 1: L3000N+L3030 Application Diagram. (*) All measurements were made substituting the TTX filter with 1K resistor and RGTTX with 10K. The 1K resistor is equivalent to TTX filter for speech band signals. AN502/0694 1/7 ### 2. L3000N/L3030 + COMBO II APPLICATION Test network: In Table 1 you can find the SLIC external components and the COMBO II programming coefficient for Germany, Austria and Switzerland followed by the application diagram (Fig. 1). TX and RX gain are chosen in order to have : 0dBm0 ⇔ 0dBm 600 ohm (TXgain reg. = BF; RXgain reg. = AE) ### 3. L3000N/L3092 + COMBO II APPLICATION Test network: M09L3000-14 In Table 2 you can find the SLIC external components and the COMBO II programming coefficient for different countries followed by the application diagram (Fig. 2). TX and RX gain are chosen in order to have : 0dBm0 ⇔ 0dBm 600 ohm (TXgain reg. = 83; RXgain reg. = AE) Table 2. | | Administration | R. L. Test Netw. | SLIC Ext. Comp. | THL. Test Netw. | COMBO II
Hybal Coeff. | |---|---|---|--|--|--------------------------| | 1 | 600Ω
KOREA/US PRIV.
PORTUGAL PRIV.
FRANCE PUB. | R1 = 600Ω
R2 = 0
C1 = 0 | R1 = 0
R2 = 12.5K
C1 = 0 | R1 = 600Ω
R2 = 0
C1 = 0 | EE
01
44 | | 2 | CHINA | $R1 = 200\Omega$
R2 = 680
$C1 = 0.1\mu$ F | R1 = 2.5K
R2 = 17K
C1 = 4nF | R1 = 200Ω
R2 = 680Ω
C1 = 0.1μ F | EE
11
A6 | | 3 | ITALY PRIV. | $R1 = 180\Omega$
$R2 = 630\Omega$
C1 = 60nF | R1 = 2K
R2 = 15.75K
C1 = 2.4nF | R1 = 0
R2 = 750Ω
C1 = 18nF | EF
00
A1 | | 4 | ITALY PUBL. | $R1 = 600\Omega$
R2 = 0
C1 = 0 | R1 = 0
R2 = 12.5K
C1 = 0 | R1 = 0
R2 = 1.1K
C1 = 33nF | E5
11
C0 | | 5 | GERMANY
AUSTRIA
SWITZERLAND | R1 = 220Ω
R2 = 820Ω
C1 = 115 nF | R1 = 3K
R2 = 20.5K
C1 = 4.6nF | R1 = 220Ω
R2 = 820Ω
C1 = 115 nF | EE
00
44 | | 6 | FINLAND | R1 = 270Ω
R2 = 910Ω
C1 = 120 nF | R1 = 4.25K
R2 = 22.75K
C1 = 4.8nF | A:
R1 = 270Ω
R2 = 1.2K
C1 = 120nF | EB
11
FF | | | | | | B:
R1 = 390Ω
R2 = 620Ω
C1 = $100nF$ | F1
11
EF | | 7 | BELGIUM PRIV. | R1 = 150Ω
R2 = 830Ω
C1 = $72nF$ | R1 = 1.25K
R2 = 20.75K
C1 = 2.88nF | A:
R1 = 150Ω
R2 = 830Ω
C1 = $72nF$ | EF
11
6E | | | | | | B:
R1 = 600Ω
R2 = 0
C1 = 0 | F8
01
0E | | 8 | UK PRIV. | R1 = 300Ω
R2 = 1K
C1 = 220nF | R1 = 5K
R2 = 25K
C1 = 8.8nF | R1 = 370Ω
R2 = 620Ω
C1 = $310nF$ | F4
12
6B | | | Administration | R. L. Test Netw. | SLIC Ext. Comp. | THL. Test Netw. | COMBO II
Hybal Coeff. | |----|----------------|--|--|---|--| | 9 | UK PUBL. | R1 = 370Ω
R2 = 620Ω
C1 = $310nF$ | R1 = 6.75K
R2 = 15.5K
C1 = 12.4nF | Note 1
A: SHORT LINE
B: LONG LINE S.G
C: LONG LINE L.G | ED, 23, 48
EF, 39, AC
E8, 35, EA | | 10 | USA PUBL. | R1 = 900Ω
R2 = INF.
C1 = 2.16μF | R1 = 20K
R2 = 90K
C1 = 110nF
*CCOMP = 150pF | Note 2
A: LOAD LINE
B: NOT LOAD
LINE | E5, 20, 48
F1, 41, 20 | ### Notes: - 1. U.K THL TEST NETWORKS (See Figure 3) - 2. U.S. THL TEST NETWORKS (See Figure 4) Figure 2: L3000N/L3092+ COMBO II # 4. L303X (L3035/6/7) + COMBO II APPLICATION Test network: In Table 3 you can find the SLIC external components and the COMBO II programming coefficient for different countries followed by the application diagram (Fig. 3). TX and RX gain are chosen in order to have : 0dBm0 ⇔ 0dBm 600 ohm (TXgain reg. = 83; RXgain reg. = AE) Table 3. | | Administration | R. L. Test Netw. | SLIC Ext. Comp.
(ZAC) | THL. Test Netw. | COMBO II
Hybal Coeff. | |----|--|---|--|---|--------------------------| | 1 | 600Ω
FRANCE PUB.
AUSTRIA (I)
PRI.
USA PRI.
PORTUGAL PRI.
KOREA | R1 = 600Ω
R2 = 0
C1 = 0 | R1 = 0
R2 = 26K
C1 = 0 | R1 = 600Ω
R2 = 0
C1 = 0 | EE
01
44 | | 2 | CHINA -A- | R1 = 200Ω
R2 = 680Ω
C1 = 100 nF | R1 = 6K
R2 = 34K
C1 = 2nF | $R1 = 200\Omega$
$R2 = 680\Omega$
C1 = 100nF | EE
00
6E | | 3 | CHINA -B- | R1 = 200Ω
R2 = 560Ω
C1 = 100 nF | R1 = 6K
R2 = 28K
C1 = 2nF | R1 = 200Ω
R2 = 560Ω
C1 = 100 nF | EF
12
2A | | 4 | ITALY PRI. | R1 = 180Ω
R2 = 630Ω
C1 = $60nF$ | R1 = 5K
R2 = 31.5K
C1 = 1.2nF | R1 = 0
R2 = 750Ω
C1 = 18nF | F0
01
9B | | 5 | ITALY PUBL. | $R1 = 600\Omega$
R2 = 0
C1 = 0 | R1 = 0
R2 = 26K
C1 = 0 | R1 = 0
R2 = 1.1K
C1 = 33nF | E5
11
C0 | | 6 | GERMANY
AUSTRIA
AUSTRALIA PR.
SWITZERLAND | R1 = 220Ω
R2 = 820Ω
C1 = 115 nF | R1 = 7K
R2 = 41K
C1 = 2.3nF | R1 = 220Ω
R2 = 820Ω
C1 = 115 nF | EF
11
C2 | | 7 | AUSTRIA (II) PRIV. | R1 = 220Ω
R2 = 820Ω
C1 = 115 nF | R1 = 7K
R2 = 41K
C1 = 2.3nF | R1 = 220Ω
R2 = 1.2K
C1 = 150 | EB
23
FB | | 8 | BELGIUM PRI. | R1 = 150Ω
R2 = 830Ω
C1 = $72nF$ | R1 = 3.5K
R2 = 41.5K
C1 = 1.44nF | A: R1 = 150Ω R2 = 830Ω C1 = $72nF$ | FF
00
6E | | | | | | B:
R1 = 600Ω
R2 = 0
C1 = 0 | F7
01
06 | | 9 | DENMARK | R1 = 400Ω
R2 = 500Ω
C1 = 330 nF | R1 = 16K
R2 = 25K
C1 = 6.6nF | R1 = 300Ω
R2 = 1K
C1 = 220nF | E9
22
39 | | 10 | NETHERLANDS | R1 = 600Ω
R2 = 0
C1 = 0 | R1 = 26K
R2 = 0
C1 = 0 | R1 = 340Ω
R2 = 422Ω
C1 = 100nF | EA
01
24 | | 11 | NORWAY | R1 = 120Ω
R2 = 820Ω
C1 = $112nF$ | R1 = 2K
R2 = 41K
C1 = 2.24nF | R1 = 120Ω
R2 = 820Ω
C1 = $110nF$ | EF
12
4C | | | Administration | R. L. Test Netw. | SLIC Ext. Comp. | THL. Test Netw. | COMBO II
Hybal Coeff. | |----|----------------|---|--|--|--| | 12 | SWEDEN | R1 = 200Ω
R2 = 1K
C1 = 100nF | R1 = 6K
R2 =50K
C1 = 2nF | R1 = 0
R2 = 900Ω
C1 = 30nF | F3
01
6F | | 13 | FINLAND | R1 = 270Ω
R2 = 910Ω
C1 = $120nF$ | R1 = 9.5K
R2 = 45.5K
C1 = 2.4nF | A:
R1 = 270Ω
R2 = 1.2K
C1 = 120nF | EB
11
77 | | | | | | B:
R1 = 390Ω
R2 = 620Ω
C1 = $100nF$ | F1
01
EF | | 14 | FRANCE PRI. | R1 = 215Ω
R2 = 1K
C1 = $137nF$ | R1 = 6.75K
R2 = 50K
C1 = 2.74nF | R1 = 600Ω
R2 = 0
C1 = 0 | F8
00
0F | | 15 | GREECE | R1 = 400Ω
R2 = 500Ω
C1 = 50 nF | R1 = 16K
R2 = 25K
C1 = 1nF | R1 = 220Ω
R2 = 820Ω
C1 = 115 nF | ED
23
92 | | 16 | SPAIN | R1 = 220Ω
R2 = 820Ω
C1 = 120 nF | R1 = 7K
R2 = 41K
C1 = 2.4nF | R1 = 220Ω
R2 = 820Ω
C1 = 120 nF | EF
12
DF | | 17 | UK PRI. | R1 = 300Ω
R2 = 1K
C1 = 220nF | R1 = 11K
R2 = 50K
C1 = 4.4nF | R1 = 370Ω
R2 = 620Ω
C1 = 310 nF | F4
12
6B | | 18 | UK PUB. | R1 = 370Ω
R2 = 620Ω
C1 = $310nF$ | R1 = 14.5K
R2 = 31K
C1 = 6.2nF | Note 1 A: SHORT LINE B: LONG LINE (S. GAUGE) C: LONG LINE (L. GAUGE) | EE, 12, CC
EE, 38, 1A
E9, 36, EA | | 19 | USA PUB. | R1 = 900Ω
R2 = INF.
C1 = 2.16μF | R1 = 39K
R2 = 180K
C1 = 55nF
Note 3 | Note 2
A: LOAD LINE
B: NOT LOAD
LINE | E6, 20, 48
F2, 20, A0 | #### Notes : - 1. U.K THL TEST NETWORKS (see Figure 3) - 2. U.S. THL TEST NETWORKS (see Figure 4) - 3. CCOMP = 100pF; Rp = 62Ω ; Rs = 6.2K - 4. CREV is used for reversal polarity transition time programming only with L3037. With L3035/6 this pin is shorted to AGND. (see Figure 5) Figure 3: Figure 4: Figure 5: Typical Application Circuit (Full Feature) TS5070 + L303X + LCP1511. Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics. $\ ^{\odot}$ 1995 SGS-THOMSON Microelectronics - All Rights Reserved SGS-THOMSON Microelectronics GROUP OF COMPANIES Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thaliand - United Kingdom - U.S.A.