

SEMICONDUCTOR TECHNICAL DATA

KIA2092N

BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC

POWER DRIVER IC FOR CD PLAYER

The KIA2092N is a power driver IC developed for CD players.

This IC have built-in 4 channel BTL power amplifiers which drives focus-coil, tracking-coil for 3-beam pick-up head, disc motor and feed motor.

FEATURES

- · 4 channel BTL linear drivers
- Fixed voltage gain : G_V=15dB (Typ.)
- · High output power
 - : V_{OM1} =5 V_{P-P} (Typ.) @ V_{CC} =5V, R_L =5 Ω
 - : V_{OM2} =6 V_{P-P} (Typ.) @ V_{CC} =6V, R_L =5 Ω
- · Thermal shutdown circuit.
- · Input reference voltage short protection
- · Operating Voltage range
 - : $V_{CC(opr)}=4.0\sim10.0V$ (Ta=25°C)

BLOCK DIAGRAM

Weight: 1.2g (Typ.)

KIA2092N

MAXIMUM RATINGS (Ta=25℃)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage	V_{CC}	14	V
Power Dissipation	P _D (Note 1)	(2) (Note 2)	W
Operating Temperature	T_{opr}	-30~85	$^{\circ}$ C
Storage Temperature	T_{stg}	-55~150	$^{\circ}$

(Note 1): Mounted on 50mm×50mm×1.6mm size board with copper area 60% over.

(Note 2) : Derated above Ta=25°C, in the proportion of 62.5mW/°C

ELECTRICAL CHARACTERISTICS

(Unless otherwise specified, V_{CC} =5V, R_L =5 Ω , Rg=620 Ω , V_{RI} =2.1V, f=1kHz, Ta=25 $^{\circ}$ C)

CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Voltage	V_{CC}	-	4.0	-	10.0	V
Quiescent Current	I_{CCQ}	V _{in} =0, R _L =OPEN	20	35	60	mA
Input Offset Current	I_{IN}	V _{IN} =2.1V	-	250	800	nA
V _{RI} Terminal Offset Current	I_{10}	V_{RI} =2.1 V	=	35	120	μΑ
	Vo osi	V_{CC} =5V, Rg=0 Ω	-30	-	30	
Output Offset Voltage	Vo os2	V_{CC} =8 V , Rg =0 Ω	-50	-	50	mV
	Vo osa	V_{CC} =12V, Rg=0 Ω	-100	-	100	
Reference Output Voltage	V_{OUT}	-	-	2.1	-	V
Maximum Output Voltage	V_{OM1}	V _{CC} =5V	4.0	5.0	-	T.7
	V _{OM2}	V _{CC} =6V	5.0	6.0	-	$ m V_{P-P}$
Voltage Gain	G _V	$V_{\rm in}$ =100m $V_{\rm rms}$	14.5	15.5	16.5	dB
Frequency Response	f_{C}	V_{in} =100m V_{rms}	-	100	-	kHz
Total Harmonic Distortion	THD	$V_{\rm in}$ =100m $V_{\rm rms}$	-	-50	-	dB
Slew Rate	S.R.	Vout=2V _{P-P}	-	1.0	-	V/µS
Cross Talk	C.T.	Vout=1V _{rms}	-	-60	_	dB
Ripple Rejection Ratio	R.R.	$f_{\rm rip}$ =100Hz, $V_{\rm rip}$ =100m $V_{\rm rms}$	-	-60	-	dB
Thermal Shut Down Temperature	T_{TSD}	Chip temperature	-	150	-	$^{\circ}$
$V_{RI} \sim GND$ Short Protection Voltage	V _{RI} OFF	-	1.4	1.6	1.8	V

TEST CIRCUIT

KIA2092N

TERMINAL EXPLANATION

TERMINAL No.	SYMBOL	FUNCTION	EQUIVALENT CIRCUIT	
1	PW GND	Power GND Connected to substrate. D, ②, ③, ② pin are connected inside.	SV _{CC} PV _{CC}	
2	OUT(-) 1	Inverted output for CH1		
3	$\mathrm{PV}_{\mathrm{CC1}}$	Supply terminal of output stage for CH1 • Supply terminal of output stage are not connected to other channel terminal.	OUT	
4	OUT(+) 1	Non-inverted output for CH1	PGND	
5	$ m V_{IN1}$	Input for CH1 • Not biased inside	SGND SGND	
6	$ m V_{RI}$	$\label{eq:local_local_local_local_local} \begin{tabular}{ll} Input reference voltage \\ \bullet \ Under \ condition \ of \ V_{RI} {\le} 1.8V, \ internal \ bias \\ circuit \ is \ shut \ off. \\ \bullet \ No \ signal \ input \ condition \ : \ V_{RI} {=} V_{IN} \end{tabular}$	V _{RI} CHO	
7	$ m V_{CI}$	Output reference voltage $ \cdot \ V_{OUT} = V_{CI} = (V_{CC} - V_F)/2 $	SV _{CC} V _{CI} SGND SGND	
8	$ m V_{IN2}$	Input for CH2		
9	OUT(+)2	Non-inverted output for CH2		
10	$\mathrm{PV}_{\mathrm{CC2}}$	Supply terminal of output stage for CH2	Same as channel 1	
11	OUT(-)2	Inverted output for CH2		
12	PW GND	Power GND		
13	PW GND	Power GND		
14	OUT(-)3	Inverted output for CH3		
15	PV_{CC3}	Supply terminal of output stage for CH3	Same as channel 1	
16	OUT(+)3	Non-inverted output for CH3		
17	$ m V_{IN3}$	Input for CH3		
18	S GND	Supply terminal of small signal GND	-	
19	S VCC	Small signal GND	-	
20	$ m V_{IN4}$	Input for CH4		
21	OUT(+)4	Non-inverted output for CH4		
22	PV _{CC4}	Supply terminal of output stage for CH4	Same as channel 1	
23	OUT(-)4	Inverted output for CH4	1	
24	PW GND	Power GND		

KIA2092N

PRECAUTION USE

- Input Stage
 - · Input stages are consisted of differential circuit of NPN Tr, and have built-in IB compensation circuit.
- Built-in Driver
 - · Each channel driver consists of BTL configuration linear amplifier.
 - Voltage gain is fixed : G_V=15.5dB (Typ.)
 - Voltage loss for output stage is $2V_{BE}=V_{CE}(sat)$ for positive cycle, $V_{CE}(sat)$ for negative cycle, because of no-bootstrap circuit. So, output DC voltage is designed as less than $1/2~V_{CC}$.
- V_{RI} Terminal
 - · V_{RI} is reference voltage terminal for input signal.
 - If reference voltage from servo IC drop less than 1.8V, protection circuit operates and shut off bias circuit inside. This operation is to prevent load from moving undesirably in case of V_{RI} drop for accident or some reason.
- V_{CI} Terminal
 - Output DC voltage is determined by circuit of this terminal inside as ; $V_{\text{CI}} = V_{\text{OUT}(DC)} = (V_{\text{CC}} V_F)/2$
 - Output signal dynamic range is depend on V_{CC} On the other hand, input signal dynamic range is determined by V_{RI} as mentioned and voltage gain is fixed inside. So, maximum output voltage does not increase as V_{CC} increases.
 - Because of BTL configuration, Ripple Rejection Ratio does not improve not much when capacitor is connected to V_{CI} terminal to GND.

• GND

- Large signal GND is for output stage and small signal GND is for stages from input circuit to pro-output stage.
- · These GND pins are not connected inside.
- The heat of power dissipation is transferred to PCB, through these PW-GND pin, because, ①, ②, ③ pin are connected each other and to substrate of pellet to connected copper foil area as large as possible.
- Oscillation preventive capacitor
 - We recommend to use the capacitor of $0.1\mu\text{F}$, between each output terminals. But perform the temperature test to check the oscillation allowance, since the oscillation allowance is varied according to the causes described below.
 - 1) Supply voltage
 - 2) Ambient temperature
 - 3) Load impedance
 - 4) Capacity value of condenser
 - 5) Kind of condenser
 - 6) Layout of printed board
- We recommend to connect Pass-condenser, which is about 10 to 100μF between V_{RI} terminal and GND.
- V_{CI} terminal is recommend to use "OPEN".