INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4521B MSI

24-stage frequency divider and oscillator

Product specification
File under Integrated Circuits, IC04

January 1995

24-stage frequency divider and oscillator

HEF4521B MSI

DESCRIPTION

The HEF4521B consists of a chain of 24 toggle flip-flops with an overriding asynchronous master reset input (MR), and an input circuit that allows three modes of operation. The single inverting stage (I_2/O_2) will function as a crystal oscillator, or in combination with I_1 as an RC oscillator, or as an input buffer for an external oscillator. Low-power

operation as a crystal oscillator is enabled by connecting external resistors to pins 3 (V_{SS} ') and 5 (V_{DD} '). Each flip-flop divides the frequency of the previous flip-flop by two, consequently the HEF4521B will count up to 2^{24} = 16777216. The counting advances on the HIGH to LOW transition of the clock (I_2). The outputs of the last seven stages are available for additional flexibility.

FAMILY DATA, I_{DD} LIMITS category MSI

See Family Specifications

24-stage frequency divider and oscillator

HEF4521B MSI

COUNT CAPACITY

ОИТРИТ	COUNT CAPACITY
O ₁₈	2 ¹⁸ = 262 144
O ₁₉	2 ¹⁹ = 524 288
O ₂₀	2 ²⁰ = 1 048 576
O ₂₁	2 ²¹ = 2 097 152
O ₂₂	2 ²² = 4 194 304
O ₂₃	2 ²³ = 8 388 608
O ₂₄	2 ²⁴ = 16 777 216

HEF4521BP(N): 16-lead DIL; plastic (SOT38-1)

HEF4521BD(F): 16-lead DIL; ceramic (cerdip) (SOT74) HEF4521BT(D): 16-lead SO; plastic (SOT109-1)

(): Package Designator North America

FUNCTIONAL TEST SEQUENCE

INPL	JTS		CONTROL TERMINALS	,	OUTPUTS	REMARKS
MR	l ₂	O ₂	V _{SS} '	V _{DD} '	O ₁₈ to O ₂₄	
Н	L	L	V _{DD}	V _{SS}	L	counter is in three 8-stage sections in parallel mode; I ₂ and O ₂ are interconnected (O ₂ is now input); counter is reset by MR
L	Л	Л	V _{DD}	V _{SS}	Н	255 pulses are clocked into I ₂ , O ₂ (the counter advances on the LOW to HIGH transition)
L	L	L	V _{SS}	V _{SS}	Н	V _{SS} ' is connected to V _{SS}
L	Н	L	V _{SS}	V _{SS}	Н	the input I ₂ is made HIGH
L	Н	L	V _{SS}	V _{DD}	Н	V _{DD} ' is connected to V _{DD} ; O ₂ is now made floating and becomes an output; the device is now in the 2 ²⁴ mode
L	~		V _{SS}	V _{DD}	L	counter ripples from an all HIGH state to an all LOW state

A test function has been included for the reduction of the test time required to exercise all 24 counter stages. This test function divides the counter into three 8-stage sections by connecting V_{SS} to V_{DD} and V_{DD} to V_{SS} . Via I_2 (connected to O_2) 255 counts are loaded into each of the 8-stage sections in parallel. All flip-flops are now at a HIGH state.

The counter is now returned to the normal 24-stage in series configuration by connecting V_{SS} ' to V_{SS} and V_{DD} ' to V_{DD} . One more pulse is entered into input I_2 , which will cause the counter to ripple from an all HIGH state to an all LOW state.

Philips Semiconductors

24-stage frequency divider and oscillator

HEF4521B MSI

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD}	SYMBOL	MIN.	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA	
Propagation delays								
$I_2 \rightarrow O_{18}$	5			950	1900	ns	923 ns + (0,55 ns/pF) C _L	
HIGH to LOW	10	t _{PHL}		350	700	ns	339 ns + (0,23 ns/pF) C _L	
	15			220	440	ns	212 ns + (0,16 ns/pF) C _L	
	5			950	1900	ns	923 ns + (0,55 ns/pF) C _L	
LOW to HIGH	10	t _{PLH}		350	700	ns	339 ns + (0,23 ns/pF) C _L	
	15			220	440	ns	212 ns + (0,16 ns/pF) C _L	
$O_n \rightarrow O_n + 1$	5			40	80	ns	13 ns + (0,55 ns/pF) C _L	
HIGH to LOW	10	t _{PHL}		15	30	ns	4 ns + (0,23 ns/pF) C _L	
	15			10	20	ns	2 ns + (0,16 ns/pF) C _L	
	5			40	80	ns	13 ns + (0,55 ns/pF) C _L	
LOW to HIGH	10	t _{PLH}		15	30	ns	4 ns + (0,23 ns/pF) C _L	
	15			10	20	ns	2 ns + (0,16 ns/pF) C _L	
$MR \to O_n$	5			120	240	ns	93 ns + (0,55 ns/pF) C _L	
HIGH to LOW	10	t _{PHL}		55	110	ns	44 ns + (0,23 ns/pF) C _L	
	15			40	80	ns	32 ns + (0,16 ns/pF) C _L	
$I_1 \rightarrow O_1$	5			90	180	ns	63 ns + (0,55 ns/pF) C _L	
HIGH to LOW	10	t _{PHL}		35	70	ns	24 ns + (0,23 ns/pF) C _L	
	15			25	50	ns	17 ns + (0,16 ns/pF) C _L	
	5			60	120	ns	33 ns + (0,55 ns/pF) C _L	
LOW to HIGH	10	t _{PLH}		30	60	ns	19 ns + (0,23 ns/pF) C _L	
	15			20	40	ns	12 ns + (0,16 ns/pF) C _L	

24-stage frequency divider and oscillator

HEF4521B MSI

	V _{DD} V	SYMBOL	MIN.	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA		
Output transition times	5			60	120	ns	10 ns + (1,0 ns/pF) C _L		
HIGH to LOW	10	t _{THL}		30	60	ns	9 ns + (0,42 ns/pF) C _L		
	15			20	40	ns	6 ns + (0,28 ns/pF) C _L		
	5			60	120	ns	10 ns + (1,0 ns/pF) C _L		
LOW to HIGH	10	t _{TLH}		30	60	ns	9 ns + (0,42 ns/pF) C _L		
	15			20	40	ns	6 ns + (0,28 ns/pF) C _L		

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD}	SYMBOL	MIN.	TYP.	MAX.	
Minimum I ₂ pulse	5		80	40	ns	
width; HIGH	10	t _{WI2H}	40	20	ns	
	15		30	15	ns	
Minimum MR	5		70	35	ns	
pulse width; HIGH	10	t _{WMRH}	40	20	ns	see also waveforms Fig.5
	15		30	15	ns	i ig.o
Recovery time	5		20	-10	ns	
for MR	10	t _{RMR}	15	-5	ns	
	15		15	0	ns	
Maximum clock	5		6	12	MHz	
pulse frequency	10	f _{max}	12	25	MHz	
	15		17	35	MHz	

	V _{DD}	TYPICAL FORMULA FOR P (μW)	
Dynamic power	5	1 200 $f_i + \sum (f_0 C_L) \times V_{DD}^2$	where
dissipation per	10	5 100 $f_i + \sum (f_0 C_L) \times V_{DD}^2$	f _i = input freq. (MHz)
package (P)	15	13 050 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _o = output freq. (MHz)
			C _L = load capacitance (pF)
			$\sum (f_0C_L) = \text{sum of outputs}$
			V _{DD} = supply voltage (V)

24-stage frequency divider and oscillator

HEF4521B MSI

24-stage frequency divider and oscillator

HEF4521B MSI

APPLICATION INFORMATION

Typical characteristics for crystal oscillator circuit (Fig.6):

	500 kHz CIRCUIT	50 kHz CIRCUIT	UNIT
Crystal characteristics			
resonance frequency	500	50	kHz
crystal cut	S	N	_
equivalent resistance; R _S	1	6,2	kΩ
External resistor/capacitor values			
R _o	47	750	kΩ
C _T	82	82	pF
C _S	20	20	pF

24-stage frequency divider and oscillator

HEF4521B MSI

Fig.7 RC oscillator circuit;

$$f \approx \frac{1}{2,3 \times R_{TC} \times C}$$
; $R_S \ge 2 R_{TC}$, in which:

f in Hz, R in Ω , C in F.

$$R_S + R_{TC} < \frac{V_{IL \ max}}{I_{LI}}$$
 (maximum input voltage LOW) (input leakage current)

Fig.8 Oscillator frequency as a function of R_{TC} and C; $V_{DD} = 10 \text{ V}$; test circuit is Fig.7.

24-stage frequency divider and oscillator

HEF4521B MSI

Fig.9 Test set-up for measuring forward transconductance $g_{fs} = di_0/d_{vi}$ at v_0 is constant (see also graph Fig.10).

A: average,

B: average + 2 s,

C: average – 2 s, in which: 's' is the observed standard deviation.

Fig.10 Typical forward transconductance g_{fs} as a function of the supply voltage at T_{amb} = 25 °C.

24-stage frequency divider and oscillator

HEF4521B MSI

Fig.12 Supply current as a function of supply voltage.

