

Gerstweg 2, 6534 AE Nijmegen, The Netherlands

Reportnr.: RNR-T45-96-B-1025Author: T.F. BussDate: 10 Dec. 1996Department: P.G. Transistors & Diodes, Development

IMPROVED IP3 BEHAVIOUR OF THE 900MHz LOW NOISE AMPLIFIER WITH THE BFG425W

UPDATE OF REPORT RNR-T45-96-B-771

Abstract:

This application note contains an example of a Low Noise Amplifier with the new BFG425W Double Poly RF-transistor. The LNA is designed for a frequency f=900MHz, V_{SUP} ~3.8V, I_{SUP} =10mA. *Measured* performance at f=900MHz: Noise Figure NF~1.7dB, gain S₂₁ ~17dB and the *input* IP3=+3dBm.

Appendix I: 900MHz LNA circuit

Appendix II: Printlayout and list of used components & materials

Appendix III: Results of simulations and measurements

Introduction:

With the new Philips silicon bipolar double poly BFG400W series, it is possible to design low noise amplifiers for high frequency applications with a low current and a low supply voltage. These amplifiers are well suited for the new generation low voltage high frequency wireless applications. In this note an example of such an amplifier will be given. This amplifier is designed for a working frequency of 900MHz.

Designing the circuit:

The circuit is designed to show the following performance:

transistor: BFG425W

 $V_{ce}=2V, l=10mA, V_{SUP}\sim3.5V$ freq=900MHz Gain~18dB NF<=1.6dB IP3>0dBm (input) VSWRi<1:2 VSWRo<1:2

In the simulations the effect of extra RF-noise caused by the SMA-connectors was omitted, so in the practical situation the NF is ~0.1dB higher. This LNA is also optimised for the highest IP3. The IP3 can be optimised by:

I. an extra series C-decoupling of the base to the ground II. increasing ${\boldsymbol{\xi}}$

With the solution I. an extra component is necessary, and with solution II, the Noise Figure of the LNA increases and the optimum source impedance also.

The in- and output matching is realised with a LC-combination. Also extra emitter-inductance on both emitter-leads (μ -strips) are used to improve the matching and the Noise Figure.

Designing the layout:

A lay-out has been designed with HP-MDS. Appendix II contains the printlayout.

Measurements:

Simulations (with realistic RF-models of al used parts) and measurements of the total circuit (epoxy PCB) are done (Appendix III).

Appendix I: Schematic of the circuit

Figure 1: LNA circuit

900MHzLNA Component list: 900MHzLNA Component list:

Component	Value	Purpose, comment	
R1	8.2 kΩ	Bias (collbase)	
R2	10 Ω	in series with coll. for better S22, stability and reducing gain.	
R3	22 Ω	RF blocking	
R4	150 Ω	Bias, series with coll., canceling hFE spread	
C1	8.2 pF	Inputmatch (inputto base)	
C2	27 pF 900 MHz short (L1 to ground)		
C3	27 pF 900 MHz short (L2 to ground)		
C4	100 nF	RF decoupling collector bias	
C5	22 pF	Output match (collector to output)	
C6	100 nF	To improve IP3 (by decoupling LF IP3 products)	
C7	3.3 pF	Output match, stability (collector to emitter)	
Coil_1	22 nH	Input match (base-bias)	
Coil_2	12 nH	Output match (collector-bias)	
μs4	(see next table)	μ -stripline Emitter-induction	

_μS4 Emitter inductance of μ-stripline and via-hole (see on former page: Schematic of the circuit):

Name	Dimension	Description
L1	2.5mm	length μ -stripline; Z ₀ ~48 Ω (PCB: ϵ_r ~4.6, H=0.5mm)
L2	1.0mm	length interconnect stripline and via-hole area
L3	1.0mm	length via-hole area
W1	0.5mm	width µ-stripline
W2	1.0mm	width via-hole area
D1	0.4mm	diameter of via-hole

Appendix II: Printlayout and list of used components & materials

900MHz LOW NOISE AMP.

Figure 2: Printlayout

900MHzLNA Component list:

Component:	Value:	size:	
PCB	FR4: ε _r ~4.6	H=0.5mm	
R1	8.2 kΩ	0603 Philips	
R2	10 Ω	0603 Philips	
R3	22 Ω	0603 Philips	
R4	150 Ω	0603 Philips	
C1	8.2 pF	0603 Philips	
C2	27 pF	0603 Philips	
C3	27 pF	0603 Philips	
C4	100 nF	0805 Philips	
C5	22 pF	0603 Philips	
C6	100 nF	0805 Philips	
C7	3.3 pF	0603 Philips	
L1	22 nH	0805CSCoilcraft	
L2	12 nH	0805CSCoilcraft	

Appendix III: Results of simulations and measurements

	Simulation (HP-MDS):	Measurements PCB:	Comment:
S21 ² [dB]	17.2	17.3	
S12 ² [dB]	-28.0	-28.3	
VSWRi	2.2	2.5	
VSWRo	1.7	1.8	
Noise Figure [dB]	1.6	1.7	note 1
IP3 [dBm] (input)	+1.3	+3	Δ f=200KHz, note 2

PHILIPS

Conditions: V_{sup}=3.7V, I_c=10mA, f=900MHz

note 1: The Noise Figure of the PCB is higher than the simulations (~0.1 dB). This is caused by the influence of the SMA-connectors and the microstrips on the epoxy PCB.

note 2: The P3 of the PCB is higher than the simulations. This can be explained by the deviation of the Spice parameters, used in the IP3 simulations, from the sample transistor-parameters used in the LNA.

Figure 3: HP-MDS simulation circuit