#### 1 Symbole, Begriffe, Normen

#### 1 Symbols, Terms, Standards

Symbole und Begriffe der verwendeten Symbols and Terms of Magnitudes Used: Größen:

| Symbole<br>Symbols            | Begriffe                                   | Terms                                              |  |  |
|-------------------------------|--------------------------------------------|----------------------------------------------------|--|--|
| C                             | Kapazität; Kollektor                       | Capacitance, collector                             |  |  |
| $C_{ISS}$                     | Eingangskapazität                          | Input capacitance                                  |  |  |
| $C_{OSS}$                     | Ausgangskapazität                          | Output capacitance                                 |  |  |
| $C_{rss}$                     | Rückwirkungskapazität                      | Reverse transfer capacitance                       |  |  |
| $C_{Mi}$                      | Millerkapazität                            | Miller capacitance                                 |  |  |
| D                             | Tastverhältnis/Tastgrad $D = t_p/T$        | Pulse duty factor/duty cycle $D = t_p/T$           |  |  |
| $\mathrm{d}i_{F}/\mathrm{d}t$ | Dioden-Stromsteilheit                      | Rate of diode current rise                         |  |  |
| $\mathrm{d}i/\mathrm{d}t$     | Stromsteilheit allgemein                   | Rate current rise general                          |  |  |
| E                             | Energie                                    | Energy                                             |  |  |
| $E_{off}$                     | Abschaltverlust-Energie                    | Turn-off loss energy                               |  |  |
| $E_{on}$                      | Einschaltverlust-Energie                   | Turn-on loss energy                                |  |  |
| f                             | Frequenz                                   | Frequency                                          |  |  |
| G                             | Gate                                       | Gate                                               |  |  |
| gfs                           | Übertragungssteilheit                      | Transconductance                                   |  |  |
| I                             | Strom                                      | Current                                            |  |  |
| i                             | Strom Augenblickswert                      | Current, instantaneous value                       |  |  |
| $I_{C}$                       | Kollektor-Gleichstrom                      | DC collector current                               |  |  |
| $I_{CES}$                     | Kollektor-Reststrom                        | Collector cutoff current                           |  |  |
| I <sub>Cpuls</sub>            | Kollektor-Gleichstrom, gepulst             | DC collector current, pulsed                       |  |  |
| $I_{F}$                       | Dioden Durchlaßstrom (allgemein)           | Diode forward current (general)                    |  |  |
| $I_{FSM}$                     | Dioden-Stoßstromscheitelwert (50 Hz-Sinus) | Diode current surge crest value (50-Hz sinusoidal) |  |  |

| Symbole<br>Symbols    | Begriffe                                 | Terms                                    |  |  |
|-----------------------|------------------------------------------|------------------------------------------|--|--|
| $I_{GES}$             | Gate-Emitter-Leckstrom                   | Gate-emitter leakage current             |  |  |
| $I_{L}$               | Strom durch Induktivität                 | Current through inductance               |  |  |
| $I_{RRM}$             | Diodenrückstromspitze                    | Maximum reverse recovery current         |  |  |
| $\overline{L}$        | Induktivität                             | Inductance                               |  |  |
| $L_{L}$               | Last-Induktivität                        | Load inductance                          |  |  |
| $\overline{L_{p}}$    | Parasitäre Induktivität (z.B. Leitungen) | Parasitic inductance (e.g. lines)        |  |  |
| $P_{tot}$             | Gesamtverlustleistung                    | Power dissipation                        |  |  |
| $Q_{Gate}$            | Gate-Ladung                              | Gate charge                              |  |  |
| $Q_{rr}$              | Sperrverzögerungsladung                  | Reverse recovered charge                 |  |  |
| $R_{G}$               | Gate-Vorwiderstand                       | Gate resistance                          |  |  |
| $R_{GE}$              | Gate-Emitter-Widerstand                  | Gate-emitter resistance                  |  |  |
| $R_{Gon}$             | Gate-Einschalt-Widerstand                | Gate-turn on resistance                  |  |  |
| $R_{Goff}$            | Gate-Ausschalt-Widerstand                | Gate-turn off resistance                 |  |  |
| $R_{thCH}$            | Wärmewiderstand, Gehäuse-<br>Kühlkörper  | Thermal resistance, case to heat sink    |  |  |
| $R_{thHA}$            | Wärmewiderstand, Kühlkörper-<br>Umgebung | Thermal resistance, heat sink to ambient |  |  |
| $R_{thJA}$            | Wärmewiderstand, Chip-Umgebung           | Thermal resistance, chip to ambient      |  |  |
| $R_{thJC}$            | Wärmewiderstand, Chip-Gehäuse            | Thermal resistance, chip to case         |  |  |
| $\overline{T}$        | Periodendauer; Temperatur                | Cycle time; temperature                  |  |  |
| $T_{A}$               | Umgebungstemperatur                      | Ambient temperature                      |  |  |
| $T_{C}$               | Gehäusetemperatur                        | Case temperature                         |  |  |
| t                     | Zeit allgemein                           | Time, general                            |  |  |
| <i>t</i> <sub>1</sub> | Zeitpunkt                                | Instant time                             |  |  |
| $t_{doff}$            | Ausschaltverzögerungszeit                | Turn-off delay time                      |  |  |

| Symbole<br>Symbols | Begriffe                                           | Terms                                             |  |  |
|--------------------|----------------------------------------------------|---------------------------------------------------|--|--|
| $t_{don}$          | Einschaltverzögerungszeit                          | Turn-on delay time                                |  |  |
| $t_{f},t_{F}$      | Fallzeit                                           | Fall time                                         |  |  |
| $T_{j}$            | Chip- bzw. Betriebstemperatur                      | Chip or operating temperature                     |  |  |
| $t_{p}$            | Pulsdauer bzw. Einschaltdauer                      | Pulse duration time                               |  |  |
| $T_{j(max)}$       | Maximal zulässige Chip- bzw.<br>Betriebstemperatur | Maximum permissible chip or operating temperature |  |  |
| $t_{d(off)}$       | Ausschaltzeit                                      | Turn-off time                                     |  |  |
| $t_{d(on)}$        | Einschaltzeit                                      | Turn-on time                                      |  |  |
| $t_{r}$            | Anstiegszeit                                       | Rise time                                         |  |  |
| $t_{rr}$           | Sperrverzögerungszeit                              | Reverse recovery time                             |  |  |
| $T_{stg}$          | Lagertemperatur                                    | Storage temperature                               |  |  |
| $T_{\sf sold}$     | Löttemperatur                                      | Soldering temperature                             |  |  |
| V                  | Spannung Augenblickswert                           | Voltage, instantaneous value                      |  |  |
| $V_{(BR)CES}$      | Kollektor-Emitter-Durchbruch-<br>spannung          | Collector-emitter breakdown voltage               |  |  |
| $V_{\rm CC}$       | Versorgungsspannung                                | Supply voltage                                    |  |  |
| $V_{\sf CE}$       | Kollektor-Emitter-Spannung                         | Collector-emitter voltage                         |  |  |
| $V_{CEsat}$        | Kollektor-Emitter-Sättigungsspannung               | Collector-emitter saturation voltage              |  |  |
| $V_{CGR}$          | Kollektor-Gate-Spannung                            | Collector-gate voltage                            |  |  |
| $V_{F}$            | Dioden-Durchlaßspannung                            | Diode forward voltage                             |  |  |
| $V_{GE}$           | Gate-Emitter-Spannung                              | Gate-emitter voltage                              |  |  |
| $V_{GE(th)}$       | Gate-Schwellenspannung (IGBT)                      | Gate threshold voltage (IGBT)                     |  |  |
| $Z_{thJC}$         | Transienter Wärmewiderstand,<br>Chip-Gehäuse       | Transient thermal resistance, chip to case        |  |  |

#### Normen Standards

Folgende Normen wurden in diesem Datenbuch verwendet. Spezielle Einzelheiten können nachfolgenden Unterlagen entnommen werden:

The following standards were used for this Data Book. Specific details can be taken from the documents listed below:

## Normen, Begriffe und Definitionen Standards, Terms and Definitions

| DIN 40 900 | T5 | Halbleiter, Schaltzeichen                | Semiconductors, Graphical<br>Symbols            |
|------------|----|------------------------------------------|-------------------------------------------------|
| DIN 41 781 |    | Diodenbegriffe                           | Diode Terms and Definitions                     |
| DIN 41 785 | T3 | Leistungshalbleiter,<br>Kurzzeichen      | Power Semiconductors,<br>Letter Symbols         |
| DIN 41 854 |    | Bipolare Transistoren,<br>Begriffe       | Bipolar Transistors,<br>Terms and Definitions   |
| DIN 41 858 |    | Feldeffekttransistoren,<br>Begriffe      | Field Effect Transistors, Terms and Definitions |
| IEC 148 B  |    | Halbleiterbauelemente, Symbole allgemein | Semiconductor Devices, Symbols,<br>General      |

| •                           |     | ättern, Meßverfahren<br>ets, Test Procedures         |                                                                               |  |
|-----------------------------|-----|------------------------------------------------------|-------------------------------------------------------------------------------|--|
| DIN 41 791 T1               |     | Allgemeines zu Datenblättern                         | General Remarks on Data Sheet Details                                         |  |
|                             | T5  | Datenblattangaben,<br>Leistungstransistoren          | Data Sheet Details,<br>Power Transistors                                      |  |
|                             | Т6  | Datenblattangaben,<br>Schalttransistoren             | Data Sheet Details,<br>Switching Transistors                                  |  |
| DIN 41 792                  | T1  | Meßverfahren, Transistoren                           | Test Procedures, Transistors                                                  |  |
|                             | T2  | Meßverfahren, Dioden                                 | Test Procedures, Diodes                                                       |  |
|                             | Т3  | Meßverfahren, Wärmewider-<br>stand                   | Test Procedures, Thermal Resistance                                           |  |
| DIN IEC 747 T1              |     | Allgemeines zu Grenz- und<br>Kenndaten, Meßverfahren | General Remarks on Maximum<br>Ratings and Characteristics, Test<br>Procedures |  |
|                             | T2  | Dioden                                               | Diodes                                                                        |  |
| IEC 747                     | T7  | Bipolare Schalttransistoren                          | Bipolar Switching Transistors                                                 |  |
| DIN IEC 747 T8              |     | Feldeffekttransistoren                               | Field Effect Transistors                                                      |  |
| Zuverlässigk<br>Reliability | eit |                                                      |                                                                               |  |
| DIN 41 794                  | Т3  | Transistoren                                         | Transistors                                                                   |  |
|                             | T8  | Dioden                                               | Diodes                                                                        |  |
| DIN IEC 68                  |     | Tests                                                | Tests                                                                         |  |
| MIL-STD 883C                |     | Testmethoden, z.B. Methode 3015.6 für ESD 1)         | Test Methods, e.g. Method 3015.6 for ESD 1)                                   |  |
| MIL-STD 19500               |     | Ausfallkriterien                                     | Failure Criteria                                                              |  |
| SN 73 257                   |     | ESD                                                  | ESD                                                                           |  |
| A66762-A4013-A58            |     | Verfahrensanweisung für ESD                          | QA Process Instructions for ESD                                               |  |
|                             |     |                                                      |                                                                               |  |

<sup>&</sup>lt;sup>1)</sup> **ESD ≜ E**lectro**s**tatic **d**ischarge / Elektrostatische Entladung

### **SIEMENS**

#### 1.1 Anordnung der Indizes

#### **Spannungen**

Es werden zwei Indizes verwendet, die die Punkte bezeichnen, zwischen denen die Spannung gemessen wird. Positiven Zahlenwerten der Spannungen entsprechen positive Potentiale des mit dem ersten Index bezeichneten Punkt (Bezugspunkt), z.B.  $V_{\rm GE}$ .

#### Ströme

Mindestens ein Index wird verwendet. Positiven Zahlenwerten des Stroms entsprechen positive Ströme, die an dem mit dem ersten Index bezeichneten Anschluß in das Bauelement eintreten, z.B.  $I_{\rm GE}$ .

Ein zusätzlicher 3. Index gibt den Beschaltungszustand zwischen dem 2. Index und dem nicht bezeichneten 3. Anschluß an.

#### 1.1 Arrangement of Subscripts

#### **Voltages**

Two subscripts are used to designate the points between which the voltage is measured. Positive numerical values of the voltages equate to positive potentials of the point specified by the first subscript (reference point), e.g.  $V_{\rm GE}$ .

#### **Currents**

At least one subscript is used. Positive numerical values of the current equate to positive currents entering the component at the connection specified by the first subscript, e.g.  $I_{\rm GE}$ .

An additional third subscript indicates the circuit status between the second subscript and the unspecified third connection.

| Beispiele     |              | Examples                                                                                                             |               |              |                                                                                                   |  |
|---------------|--------------|----------------------------------------------------------------------------------------------------------------------|---------------|--------------|---------------------------------------------------------------------------------------------------|--|
| $V_{(BR)CES}$ | =            | Durchbruchspannung<br>zwischen Kollektor- und<br>Emitteranschluß mit<br>kurzgeschlossenem Gate-<br>Emitter-Anschluß. | $V_{(BR)CES}$ | =            | Breakdown voltage between collector and emitter connections with shorted gate-emitter connection. |  |
| $I_{CEV}$     | =            | Strom in Kollektor-Emitter-<br>Richtung mit Spannungs-<br>beschaltung zwischen Gate-<br>Emitter-Anschluß.            | $I_{CEV}$     | =            | Current in collector-emitter direction with voltage connected across the gate-emitter connection. |  |
| 3. Buchsta    | 3. Buchstabe |                                                                                                                      |               | Third letter |                                                                                                   |  |
| S             | =            | kurzgeschlossen                                                                                                      | s             | =            | Shorted                                                                                           |  |
| R             | =            | Widerstandsbeschaltung                                                                                               | R             | =            | Resistive connection                                                                              |  |
| V             | =            | Spannungsbeschaltung                                                                                                 | V             | =            | Voltage connection                                                                                |  |
| X             | =            | Widerstands- und<br>Spannungsbeschaltung                                                                             | X             | =            | Resistive and voltage connection                                                                  |  |

#### 2 Grenzwerte

Die in den Datenblättern angegebenen Grenzwerte sind absolute Werte. Wird einer dieser Grenzwerte überschritten, so kann das zur Zerstörung des Halbleiters führen, auch wenn nicht alle anderen Grenzwerte ausgenutzt werden. Wenn nicht anders angegeben, gelten die Werte bei einer Temperatur von 25 °C.

#### 2.1 Kollektor-Emitter-Spannung $V_{CE}$

Maximal zulässiger Wert der Spannung zwischen den Kollektor-Emitter-Anschlüssen bei kurzgeschlossener Gate-Emitter-Strecke.

#### 2.2 Kollektor-Gate-Spannung $V_{CGR}$

Maximal zulässiger Wert der Spannung zwischen dem Kollektor- und dem Gate-Anschluß bei Überbrückung der Gate-Emitter-Anschlüsse mit einem vorgegebenen Widerstand.

#### 2.3 Kollektor-Gleichstrom $I_{\rm C}$

Maximal zulässiger Wert des Gleichstroms über den Kollektor-Anschluß.

#### 2.4 Kollektor-Strom, gepulst $I_{Cpuls}$

Maximal zulässiger Scheitelwert des Stroms über den Kollektor-Anschluß bei Pulsbetrieb. Die Pulsbreite und das Puls-Pausenverhältnis ist aus dem Diagramm "Zulässiger Betriebsbereich" zu entnehmen.

#### 2.5 Gate-Emitter-Spannung $V_{\rm GE}$

Maximal zulässiger Wert der Spannung zwischen den Gate-Emitter-Anschlüssen.

#### 2.6 Maximale Verlustleistung $P_{tot}$

Der maximal zulässige Wert der Verlustleistung, die der Transistor abführen kann.

#### 2 Maximum Ratings

The maximum ratings presented in the data sheets are absolute values. If one of these maximum ratings is exceeded, it may result in breakdown of the semiconductor, even if the other maximum ratings are not all used to their limits. Unless specified to the contrary, the values apply at a temperature of 25 °C.

#### 2.1 Collector-Emitter Voltage $V_{CE}$

The maximum permissible value of the voltage across the collector-emitter connections with shorted Gate and Emitter.

#### 2.2 Collector-Gate Voltage $V_{CGR}$

The maximum permissible value of the voltage across the collector and gate connections when the gate-emitter connections are bridged by a specified resistance.

#### 2.3 Collector Current $I_{\rm C}$

The maximum permissible value of the direct current across the collector connection.

#### 2.4 Collector Current, Pulsed $I_{Cpuls}$

The maximum permissible crest value of the current across the collector connection in pulsed operation. The pulse width and pulse spacing can be taken from the "Safe Operating Area" diagram.

#### 2.5 Gate-Emitter Voltage $V_{\rm GE}$

The maximum permissible value of the voltage across the gate-emitter connections.

#### 2.6 Maximum Power Dissipation $P_{tot}$

The maximum permissible power loss that can be dissipated by the transistor.

#### Erläuterungen der Datenblattwerte Explanation of Data Sheet Parameters

#### 2.7 Betriebstemperaturbereich $T_i$

Bereich der zulässigen Chiptemperatur, innerhalb dessen der Transistor dauernd betrieben werden darf.

#### 2.8 Lagertemperaturbereich $T_{stg}$

Temperaturbereich, innerhalb dessen der Transistor ohne elektrische Beanspruchung gelagert oder transportiert werden darf.

### 2.9 Wärmewiderstand Chip-Gehäuse $R_{thJC}$ oder $R_{thJA}$

Quotient aus der Differenz zwischen der Chip- und der Bezugstemperatur am Gehäuse, oder der Umgebung einerseits und der abgeführten Verlustleistung andererseits, bei thermischem Gleichgewicht.

#### 2.10 Feuchteklasse

Die Angaben sind nach DIN 40040 spezifiziert.

#### 2.11 Prüfklasse

Die Angaben sind nach DIN IEC 68-1 spezifiziert.

#### 2.7 Operating Temperature Range $T_i$

The range of the permissible chip temperature within which the transistor may be continuously operated.

#### 2.8 Storage Temperature Range $T_{stg}$

The temperature range within which the transistor may be stored or transported without electrical stressing.

### 2.9 Chip to Case Thermal Resistance $R_{\text{thJC}}$ or $R_{\text{thJA}}$

Quotient from the difference between the chip temperature and the reference temperature at the case or ambient air on the one hand and the dissipated power on the other hand, at thermal equilibrium.

#### 2.10 Humidity Class

Details are specified in accordance with DIN 40040.

#### 2.11 Test Class

Details are specified in accordance with DIN IEC 68-1.

#### Erläuterungen der Datenblattwerte Explanation of Data Sheet Parameters

#### 3 Kennwerte

Die angegebenen Werte sind als Mittelwerte aufzufassen. In vielen Fällen werden sie durch Angabe des Streubereichs ergänzt.

#### 3.1 Kollektor-Emitter-Durchbruchspannung $V_{(BR)CES}$

Die Spannung zwischen den Kollektor-Emitter-Anschlüssen, gemessen bei spezifiziertem Kollektor-Strom und kurzgeschlossenen Gate-Emitter-Anschlüssen.

### 3.2 Gate-Schwellenspannung $V_{\text{GE(th)}}$ (Einsatzspannung)

Der Wert der Gate-Emitter-Spannung gemessen bei spezifiziertem Kollektor-Strom und spezifizierter Kollektor-Emitter-Spannung.

#### 3.3 Kollektor-Reststrom $I_{CES}$

Der Wert des Kollektor-Stroms bei einer spezifizierten Kollektor-Emitter-Spannung und kurzgeschlossenen Gate-Emitter-Anschlüssen. Angegeben werden Werte bei 25 °C und einer spezifizierten höheren Chiptemperatur.

#### 3.4 Gate-Emitter-Leckstrom $I_{GES}$

Der Wert des Gate-Leckstroms bei einer spezifizierten Gate-Emitter-Spannung und kurzgeschlossenen Kollektor-Emitter-Anschlüssen.

#### 3.5 Übertragungssteilheit $g_{fs}$

Quotient aus der Änderung des Kollektor-Stroms und der Gate-Emitter-Spannung und spezifiziertem Kollektorstrom.

#### 3 Characteristics

Specified values should be regarded as average values. In many cases the variation range is given as well.

## 3.1 Collector-Emitter Breakdown Voltage $V_{(BR)CES}$

The voltage across the collector-emitter connections measured at the specified collector current and shorted gate-emitter connections.

#### 3.2 Gate Threshold Voltage $V_{\text{GE(th)}}$

The value of the gate-emitter voltage measured at the specified collector current and the specified collector-emitter voltage.

#### 3.3 Collector Cutoff Current $I_{CES}$

The value of the collector current at a specified collector-emitter voltage and shorted gate-emitter connections. The details shown are values at 25 °C and a specified, higher chip temperature.

#### 3.4 Gate-Emitter Leakage Current $I_{GES}$

The value of the gate leakage current at a specified gate-emitter voltage and shorted collector-emitter connections.

#### 3.5 Transconductance $g_{fs}$

Quotient from the variation in collector current and gate-emitter voltage and the specified collector current.

#### 3.6 Eingangskapazität $C_{ISS}$

Die Kapazität, gemessen zwischen dem Gate- und Emitter-Anschluß bei für Wechselspannung kurzgeschlossenen Kollektor-Emitter-Anschlüssen. Die Werte der Gleichspannung zwischen den Gate-Emitter- und den Kollektor-Emitter-Anschlüssen sowie die Meßfrequenz sind spezifiziert.

#### 3.7 Ausgangskapazität $C_{OSS}$

Die Kapazität, gemessen zwischen dem Kollektor- und Emitter-Anschluß bei für Wechselspannung kurzgeschlossenen Gate-Emitter-Anschlüssen. Die Werte der Gleichspannung zwischen den Gate-Emitter- und den Kollektor-Emitter-Anschlüssen sowie die Meßfrequenz sind spezifiziert.

#### 3.8 Rückwirkkapazität $C_{rss}$

Die Kapazität, gemessen zwischen dem Kollektor- und dem Gate-Anschluß bei Verbinden des Emitter-Anschlusses mit dem Schutzschirm der Meßbrücke (dreipolig). Die Werte der Gleichspannung zwischen den Gate-Emitter- und den Kollector-Emitter-Anschlüssen sowie die Meßfrequenz sind spezifiziert.

#### 3.6 Input Capacitance $C_{ISS}$

The capacitance measured across the gate and emitter connections with collector-emitter connections shorted for AC voltage. The values of the DC voltage across the gate-emitter and collector-emitter connections are specified together with the test frequency.

#### 3.7 Output Capacitance $C_{OSS}$

The capacitance measured across the collector and emitter connections with gate-emitter connections shorted for AC voltage. The values of the DC voltage across the gate-emitter and collector-emitter connections are specified together with the test frequency.

#### 3.8 Reverse Transfer Capacitance $C_{rss}$

The capacitance measured across the collector and gate connections, the emitter connection being connected to the protective screen of the bridge (three-pole). The values of the DC voltage across the gate-emitter and collector-emitter connections are specified together with the test frequency.

#### 4 Diagramme

#### 4.1 Verlustleistung $P_{\text{tot}} = f(T)$

Angegeben ist die maximal zulässige Verlustleistung abhängig von der Gehäusetemperatur.

### 4.2 Typische Ausgangscharakteristik $I_{C} = f(V_{CE})$

Aufgetragen ist die typische Abhängigkeit des Kollektor-Stroms  $I_{\rm C}$  von der Kollektor-Emitter-Spannung  $V_{\rm CE}$  bei vorgegebener Gate-Emitter-Spannung  $V_{\rm GE}$ . Chiptemperatur  $T_{\rm j}$  und Pulsbreite sind spezifiziert.

### 4.3 Zulässiger Betriebsbereich $I_C = f(V_{CE})$ , (SOA-Diagramm)

Dargestellt ist der maximal zulässige Kollektor-Strom I<sub>C</sub> abhängig von der Kollektor-Emitter-Spannung für  $V_{\mathsf{CF}}$ Belastung mit Dauergleichstrom und mit unterschiedlicher Impulsen **Breite** bei spezifiziertem Puls-Pausen-Verhältnis. Die maximal zulässige Gehäusetemperatur ist spezifiziert. Innerhalb dieses Bereiches sind alle Werte von  $I_{\rm C}$  und  $V_{\rm CF}$  erlaubt, wenn der Transistor dabei thermisch nicht überlastet wird.

#### 4.4 Typische Übertragungscharakteristik $I_C = f(V_{CE})$

Das Diagramm zeigt die typische Abhängigkeit des Kollektorstromes  $I_{\rm C}$  von der Gate-Emitter-Spannung  $V_{\rm GE}$ , wobei die Chiptemperatur  $T_{\rm j}$ , die Pulsbreite und die Kollektor-Emitter-Spannung  $V_{\rm CE}$  spezifiziert sind.

#### 4 Diagrams

#### 4.1 Power Dissipation $P_{\text{tot}} = f(T)$

The maximum permissible power dissipation is presented as a function of case temperature  $T_{\rm C}$ .

### 4.2 Typical Output Characteristic $I_C = f(V_{CE})$

A plot is made of the typical dependence of the collector current  $I_{\rm C}$  on the collector-emitter voltage  $V_{\rm CE}$  at a given gate-emitter voltage  $V_{\rm GE}$ . The chip temperature  $T_{\rm j}$  and pulse width are specified.

### 4.3 Safe Operating Area $I_C = f(V_{CE})$ , (SOA Diagram)

The maximum permissible collector current  $I_{\rm D}$  is shown as a function of the collector-emitter voltage  $V_{\rm CE}$  for loading with continuous direct current and with pulses of varying width at the specified pulse duty factor. The maximum permissible case temperature is specified. All values of  $I_{\rm C}$  and  $V_{\rm CE}$  are allowed within this operating area if the transistor is not thermally overloaded as a result.

## 4.4 Typical Transfer Characteristic $I_C = f(V_{CE})$

The diagram shows the typical dependence of the collector current  $I_{\rm C}$  on the gate-emitter voltage  $V_{\rm GE}$ ; the chip temperature  $T_{\rm j}$ , the pulse width and the collector-emitter voltage  $V_{\rm CE}$  are specified.

#### 4.5 Typische Kapazitäten $C = f(V_{CE})$

Dargestellt sind die typischen Kennlinien der Eingangskapazität  $C_{\rm ISS}$ , Ausgangskapazität  $C_{\rm CSS}$  und Rückwirkungskapazität  $C_{\rm rss}$  in Abhängigkeit von der Kollektor-Emitter-Spannung  $V_{\rm CE}$  bei einer Frequenz f = 1 MHz und einer Gate-Emitter-Spannung  $V_{\rm GF}$  = 0 V.

# 4.6 Typische und maximale Durchlaßkennlinie "Inversdiode" $I_F = f(V_F)$

Dargestellt ist die Abhängigkeit des gepulsten Dioden-Gleichstroms  $I_{\rm F}$  von der Dioden-Durchlaßspannung  $V_{\rm F}$ . Die Pulsbreite  $t_{\rm p}$  und die Chiptemperatur  $T_{\rm j}$  sind spezifiziert.

#### 4.7 Kollektorstrom $I_C = f(T)$

Gezeigt wird der maximal zulässige Kollektorgleichstrom in Abhängigkeit von der Gehäusetemperatur  $T_{\rm C}$  bzw. Umgebungstemperatur  $T_{\rm A}$  bei durchgeschaltetem Transistor, d.h. bei  $V_{\rm GE}$  ### 15 V.

## 4.8 Transienter Wärmewiderstand $Z_{thJC} = f(t_p)$

Das Diagramm zeigt den Verlauf des transienten Wärmewiderstandes  $Z_{\text{thJC}}$  bei spezifiziertem Tastverhältnis  $D = t_{\text{p}} / T$  in Abhängigkeit von der Belastungszeit  $t_{\text{p}}$  (Pulsbreite).

#### 4.5 Typical Capacitances $C = f(V_{CE})$

The typical characteristics of the input capacitance  $C_{\rm ISS}$ , the output capacitance  $C_{\rm OSS}$  and the reverse transfer capacitance  $C_{\rm rss}$  are shown as a function of the collectoremitter voltage  $V_{\rm CE}$  at a frequency f = 1 MHz and a gate-emitter voltage  $V_{\rm GE}$  = 0 V.

# 4.6 Typical and Maximum "Inverse Diode" Forward Characteristic $I_F = f(V_F)$

The dependence is shown of the diode direct current  $I_{\rm F}$  on the diode forward voltage  $V_{\rm F}$ . The pulse width  $t_{\rm p}$  and the chip temperature  $T_{\rm i}$  are specified.

#### 4.7 Collector Current $I_C = f(T)$

The maximum permissible DC collector current is shown as a function of the case temperature  $T_{\rm C}$  or ambient temperature  $T_{\rm A}$  for a through-connected transistor, i.e. at  $V_{\rm GE}$  ### 15 V.

## 4.8 Transient Thermal Resistance $Z_{thJC} = f(t_p)$

The diagram shows the variation of the transient thermal resistance  $Z_{\text{thJC}}$  for the specified pulse duty factor  $D = t_{\text{p}} / T$  as a function of the loading time  $t_{\text{p}}$  (pulse width).

- 5 Meßschaltungen (entsprechend DIN IEC 747 T8)
- 5 Test Circuits (conforming with DIN IEC 747 T8)
- 5.1 Eingangskapazität  $C_{ISS}$
- 5.1 Input Capacitance  $C_{ISS}$

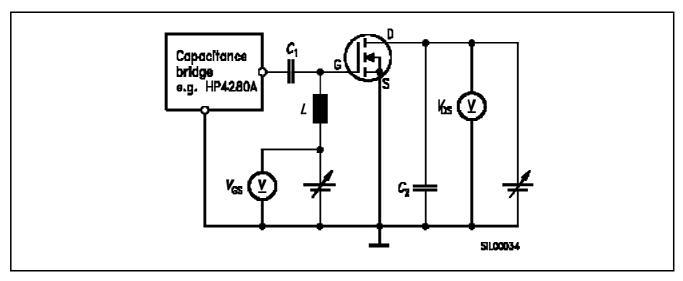



Bild 11 Prinzipschaltbild zum Messen der Eingangskapazität  $C_{\rm ISS}$  beim Verwenden einer Meßbrücke ohne Gleichstromdurchgang

Die Kapazitäten  $C_1$  und  $C_2$  müssen für die Meßfrequenz einen ausreichenden Kurzschluß darstellen. Die Induktivität L soll die Gleichstromversorgung entkoppeln.

Figure 11 Basic Circuit Diagram for Measuring Input Capacitance  $C_{\rm ISS}$  when Using a Bridge without the Passage of Direct Current

Capacitors  $C_1$  and  $C_2$  must form an adequate short-circuit for the test frequency. Inductor L decouples the DC supply.

#### 5.2 Ausgangskapazität $C_{OSS}$

#### 5.2 Output Capacitance $C_{OSS}$

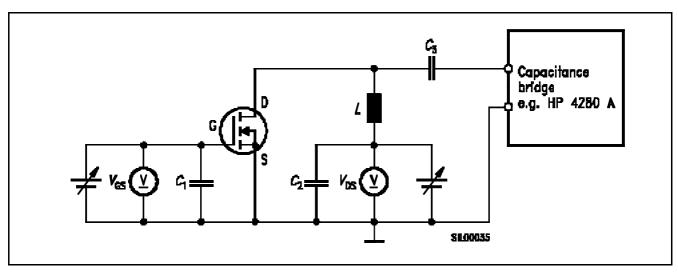



Bild 12 Prinzipschaltbild zum Messen der Ausgangskapazität  $C_{\rm OSS}$  beim Verwenden einer Meßbrücke ohne Gleichstromdurchgang

Die Kapazitäten  $C_1$ ,  $C_2$  und  $C_3$  müssen für die Meßfrequenz einen ausreichenden Kurzschluß darstellen. Die Induktivität L entkoppelt die Gleichstromversorgung.

Figure 12 Basic Circuit Diagram for Measuring Output Capacitance  $C_{\rm OSS}$  when Using a Bridge without the Passage of Direct Current

Capacitors  $C_1$ ,  $C_2$  and  $C_3$  must form an adequate short-circuit for the test frequency. Inductor L decouples the DC supply.

### **SIEMENS**

#### 5.3 Rückwirkungskapazität $C_{rss}$

#### 5.3 Reverse Transfer Capacitance $C_{rss}$

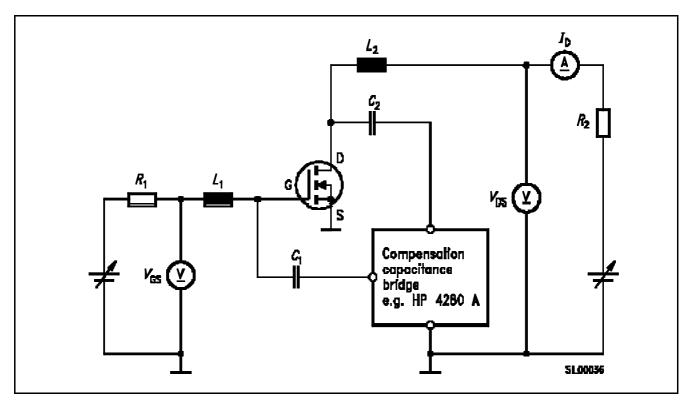



Bild 13 Prinzipschaltbild zum Messen der Rückwirkungskapazität  $C_{\rm rss}$  beim Verwenden einer Meßbrücke ohne Gleichstromdurchgang

Die Kapazitäten  $C_1$  und  $C_2$  müssen für die Meßfrequenz einen ausreichenden Kurzschluß bilden. Die Induktivitäten  $L_1$  und  $L_2$  sollen die Gleichstromversorgung entkoppeln.

Figure 13
Basic Circuit Diagram for Measuring
Reverse Transfer Capacitance  $C_{\rm rss}$  when
Using a Bridge without the Passage of DC
Current

Capacitors  $C_1$  and  $C_2$  must form an adequate short-circuit for the test frequency. Inductors  $L_1$  and  $L_2$  decouple the DC supply.