MC68HC705P9/D REV. 3

MC68HC705P9

HCMOS Microcontroller Unit

TECHNICAL DATA

List of Sections

Table of Contents 5
Introduction
Pin Descriptions
Memory 19
Central Processor Unit (CPU) 33
Resets and Interrupts 55
Low-Power Modes
Parallel I/O Ports
Computer Operating Properly Watchdog (COP) 85
Timer
Serial Input/Output Port (SIOP) 107
Analog-to-Digital Converter (ADC) 121
Specifications 131
Index
Literature Updates 151

List of Modules

All M68HC05 microcontroller units (MCUs) are customer-specified modular designs. To meet customer requirements, Motorola is constantly designing new modules and new versions of existing modules. The following table shows the version levels of the modules in the MC68HC705P9 MCU.

Module	Version
Central Processor Unit (CPU)	HC05CPU
Timer	TIM1IC1OC_A
Serial Input/Output Port (SIOP)	SIOP_A
Computer Operating Properly Watchdog (COP)	COP0COP
Analog-to-Digital Converter (ADC)	ATD4X8NVRL

Revision History

The following table summarizes differences between this revision and the previous revision of this Technical Data manual.

Previous Revision	2.0
Current Revision	3.0
Date	11/95
Changes	Format and organizational changes
Location	Throughout

Table of Contents

List of Sections	List of Modules
Introduction	Contents.9Features.10Structure.11Package Types and Order Numbers.12Programmable Options.12
Pin Descriptions	Contents13Pin Assignments14Pin Functions15
Memory	Contents19Features19Memory Map20Input/Output Register Summary21RAM.24EPROM/OTPROM.25Mask Option Register31
CPU	Contents.33Features.34Introduction.34

	CPU Control Unit	.36
	Arithmetic/Logic Unit	.36
	CPU Registers	.36
	Instruction Set	.40
Resets and	Contents	.55
Interrupts	Resets	.56
	Low-Voltage Protection	.58
		.59
Low-Power Modes	Contento	65
Low-Power modes	Contents	
	Stop Mode	
	Wait Mode	
	Data-Retention Mode	.70
Parallel I/O Ports	Contents	.71
	Introduction	.72
	Port A.	.73
	Port B	.76
	Port C	.79
	Port D	.82
СОР	Contents	85
001	Features	
		0/
	COP Register	.87

Timer	Contents
	Features
	Introduction
	Operation
	Timing
	Interrupts
	I/O Registers
	Low-Power Modes
SIOP	Contents
	Features
	Introduction
	Operation
	Timing
	Interrupts
	I/O Registers
	Low-Power Modes
ADC	Contents
	Features
	Introduction
	Operation
	Interrupts
	Timing and Electrical Characteristics
	I/O Registers
	Low-Power Modes

Specifications	Contents
	Maximum Ratings
	Operating Temperature Range
	Thermal Characteristics
	Power Considerations
	5.0 V DC Electrical Characteristics
	3.3 V DC Electrical Characteristics
	Driver Characteristics
	Typical Supply Current vs. Internal Clock Frequency
	Maximum Supply Current vs. Internal Clock Frequency
	5.0 V Control Timing
	3.3 V Control Timing
	Test Load
	Mechanical Specifications
Index	
Literature Updates	Literature Distribution Centers
-	Mfax
	Motorola SPS World Marketing World Wide Web Server
	CSIC Microcontroller Division's Web Site

Introduction

Contents

Features	.10
Structure	.11
Package Types and Order Numbers	.12
Programmable Options	.12

Features

- Four Peripheral Modules
 - 16-Bit Input Capture/Output Compare Timer
 - Synchronous Serial I/O Port (SIOP)
 - 4-Channel, 8-Bit Analog-to-Digital Converter (ADC)
 - Computer Operating Properly (COP) Watchdog
- 20 Bidirectional I/O Port Pins and One Input-Only Port Pin
- On-Chip Oscillator with Connections for:
 - Crystal
 - Ceramic Resonator
 - External Clock
- 2104 Bytes of EPROM/OTPROM
 - 48 Bytes of Page Zero EPROM/OTPROM
 - Eight Locations for User Vectors
- 128 Bytes of User RAM
- Bootloader ROM
- Memory-Mapped Input/Output (I/O) Registers
- Fully Static Operation with No Minimum Clock Speed
- Power-Saving Stop, Wait, and Data-Retention Modes

Structure

Package Types and Order Numbers

Package Type	Case Outline	Pin Count	Operating Temperature	Order Number
Plastic DIP ⁽¹⁾	710	28	0 to +70 °C -40 to +85 °C -40 to +105 °C -40 to +125 °C	MC68HC705P9P MC68HC705P9CP MC68HC705P9VP MC68HC705P9MP
SOIC ⁽²⁾	733	28	0 to +70 °C -40 to +85 °C -40 to +105 °C -40 to +125 °C	MC68HC705P9DW MC68HC705P9CDW MC68HC705P9VDW MC68HC705P9MDW
CERDIP ⁽³⁾	751F	28	0 to +70 °C -40 to +85 °C -40 to +105 °C -40 to +125 °C	MC68HC705P9S MC68HC705P9CS MC68HC705P9VS MC68HC705P9MS

Table 1. Order Numbers

1. DIP = dual in-line package

2. SOIC = small outline integrated circuit

3. CERDIP = ceramic DIP

Programmable Options

The options in **Table 2** are programmable in the mask option register.

Table 2. Programmable Options

Feature	Option
COP Watchdog	Enabled or Disabled
External Interrupt Pin Triggering	Negative-Edge Triggering Only or Negative-Edge and Low-Level Triggering
SIOP Data Format	MSB First or LSB First

Pin Descriptions

Contents

Pin Assignments
Pin Functions
V_{DD} and V_{SS}
OSC1 and OSC21
Crystal Connections10
Ceramic Resonator Connections
External Clock Connections1
RESET
IRQ/V _{PP}
PA7–PA0
PB7/SCK–PB5/SDO
PC7/V _{RH} –PC0
PD7/TCAP and PD5
TCMP

Pin Assignments

Figure 1. Pin Assignments

Pin Functions

\mathbf{V}_{DD} and \mathbf{V}_{SS}	V_{DD} and V_{SS} are the power supply and ground pins. The MCU c from a single 5-V power supply.		
	Very fast signal transitions occur on the MCU pins, placing high short-duration current demands on the power supply. To prevent	мси	
	noise problems, take special care to provide good power supply bypassing at the MCU as	 C1 >⁶ 0.1 μF C2 	
	Figure 2 shows. Place the bypass capacitors as close as possible to the MCU. C2 is an		
	optional bulk current bypass capacitor for use in applications that require the port pins to source high current levels.	Figure 2. Bypassing Recommendation	

OSC1 and OSC2 The OSC1 and OSC2 pins are the connections for the on-chip oscillator. The oscillator can be driven by any of the following:

- Crystal
- Ceramic resonator
- External clock signal

The frequency of the on-chip oscillator is f_{OSC} . The MCU divides the internal oscillator output by two to produce the internal clock with a frequency of f_{OP} .

Pin Descriptions Pin Functions

Crystal Connections

The circuit in Figure 3 shows a typical crystal oscillator circuit for an AT-cut, parallel resonant crystal. Follow the crystal supplier's recommendations, as the crystal parameters determine the external component values required to provide reliable startup and maximum stability. The load capacitance values used in the oscillator circuit design should include all stray layout capacitances. To minimize output distortion, mount the crystal and capacitors as close as possible to the pins.

NOTE: Use an AT-cut crystal. Do not use a strip or tuning fork crystal. The MCU may overdrive or have the incorrect characteristic impedance for a strip or tuning fork crystal.

Ceramic Resonator Connections To reduce cost, use a ceramic resonator in place of the crystal. **Figure 4** shows a ceramic resonator circuit. For the values of any external components, follow the recommendations of the resonator manufacturer. The load capacitance values used in the oscillator circuit design should include all stray layout capacitances. To minimize output distortion, mount the resonator and capacitors as close as possible to the pins.

NOTE:	Because the frequency stability of ceramic that of crystal oscillators, using a ceramic performance of the ADC.	-
External Clock Connections	An external clock from another CMOS-compatible device can drive the OSC1 input, with the OSC2 pin unconnected, as Figure 5 shows.	MCU SS UNCONNECTED
RESET	A logic zero on the RESET pin forces the MCU to a known startup state. The RESET pin input circuit contains an internal Schmitt trigger to improve noise immunity.	EXTERNAL CMOS CLOCK
ĪRQ/V _{pp}	 The IRQ/V_{PP} pin has the following function Applying asynchronous external into Applying V_{PP}, the EPROM/OTPROM 	errupt signals
PA7-PA0	PA7–PA0 are general-purpose bidirection direction register A to configure port A pin	
PB7/SCK– PB5/SDO	Port B is a 3-pin bidirectional I/O port that Use data direction register B to configure outputs.	•
PC7/V _{RH} -PC0	Port C is an 8-pin bidirectional I/O port that ADC. Use data direction register C to contoutputs.	•

- PD7/TCAP and PD5 Port D is a 2-pin I/O port that shares one of its pins with the capture/compare timer. Use data direction register D to configure port D pins as inputs or outputs.
- TCMP The TCMP pin is the output compare pin for the capture/compare timer.

Memory

Contents

Features
Memory Map
Input/Output Register Summary21
RAM
EPROM/OTPROM
EPROM/OTPROM Programming
EPROM Programming Register
Bootloader ROM
EPROM Erasing
Mask Option Register

Features

- 2104 Bytes of EPROM/OTPROM
 - 48 Bytes of Page Zero EPROM/OTPROM
 - Eight Locations for User Vectors
- 128 Bytes of User RAM
- Bootloader ROM

Memory Map

\$0000 ↓ \$001F	I/O Registers (32 Bytes)	
\$0020 ↓ \$004F	Page Zero User EPROM (48 Bytes)	\ \ \
\$0050 ↓ \$007F	Unimplemented (48 Bytes)	
\$0080 ↓ \$00FF	RAM (128 Bytes)	
\$0100 ↓ \$08FF	User EPROM (2048 Bytes)	
\$0900	Mask Option Register	1
\$0901 ↓ \$1EFF	Unimplemented (5631 Bytes)	
\$1F00 ↓ \$1FEF	Bootloader ROM (240 Bytes)	
\$1FF0	COP Control Register	1
\$1FF1 ↓ \$1FF7	Reserved	
\$1FF8 ↓ \$1FFF	User Vector EPROM (8 Bytes)	

	Port A Data Register (PORTA)	\$0000
	Port B Data Register (PORTB)	\$0001
	Port C Data Register (PORTC)	\$0002
	Port D Data Register (PORTD)	\$0003
	Data Direction Register A (DDRA)	\$0004
	Data Direction Register B (DDRB)	\$0005
	Data Direction Register C (DDRC)	\$0006
	Data Direction Register D (DDRD)	\$0007
	Unimplemented	\$0008
	Onimplemented	\$0009
	SIOP Control Register (SCR)	\$000A
	SIOP Status Register (SSR)	\$000B
	SIOP Data Register (SDR)	\$000C
		\$000D
		\$000E
	Unimplemented	\$000F
		\$0010
		\$0011
	Timer Control Register (TCR)	\$0012
	Timer Status Register (TSR)	\$0013
	Input Capture Register High (ICRH)	\$0014
	Input Capture Register Low (ICRL)	\$0015
١	Output Compare Register High (OCRH)	\$0016
١	Output Compare Register Low (OCRL)	\$0017
١	Timer Register High (TRH)	\$0018
١	Timer Register Low (TRL)	\$0019
١	Alternate Timer Register High (ATRH)	\$001A
Ì	Alternate Timer Register Low (ATRL)	\$001B
	EPROM Programming Register (EPROG)	\$001C
	ADC Data Register (ADDR)	\$001D
, 1	ADC Status/Control Register (ADSCR)	\$001E
$\langle \rangle$	Reserved	\$001F
		-
	Timer Interrupt Vector High	\$1FF8
	Timer Interrupt Vector Low	\$1FF9
	External Interrupt Vector High	\$1FFA
	External Interrupt Vector Low	\$1FFB
۱.	Software Interrupt Vector High	\$1FFC
۱,	Software Interrupt Vector Low	\$1FFD
١,	Reset Vector High	\$1FFE
\	Reset Vector Low	\$1FFF
N N		-

Figure 1. Memory Map

Ι ١

Input/Output Register Summary

Addr.	Name	R/W	Bit 7	6	5	4	3	2	1	Bit 0
\$0000	Port A Data Register (PORTA)	Read: Write:	PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0
		Reset:		l	Jnaffecte		<u> </u>			
\$0001	Port B Data Register (PORTB)	Read:	PB7	PB6	PB5	0	0	0	0	0
		Write: Reset:				Jnaffecte	d by rese	t		
\$ 0000		Read:	D 07	D 00	DOS	504	500	500	504	DOO
\$0002	Port C Data Register (PORTC)	Write: Reset:	PC7	PC6	PC5	PC4 Jnaffecte	PC3	PC2	PC1	PC0
		હ્તરકરા.								
\$0003	Port D Data Register (PORTD)	Read:	PD7	0	PD5	1	0	0	0	0
	.	Write: Reset:			<u>ן</u>	Jnaffecte	d by rese	t		
		Read:								
\$0004	Data Direction Register A (DDRA)	Write:		DDRA6	DDRA5	DDRA4	DDRA3	DDRA2	DDRA1	DDRA0
		Reset:	0	0	0	0	0	0	0	0
\$0005	Data Direction Register B (DDRB)	Read: Write:	DDRB7	DDRB6	DDRB5	0	0	0	0	0
			0	0	0	0	0	0	0	0
\$0006	Data Direction Register C (DDRC)	Read: Write:	DDRC7	DDRC6	DDRC5	DDRC4	DDRC3	DDRC2	DDRC1	DDRC0
			0	0	0	0	0	0	0	0
\$0007	Data Direction Register D (DDRD)	Read:	0	0	DDRD5	0	0	0	0	0
	5 . ,	Write: Reset:	0	0	0	0	0	0	0	0
# 00000	11		-	-	-	-	-	-	-	-
\$0008	Unimplemented									
\$0009	Unimplemented									
				1						
				= Unimp	lemented	R	= Reserv	ved	U = Una	ffected

Figure 2. I/O Register Summary

Memory Input/Output Register Summary

Addr.	Name	R/W	Bit 7	6	5	4	3	2	1	Bit 0
\$000A	SIOP Control Register (SCR)	Read: Write:	0	SPE	0	MSTR	0	0	0	0
		Reset:	0	0	0	0	0	0	0	0
\$000B	SIOP Status Register (SSR)	Read:	SPIF	DCOL	0	0	0	0	0	0
		Write: Reset:	0	0	0	0	0	0	0	0
\$000C	SIOP Data Register (SDR)	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
		Reset:			ι	Jnaffecte	d by rese	t		
\$000D	Unimplemented									
\$000E	Unimplemented									
\$000F	Unimplemented	[
\$0010	Unimplemented	[
\$0011	Unimplemented									
\$0012	Timer Control Register (TCR)	Read: Write:	ICIE	OCIE	TOIE	0	0	0	IEDG	OLVL
		Reset:	0	0	0	0	0	0	U	0
¢0012	Timor Status Degister (TSD)	Read:	ICF	OCF	TOF	0	0	0	0	0
\$0013	Timer Status Register (TSR)	Write:	Upof	factod by	root	0	0	0	0	0
		Reset:	Unar	fected by	reset	0	0	0	0	0
\$0014	Input Capture Register High (ICRH)	Read: Write:	Bit 15	14	13	12	11	10	9	Bit 8
\$0015	Input Capture Register Low (ICRL)	Read:	Bit 7	6	5	4	3	2	1	Bit 0
φ0015	Input Capture Register Low (ICRL)	Write:				la offe etc		1		
		Reset:			(Jnaffecte	u by rese			
\$0016	Output Compare Register High (OCRH)	Read: Write:	Bit 15	14	13	12	11	10	9	Bit 8
		Reset:			l	Jnaffecte	d by rese	t		J
		[] = Unimp	lemented	R	= Reserv	ved	U = Una	ffected
	Figure 2. I/	O Re	gister	Summ	ary (Co	ontinu	ed)			

Addr.	Name	R/W	Bit 7	6	5	4	3	2	1	Bit 0
\$0017	Output Compare Register Low (OCRL)	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
		Reset:			ι	Jnaffecte	d by rese	et		
\$0018	Timer Register High (TRH)	Read: Write:	Bit 15	14	13	12	11	10	9	Bit 8
		Reset:			Rese	t initialize	es TRH to	s\$FF		
\$0019	Timer Register Low (TRL)	Read:	Bit 7	6	5	4	3	2	1	Bit 0
ψ0010		Write: Reset:			Rese	t initialize	es TRL to	\$FC		
		Read:	Bit 15	14	13	12	11	10	9	Bit 8
\$001A	Alternate Timer Register High (ALRH)		Bit 10						0	Bit 0
		Reset:			Reset	initialize	s ATRH t	o \$FF		
\$001B	5 ,		Bit 7	6	5	4	3	2	1	Bit 0
			te: Reset initializes ATRL to \$FC							
¢0040			0	0	0	0	0		0	FROM
\$001C			R	R	R	R	R	LATCH	R	EPGM
		Reset:				Jnanecte	d by rese			
\$001D	ADC Data Register (ADDR)	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
		Reset:			ι	Jnaffecte	d by rese	et		
\$001E	ADC Status/Control Register (ADSCR)	Read:	CCF	ADRC	ADON	0	0	CH2	CH1	СН0
φ001L		Write:	0	0	0	0	0	0	0	0
		r								
\$001F	Reserved	Read: Write:	R	R	R	R	R	R	R	R
		Reset:								
		[] = Unimp	lemented	R	= Reser	ved	U = Una	iffected

Figure 2. I/O Register Summary (Continued)

Memory RAM

Figure 2. I/O Register Summary (Continued)

RAM

The 128 addresses from \$0080–\$00FF are RAM locations. The CPU uses the top 64 RAM addresses, \$00C0–\$00FF, as the stack. Before processing an interrupt, the CPU uses five bytes of the stack to save the contents of the CPU registers. During a subroutine call, the CPU uses two bytes of the stack to store the return address. The stack pointer decrements when the CPU stores a byte on the stack and increments when the CPU retrieves a byte from the stack.

NOTE: Be careful when using nested subroutines or multiple interrupt levels. The CPU may overwrite data in the RAM during a subroutine or during the interrupt stacking operation.

EPROM/OTPROM

An MCU with a quartz window has 2104 bytes of erasable, programmable ROM (EPROM). The quartz window allows EPROM erasure with ultraviolet light.

NOTE: Keep the quartz window covered with an opaque material except when programming the MCU. Ambient light may affect MCU operation.

In an MCU without the quartz window, the EPROM cannot be erased and serves as 2104 bytes of one-time programmable ROM (OTPROM). The following addresses are user EPROM/OTPROM locations:

- \$0020-\$004F
- \$0100-\$08FF
- \$1FF8-\$1FFF (reserved for user-defined interrupt and reset vectors)

The mask option register (MOR) is an EPROM/OTPROM location at address \$0900.

The two ways to program the EPROM/OTPROM are:

- Manipulating the control bits in the EPROM programming register to program the EPROM/OTPROM on a byte-by-byte basis
- Activating the bootloader ROM to download the contents of an external memory device to the on-chip EPROM/OTPROM

EPROM Programming Register

EPROM/

OTPROM

Programming

The EPROM programming register contains the control bits for programming the EPROM/OTPROM.

\$001C	Bit 7	6	5	4	3	2	1	Bit 0
Read:	0	0	0	0	0	LATCH	0	EPGM
Write:	R	R	R	R	R	LAICH	R	EFGIVI
Reset:	0	0	0	0	0	0	0	0

R = Reserved

Figure 3. EPROM Programming Register (EPROG)

LATCH — EPROM Bus Latch

This read/write bit latches the address and data buses for EPROM/OTPROM programming. Clearing the LATCH bit automatically clears the EPGM bit. EPROM/OTPROM data cannot be read while the LATCH bit is set. Resets clear the LATCH bit.

- 1 = Address and data buses configured for EPROM/OTPROM programming
- 0 = Address and data buses configured for normal operation

EPGM bit— EPROM Programming

This read/write bit applies the voltage from the \overline{IRQ}/V_{PP} pin to the EPROM/OTPROM. To write the EPGM bit, the LATCH bit must already be set. Clearing the LATCH bit also clears the EPGM bit. Resets clear the EPGM bit.

- 1 = EPROM/OTPROM programming power switched on
- 0 = EPROM/OTPROM programming power switched off

NOTE: Writing logic ones to both the LATCH and EPGM bits with a single instruction sets LATCH and clears EPGM. LATCH must be set first by a separate instruction.

Bits 7-3 and Bit 1- Reserved

Bits 7–3 and bit 1 are factory test bits that always read as logic zeros.

Take the following steps to program a byte of EPROM/OTPROM:

- 1. Apply 16.5 V to the \overline{IRQ}/V_{PP} pin.
- 2. Set the LATCH bit.
- 3. Write to any EPROM/OTPROM address.
- 4. Set the EPGM bit for a time, t_{EPGM}, to apply the programming voltage.
- 5. Clear the LATCH bit.

Bootloader ROM The bootloader ROM, located at addresses \$1F00-\$1FEF, contains routines for copying an external EPROM to the on-chip EPROM/OTPROM.

The bootloader copies to the following EPROM/OTPROM addresses:

- \$0020-\$004F
- \$0100-\$0900
- \$1FF0-\$1FFF

The addresses of the code in the external EPROM must match the MC68HC705P9 addresses. The bootloader ignores all other addresses.

Figure 4 shows the circuit for downloading to the on-chip EPROM/OTPROM from a 2764 EPROM. The bootloader circuit includes an external 12-bit counter to address the external EPROM. Operation is fastest when unused external EPROM addresses contain \$00. The bootloader function begins when a rising edge occurs on the RESETpin while the V_{PP} voltage is on the IRQ/V_{PP} pin, and the PD7/TCAP pin is at logic one.

EPROM/OTPROM

Memory

Figure 4. Bootloader Circuit

The logical states of the PC4/AN2 and PC3/AN3 pins select the bootloader function, as **Table 1** shows.

 Table 1. Bootloader Function Selection

PC4/AN2	PC3/AN3	Function
1	1	Program and Verify
1	0	Verify Only

Complete the following steps to bootload the MCU:

- 1. Turn off all power to the circuit.
- 2. Install the EPROM containing the code to be downloaded.
- 3. Install the MCU.
- 4. Select the bootloader function:
 - a. Open switches S2 and S3 to select the program and verify function.
 - b. Open only switch S2 to select only the verify function.
- 5. Close switch S1.
- 6. Turn on the V_{DD} power supply.

CAUTION: Turn on the V_{DD} power supply **before** turning on the V_{PP} power supply.

- 7. Turn on the V_{PP} power supply.
- Open switch S1. The bootloader code begins to execute. If the PROGRAM function is selected, the PROGRAM LED turns on during programming. If the VERIFY function is selected, the VERIFY LED turns on when verification is successful. The PROGRAM and VERIFY functions take about 10 seconds.
- 9. Close switch S1.
- 10. Turn off the V_{PP} power supply.

¹¹⁻mc68hc705p9

Memory

- **CAUTION:** Turn off the V_{PP} power supply **before** turning off the V_{DD} power supply.
 - 11. Turn off the V_{DD} power supply.

EPROM Erasing The erased state of an EPROM bit is zero. Erase the EPROM by exposing it to 15 Ws/cm² of ultraviolet light with a wavelength of 2537 angstroms. Position the ultraviolet light source one inch from the EPROM. Do not use a shortwave filter.

Cerdip packages have a transparent window for erasing the EPROM with ultraviolet light. In the windowless PDIP and SOIC packages, the 2104 EPROM bytes function as one-time programmable ROM (OTPROM).

Mask Option Register

The mask option register (MOR) is an EPROM/OTPROM byte that is programmable only with the bootloader function. The MOR controls the following options:

- LSB first or MSB first SIOP data transfer
- Edge-triggered or edge- and level-triggered external interrupt pin
- Enabled or disabled COP watchdog

To program the MOR, use the 5-step procedure given in the section **EPROM Programming Register** on page 26. Write to address \$0900 in step 3.

Figure 5. Mask Option Register (MOR)

SIOP — Serial I/O Port

The SIOP bit controls the shift direction into and out of the SIOP shift register.

- 1 = SIOP data transferred LSB first (bit 0 first)
- 0 = SIOP data transferred MSB first (bit 7 first)
- IRQ Interrupt Request

The IRQ bit makes the external interrupt function of the \overline{IRQ}/V_{PP} pin level-triggered as well as edge-triggered.

 $1 = \overline{IRQ}/V_{PP}$ pin negative-edge triggered and low-level triggered

 $0 = \overline{IRQ}/V_{PP}$ pin negative-edge triggered only

COPE — COP Enable

COPE enables the COP watchdog. In applications that have wait cycles longer than the COP watchdog timeout period, the COP watchdog can be disabled by not programming the COPE bit to logic one.

1 = COP watchdog enabled

0 = COP watchdog disabled

Central Processor Unit CPU

Contents

Introduction
CPU Control Unit
Arithmetic/Logic Unit
CPU Registers
Accumulator
Index Register
Stack Pointer
Program Counter
Condition Code Register
Instruction Set
Addressing Modes40
Inherent
Immediate
Direct
Extended4
Indexed, No Offset4
Indexed, 8-Bit Offset4
Indexed, 16-Bit Offset42
Relative
Instruction Types43
Register/Memory Instructions43
Read-Modify-Write Instructions
Jump/Branch Instructions4
Bit Manipulation Instructions47
Control Instructions
Instruction Set Summary48

Features

- 2.1-MHz Bus Frequency
- 8-Bit Accumulator
- 8-Bit Index Register
- 13-Bit Program Counter
- 6-Bit Stack Pointer
- Condition Code Register with Five Status Flags
- 62 Instructions
- Eight Addressing Modes
- Power-Saving Stop, Wait, and Data-Retention Modes

Introduction

The central processor unit (CPU) consists of a CPU control unit, an arithmetic/logic unit (ALU), and five CPU registers. The CPU control unit fetches and decodes instructions. The ALU executes the instructions. The CPU registers contain data, addresses, and status bits that reflect the results of CPU operations.

Figure 1. CPU Programming Model

CPU Control Unit

The CPU control unit fetches and decodes instructions during program operation. The control unit selects the memory locations to read and write and coordinates the timing of all CPU operations.

Arithmetic/Logic Unit

The arithmetic/logic unit (ALU) performs the arithmetic, logic, and manipulation operations decoded from the instruction set by the CPU control unit. The ALU produces the results called for by the program and sets or clears status and control bits in the condition code register (CCR).

CPU Registers

The M68HC05 CPU contains five registers that control and monitor MCU operation:

- Accumulator
- Index register
- Stack pointer
- Program counter
- Condition code register

CPU registers are not memory mapped.
Accumulator The accumulator is a general-purpose 8-bit register. The CPU uses the accumulator to hold operands and the results of arithmetic and logic operations.

Figure 2. Accumulator (A)

Index Register The index register can be used for data storage or as a counter. In the indexed addressing modes, the CPU uses the byte in the index register to determine the effective address of the operand.

Figure 3. Index Register (X)

Stack Pointer The stack pointer is a 16-bit register that contains the address of the next stack location to be used. During a reset or after the reset stack pointer instruction (RSP), the stack pointer is preset to \$00FF. The address in the stack pointer decrements after a byte is stacked and increments before a byte is unstacked.

CPU

CPU Registers

The 10 most significant bits of the stack pointer are permanently fixed at 0000000011, so the stack pointer produces addresses from \$00C0 to \$00FF. If subroutines and interrupts use more than 64 stack locations, the stack pointer wraps around to address \$00FF and begins writing over the previously stored data. A subroutine uses two stack locations; an interrupt uses five locations.

Program CounterThe program counter is a 16-bit register that contains the address of the
next instruction or operand to be fetched. The three most significant bits
of the program counter are ignored internally and appear as 000.

Normally, the address in the program counter automatically increments to the next sequential memory location every time an instruction or operand is fetched. Jump, branch, and interrupt operations load the program counter with an address other than that of the next sequential location.

Condition Code Register

The condition code register is an 8-bit register whose three most significant bits are permanently fixed at 111. The condition code register contains the interrupt mask and four flags that indicate the results of the instruction just executed.

H — Half-Carry Flag

The CPU sets the half-carry flag when a carry occurs between bits 3 and 4 of the accumulator during an ADD or ADC operation. The half-carry flag is required for binary-coded decimal (BCD) arithmetic operations.

I — Interrupt Mask

Setting the interrupt mask disables interrupts. If an interrupt request occurs while the interrupt mask is logic zero, the CPU saves the CPU registers on the stack, sets the interrupt mask, and then fetches the interrupt vector. If an interrupt request occurs while the interrupt mask is set, the interrupt request is latched. Normally, the CPU processes the latched interrupt as soon as the interrupt mask is cleared again.

A return from interrupt (RTI) instruction pulls the CPU registers from the stack, restoring the interrupt mask to its cleared state. After any reset, the interrupt mask is set and can be cleared only by a software instruction.

N — Negative Flag

The CPU sets the negative flag when an arithmetic operation, logical operation, or data manipulation produces a negative result.

Z — Zero Flag

The CPU sets the zero flag when an arithmetic operation, logical operation, or data manipulation produces a result of \$00.

C — Carry/Borrow Flag

The CPU sets the carry/borrow flag when an addition operation produces a carry out of bit 7 of the accumulator or when a subtraction operation requires a borrow. Some logical operations and data manipulation instructions also clear or set the carry/borrow flag.

⁷⁻hc05cpu

Instruction Set

	The MCU instruction set has 62 instructions and uses eight addressing modes. The instructions include all those of the M146805 CMOS Family plus one more: the unsigned multiply (MUL) instruction. The MUL instruction allows unsigned multiplication of the contents of the accumulator (A) and the index register (X). The high-order product is stored in the index register, and the low-order product is stored in the accumulator.
Addressing Modes	The CPU uses eight addressing modes for flexibility in accessing data. The addressing modes provide eight different ways for the CPU to find the data required to execute an instruction. The eight addressing modes are:
	Inherent
	Immediate
	• Direct
	Extended
	Indexed, no offset
	Indexed, 8-bit offset
	Indexed, 16-bit offset
	Relative
Inherent	Inherent instructions are those that have no operand, such as return from interrupt (RTI) and stop (STOP). Some of the inherent instructions act on data in the CPU registers, such as set carry flag (SEC) and increment accumulator (INCA). Inherent instructions require no operand address and are one byte long.
Immediate	Immediate instructions are those that contain a value to be used in an operation with the value in the accumulator or index register. Immediate instructions require no operand address and are two bytes long. The opcode is the first byte, and the immediate data value is the second byte.

Direct	Direct instructions can access any of the first 256 memory locations with two bytes. The first byte is the opcode, and the second is the low byte of the operand address. In direct addressing, the CPU automatically uses \$00 as the high byte of the operand address.
Extended	Extended instructions use three bytes and can access any address in memory. The first byte is the opcode; the second and third bytes are the high and low bytes of the operand address.
	When using the Motorola assembler, the programmer does not need to specify whether an instruction is direct or extended. The assembler automatically selects the shortest form of the instruction.
Indexed, No Offset	Indexed instructions with no offset are 1-byte instructions that can access data with variable addresses within the first 256 memory locations. The index register contains the low byte of the effective address of the operand. The CPU automatically uses \$00 as the high byte, so these instructions can address locations \$0000–\$00FF.
	Indexed, no offset instructions are often used to move a pointer through a table or to hold the address of a frequently used RAM or I/O location.
Indexed, 8-Bit Offset	Indexed, 8-bit offset instructions are 2-byte instructions that can access data with variable addresses within the first 511 memory locations. The CPU adds the unsigned byte in the index register to the unsigned byte following the opcode. The sum is the effective address of the operand. These instructions can access locations \$0000-\$01FE.
	Indexed 8-bit offset instructions are useful for selecting the kth element in an n-element table. The table can begin anywhere within the first 256 memory locations and could extend as far as location 510 (\$01FE). The k value is typically in the index register, and the address of the beginning of the table is in the byte following the opcode.

CPU

Indexed, 16-Bit Offset	Indexed, 16-bit offset instructions are 3-byte instructions that can access data with variable addresses at any location in memory. The CPU adds the unsigned byte in the index register to the two unsigned bytes following the opcode. The sum is the effective address of the operand. The first byte after the opcode is the high byte of the 16-bit offset; the second byte is the low byte of the offset.
	Indexed, 16-bit offset instructions are useful for selecting the kth element in an n-element table anywhere in memory.
	As with direct and extended addressing, the Motorola assembler determines the shortest form of indexed addressing.
Relative	Relative addressing is only for branch instructions. If the branch condition is true, the CPU finds the effective branch destination by adding the signed byte following the opcode to the contents of the program counter. If the branch condition is not true, the CPU goes to the next instruction. The offset is a signed, two's complement byte that gives a branching range of -128 to $+127$ bytes from the address of the next location after the branch instruction.
	When using the Motorola assembler, the programmer does not need to calculate the offset, because the assembler determines the proper offset and verifies that it is within the span of the branch.

Instruction Types The MCU instructions fall into the following five categories:

- Register/Memory Instructions
- Read-Modify-Write Instructions
- Jump/Branch Instructions
- Bit Manipulation Instructions
- Control Instructions

Register/ Memory Instructions These instructions operate on CPU registers and memory locations. Most of them use two operands. One operand is in either the accumulator or the index register. The CPU finds the other operand in memory.

Instruction	Mnemonic
Add Memory Byte and Carry Bit to Accumulator	ADC
Add Memory Byte to Accumulator	ADD
AND Memory Byte with Accumulator	AND
Bit Test Accumulator	BIT
Compare Accumulator	CMP
Compare Index Register with Memory Byte	СРХ
EXCLUSIVE OR Accumulator with Memory Byte	EOR
Load Accumulator with Memory Byte	LDA
Load Index Register with Memory Byte	LDX
Multiply	MUL
OR Accumulator with Memory Byte	ORA
Subtract Memory Byte and Carry Bit from Accumulator	SBC
Store Accumulator in Memory	STA
Store Index Register in Memory	STX
Subtract Memory Byte from Accumulator	SUB

Table 1. Register/Memory Instructions

Read-Modify-Write Instructions These instructions read a memory location or a register, modify its contents, and write the modified value back to the memory location or to the register.

NOTE: Do not use read-modify-write operations on write-only registers.

Instruction	Mnemonic
Arithmetic Shift Left (Same as LSL)	ASL
Arithmetic Shift Right	ASR
Bit Clear	BCLR ⁽¹⁾
Bit Set	BSET ⁽¹⁾
Clear Register	CLR
Complement (One's Complement)	СОМ
Decrement	DEC
Increment	INC
Logical Shift Left (Same as ASL)	LSL
Logical Shift Right	LSR
Negate (Two's Complement)	NEG
Rotate Left through Carry Bit	ROL
Rotate Right through Carry Bit	ROR
Test for Negative or Zero	TST ⁽²⁾

Table 2. Read-Modify-Write Instructions

1. Unlike other read-modify-write instructions, BCLR and BSET use only direct addressing.

2. TST is an exception to the read-modify-write sequence because it does not write a replacement value.

44

Jump/Branch Jump instructions allow the CPU to interrupt the normal sequence of the program counter. The unconditional jump instruction (JMP) and the jump-to-subroutine instruction (JSR) have no register operand. Branch instructions allow the CPU to interrupt the normal sequence of the program counter when a test condition is met. If the test condition is not met, the branch is not performed.

The BRCLR and BRSET instructions cause a branch based on the state of any readable bit in the first 256 memory locations. These 3-byte instructions use a combination of direct addressing and relative addressing. The direct address of the byte to be tested is in the byte following the opcode. The third byte is the signed offset byte. The CPU finds the effective branch destination by adding the third byte to the program counter if the specified bit tests true. The bit to be tested and its condition (set or clear) is part of the opcode. The span of branching is from -128 to +127 from the address of the next location after the branch instruction. The CPU also transfers the tested bit to the carry/borrow bit of the condition code register. CPU

Instruction	Mnemonic
Branch if Carry Bit Clear	BCC
Branch if Carry Bit Set	BCS
Branch if Equal	BEQ
Branch if Half-Carry Bit Clear	BHCC
Branch if Half-Carry Bit Set	BHCS
Branch if Higher	BHI
Branch if Higher or Same	BHS
Branch if IRQ Pin High	BIH
Branch if IRQ Pin Low	BIL
Branch if Lower	BLO
Branch if Lower or Same	BLS
Branch if Interrupt Mask Clear	BMC
Branch if Minus	BMI
Branch if Interrupt Mask Set	BMS
Branch if Not Equal	BNE
Branch if Plus	BPL
Branch Always	BRA
Branch if Bit Clear	BRCLR
Branch Never	BRN
Branch if Bit Set	BRSET
Branch to Subroutine	BSR
Unconditional Jump	JMP
Jump to Subroutine	JSR

Table 3. Jump and Branch Instructions

Bit Manipulation Instructions

The CPU can set or clear any writable bit in the first 256 bytes of memory, which includes I/O registers and on-chip RAM locations. The CPU can also test and branch based on the state of any bit in any of the first 256 memory locations.

Table 4. Bit Manipulation Instructions
--

Instruction	Mnemonic
Bit Clear	BCLR
Branch if Bit Clear	BRCLR
Branch if Bit Set	BRSET
Bit Set	BSET

Control Instructions

These instructions act on CPU registers and control CPU operation during program execution.

Table 5. Control Instructions

Instruction	Mnemonic
Clear Carry Bit	CLC
Clear Interrupt Mask	CLI
No Operation	NOP
Reset Stack Pointer	RSP
Return from Interrupt	RTI
Return from Subroutine	RTS
Set Carry Bit	SEC
Set Interrupt Mask	SEI
Stop Oscillator and Enable IRQ Pin	STOP
Software Interrupt	SWI
Transfer Accumulator to Index Register	TAX
Transfer Index Register to Accumulator	TXA
Stop CPU Clock and Enable Interrupts	WAIT

Instruction Set Summary

Source	Operation	Description	Effect on CCR			n	Address Mode	Opcode	Operand	sels	
Form	Operation	Description	н	I	N	z	С	Add Mo	Opc	Opel	Cycles
ADC #opr								IMM	A9	ii	2
ADC opr								DIR	B9	dd	3
ADC opr	Add with Carry	$A \gets (A) + (M) + (C)$	\$		_↑ 、	_↑ ,	< \$>	EXT	C9	hh ll	4
ADC opr,X	Add with Carly	$A \leftarrow (A) + (W) + (C)$	+	1	*) *′	Ì ↓	IX2	D9	ee ff	5
ADC opr,X								IX1	E9	ff	4
ADC ,X								IX	F9		3
ADD #opr								IMM	AB	ii	2
ADD opr								DIR	BB	dd	3
ADD opr	Add without Corru		↑ .		<u>+</u> .	\$	\$	EXT	СВ	hh ll	4
ADD opr,X	Add without Carry	$A \gets (A) + (M)$	\$	_ا	+>	∮ ↓	+	IX2	DB	ee ff	5
ADD opr,X								IX1	EB	ff	4
ADD ,X								IX	FB		3
AND #opr								IMM	A4	ii	2
AND opr								DIR	B4	dd	3
AND opr								EXT	C4	hh ll	4
AND opr,X	Logical AND	$A \leftarrow (A) \land (M)$	-		‡ >	¢ ‡		IX2	D4	ee ff	5
AND opr,X								IX1	E4	ff	4
AND ,X								IX	F4		3
ASL opr								DIR	38	dd	5
ASLA								INH	48		3
ASLX	Arithmetic Shift Left (Same as LSL)		_		‡>	¢ ‡	\$	INH	58		3
ASL opr,X		b7 b0						IX1	68	ff	6
ASL ,X								IX	78		5
ASR opr								DIR	37	dd	5
ASRA		▶						INH	47		3
ASRX	Arithmetic Shift Right		_		‡>	\$	\$	INH	57		3
ASR opr,X	5	b7 b0						IX1	67	ff	6
ASR ,X								IX	77		5
BCC rel	Branch if Carry Bit Clear	$PC \leftarrow (PC) + 2 + rel? C = 0$	1_	1_	-	 	-	REL	24	rr	3
							\vdash	DIR (b0)		dd	5
								DIR (b1)		dd	5
								DIR (b2)		dd	5
								DIR (b3)		dd	5
BCLR n opr	Clear Bit n	Mn ← 0	-	-	-	-		DIR (b4)		1	5
								DIR (b5)			5
								DIR (b6)		dd	5
								DIR (b7)		dd	5
BCS rel	Branch if Carry Bit Set (Same as BLO)	$PC \leftarrow (PC) + 2 + rel? C = 1$	_	1_	1_	1_	1_	REL	25	rr	3
BEQ rel	Branch if Equal	$PC \leftarrow (PC) + 2 + rel? Z = 1$	1_	1_	1_	1_	1_	REL	27	rr	3
BHCC rel	Branch if Half-Carry Bit Clear	$PC \leftarrow (PC) + 2 + rel? H = 0$	_	1_	1_	_		REL	28	rr	3
BHCS rel	Branch if Half-Carry Bit Set	$PC \leftarrow (PC) + 2 + rel? H = 1$	1_	_	1_		1_	REL	29	rr	3

Table 6. Instruction Set Summary

Source	Operation	Description		fect on CCR			Address Mode	ode	and	Cycles	
Form	Operation	Description	н	I	N	z	С	Addi Mo	Opcode	Operand	Cyc
BHI rel	Branch if Higher	$PC \leftarrow (PC) + 2 + rel? C \lor Z = 0$	-	-	—	—	-	REL	22	rr	3
BHS rel	Branch if Higher or Same	$PC \leftarrow (PC) + 2 + \mathit{rel} ? C = 0$		_	—	—	_	REL	24	rr	3
BIH <i>rel</i>	Branch if IRQ Pin High	PC ← (PC) + 2 + <i>rel</i> ? IRQ = 1	—	—	—		—	REL	2F	rr	3
BIL rel	Branch if IRQ Pin Low	$PC \leftarrow (PC) + 2 + rel ? IRQ = 0$	_		—	_		REL	2E	rr	3
BIT #opr								IMM	A5	ii	2
BIT opr	Bit Test Accumulator with Memory Byte							DIR	B5	dd	3
BIT opr		$(A) \land (M)$		_	‡×	\$	_	EXT	C5	hh ll	4
BIT <i>opr</i> ,X	Bit lest Accumulator with Memory Byte				*^	ÌŤ		IX2	D5	ee ff	5
BIT <i>opr</i> ,X								IX1	E5	ff	4
BIT ,X								IX	F5		3
BLO rel	Branch if Lower (Same as BCS)	$PC \leftarrow (PC) + 2 + rel ? C = 1$	_		—	_		REL	25	rr	3
BLS rel	Branch if Lower or Same	$PC \leftarrow (PC) + 2 + \mathit{rel} ? C \lor Z = 1$	_		—	_		REL	23	rr	3
BMC rel	Branch if Interrupt Mask Clear	$PC \leftarrow (PC) + 2 + \mathit{rel} ? I = 0$	—	—	—	—	—	REL	2C	rr	3
BMI rel	Branch if Minus	$PC \leftarrow (PC) + 2 + rel ? N = 1$	_		—	_		REL	2B	rr	3
BMS rel	Branch if Interrupt Mask Set	PC ← (PC) + 2 + <i>rel</i> ? I = 1	_		—	_		REL	2D	rr	3
BNE rel	Branch if Not Equal	$PC \leftarrow (PC) + 2 + \mathit{rel} ? Z = 0$	_		—	_		REL	26	rr	3
BPL rel	Branch if Plus	$PC \leftarrow (PC) + 2 + \mathit{rel} ? N = 0$	-	—	—	—	—	REL	2A	rr	3
BRA rel	Branch Always	PC ← (PC) + 2 + <i>rel</i> ? 1 = 1	_		—	—		REL	20	rr	3
BRCLR n opr rel	Branch if Bit n Clear Branch Never	PC ← (PC) + 2 + <i>rel</i> ? Mn = 0 PC ← (PC) + 2 + <i>rel</i> ? 1 = 0	_				¢×	DIR (b4) DIR (b5) DIR (b6) DIR (b7) REL DIR (b0) DIR (b1) DIR (b2)	03 05 09 0B 0D 0F 21 00 02 04	dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
BRSET n opr rel	Branch if Bit n Set Set Bit n	PC ← (PC) + 2 + <i>rel</i> ? Mn = 1 Mn ← 1	_				*	DIR (b3) DIR (b4) DIR (b5) DIR (b6) DIR (b7) DIR (b0) DIR (b1) DIR (b2) DIR (b3) DIR (b4)	08 0A 0C 0E 10 12 14 16		5 5 5
								DIR (b5) DIR (b6) DIR (b7)	1A 1C	dd dd dd	5 5 5

Table 6. Instruction Set Summary (Continued)

Source	Operation	Description			ffect on CCR			Address Mode	ode	and	les
Form	Operation	Description	Н	I	N	z	С	Addi Mo	Opcode	Operand	Cycles
BSR rel	Branch to Subroutine	$\begin{array}{l} PC \leftarrow (PC) + 2; push \; (PCL) \\ SP \leftarrow (SP) - 1; push \; (PCH) \\ & SP \leftarrow (SP) - 1 \\ & PC \leftarrow (PC) + \mathit{rel} \end{array}$	_					REL	AD	rr	6
CLC	Clear Carry Bit	$C \leftarrow O$					0	INH	98		2
CLI	Clear Interrupt Mask	l ← 0	—	0	_			INH	9A		2
CLR opr		M ← \$00						DIR	3F	dd	5
CLRA		A ← \$00						INH	4F		3
CLRX	Clear Byte	X ← \$00	_		0	1		INH	5F		3
CLR opr,X		M ← \$00						IX1	6F	ff	6
CLR ,X		M ← \$00						IX	7F		5
CMP #opr		•				1	1	IMM	A1	ii	2
CMP opr								DIR	B1	dd	3
CMP opr							.	EXT	C1	hh ll	4
CMP opr,X	Compare Accumulator with Memory Byte	(A) – (M)	-		\$> 	< ↓	\$	IX2	D1	ee ff	
CMP opr,X								IX1	E1	ff	4
CMP ,X								IX	F1		3
COM opr			-					DIR	33	dd	5
СОМА		$ \begin{array}{l} M \leftarrow (\overline{M}) = \$FF - (M) \\ A \leftarrow (\overline{A}) = \$FF - (A) \end{array} \end{array} $						INH	43		3
COMX	Complement Byte (One's Complement)	$X \leftarrow (\overline{X}) = \$FF - (X)$ $X \leftarrow (\overline{X}) = \$FF - (X)$		_	1.	< ‡>	1	INH	53		3
COM opr,X		$M \leftarrow (\overline{M}) = FF - (M)$			•] .] .	IX1	63	ff	6
СОМ ,Х		$M \leftarrow (\overline{M}) = \$FF - (M)$						IX	73		5
CPX #opr			+					IMM	A3	ii	2
CPX opr								DIR	B3	dd	3
CPX opr								FXT	C3		4
CPX opr,X	Compare Index Register with Memory Byte	(X) – (M)	-		\$	< ¥	\$	IX2	D3		
CPX opr,X								IX1	E3	ff	4
CPX ,X								IX	F3		3
DEC opr		$M \leftarrow (M) - 1$	-		\vdash			DIR	3A	dd	5
DECA		$A \leftarrow (A) - 1$						INH	4A		3
DECX	Decrement Byte	$X \leftarrow (X) - 1$		<u> </u> _	1.	< ‡>	_	INH	5A		3
DEC opr,X		$M \leftarrow (M) - 1$			•] *	1	IX1	6A	ff	6
DEC ,X		$M \leftarrow (M) - 1$						IX	7A		5
EOR #opr			+	-	-	\vdash	\vdash	IMM	A8	ii	2
EOR opr								DIR	B8		3
EOR opr								EXT	C8		4
EOR opr,X	EXCLUSIVE OR Accumulator with Memory Byte	$A \leftarrow (A) \oplus (M)$	-	-	\$>	< ↓	-	IX2	D8		
EOR opr,X								IX1	E8	ff	4
EOR ,X								IX	F8		3
INC opr		M ← (M) + 1	-	-	\vdash	+	\vdash	DIR	3C	dd	5
INC Opi INCA		$M \leftarrow (M) + 1$ A $\leftarrow (A) + 1$						INH	4C		3
INCA	Increment Byte	$A \leftarrow (A) + 1$ $X \leftarrow (X) + 1$			↑.	< ‡>		INH	4C		3
INC opr,X		$X \leftarrow (X) + 1$ M $\leftarrow (M) + 1$			+ '	↓ ,	1_	IX1	6C	ff	
-									7C		6
INC ,X		$M \leftarrow (M) + 1$				1		IX	10		5

Table 6. Instruction Set Summary (Continued)

Source	Operation	Description		Effect on CCR						ress de	ode	and	sel
Form	Operation	Description	н	I	N	z	С	Address Mode	Opcode	Operand	Cycles		
JMP opr								DIR	BC	dd	2		
JMP opr								EXT	CC	hh ll	3		
JMP opr,X	Unconditional Jump	$PC \gets Jump \; Address$	_		_		—	IX2	DC	ee ff	4		
JMP <i>opr</i> ,X								IX1	EC	ff	3		
JMP ,X								IX	FC		2		
JSR opr		$P(C_{1}, (P_{1})) + p_{1}(p_{1}, 1, 2, p_{1}, 2)$						DIR	BD	dd	5		
JSR opr		PC \leftarrow (PC) + n (n = 1, 2, or 3) Push (PCL); SP \leftarrow (SP) – 1						EXT	CD	hh ll	6		
JSR opr,X	Jump to Subroutine	Push (PCL); SP \leftarrow (SP) – 1 Push (PCH); SP \leftarrow (SP) – 1	_		_			IX2	DD	ee ff	7		
JSR opr,X		Push (PCH), SP \leftarrow (SP) – 1 PC \leftarrow Effective Address						IX1	ED	ff	6		
JSR ,X		$PC \leftarrow Ellective Address$						IX	FD		5		
LDA #opr								IMM	A6	ii	2		
LDA opr								DIR	B6	dd	3		
LDA opr	Lood Accumulator with Mamory Duta				<u>+</u> .	\$		EXT	C6	hh ll	4		
LDA opr,X	Load Accumulator with Memory Byte	$A \leftarrow (M)$	-	-	+>	۹ ↓	-	IX2	D6	ee ff	5		
LDA opr,X								IX1	E6	ff	4		
LDA ,X								IX	F6		3		
LDX #opr								IMM	AE	ii	2		
LDX opr								DIR	BE	dd	3		
LDX opr								EXT	CE	hh ll	4		
LDX opr,X	Load Index Register with Memory Byte	$X \leftarrow (M)$	-	-	\>	¢ ‡>	۹—	IX2	DE	ee ff	5		
LDX opr,X								IX1	EE	ff	4		
LDX ,X								IX	FE		3		
LSL opr								DIR	38	dd	5		
LSLA								INH	48		3		
LSLX	Logical Shift Left (Same as ASL)		_		\$	\$	\$	INH	58		3		
LSL opr,X		b7 b0						IX1	68	ff	6		
LSL ,X								IX	78		5		
LSR opr								DIR	34	dd	5		
LSRA								INH	44		3		
LSRX	Logical Shift Right	0 - > C	_		0	\$	\$	INH	54		3		
LSR opr,X		b7 b0						IX1	64	ff	6		
LSR ,X								IX	74		5		
MUL	Unsigned Multiply	$X:A\leftarrow(X)\times(A)$	0	—	_		0	INH	42		11		
NEG opr		$M \leftarrow -(M) = \$00 - (M)$						DIR	30	dd	5		
NEGA		$A \leftarrow -(A) = \$00 - (A)$						INH	40		3		
NEGX	Negate Byte (Two's Complement)	$X \leftarrow -(X) = \$00 - (X)$	_		\$	\$	\$	INH	50		3		
NEG opr,X		$M \leftarrow -(M) = \$00 - (M)$						IX1	60	ff	6		
NEG ,X		$M \leftarrow -(M) = \$00 - (M)$						IX	70		5		
NOP	No Operation		—	-	_		-	INH	9D		2		
ORA #opr								IMM	AA	ii	2		
ORA opr								DIR	BA	dd	3		
ORA opr								EXT	CA	hh ll	4		
ORA <i>opr</i> ,X	Logical OR Accumulator with Memory	$A \leftarrow (A) \lor (M)$	-	-	↓	\$	-	IX2	DA	ee ff	5		
ORA opr,X								IX1	EA	ff	4		
ORA ,X								IX	FA		3		

Table 6. Instruction	Set Summary	(Continued)
-----------------------------	-------------	-------------

Instruction	Set
-------------	-----

Source	Operation	Description			ect CC		n	Address Mode	ode	Operand	sel
Form	Operation	Description	н	I	N	z	c	Addi Mo	Opcode	Opei	Cycles
ROL opr								DIR	39	dd	5
ROLA								INH	49		3
ROLX	Rotate Byte Left through Carry Bit		-	-	¢	¢ ‡	1	INH	59		3
ROL opr,X		b7 b0						IX1	69	ff	6
ROL ,X								IX	79		5
ROR opr								DIR	36	dd	5
RORA						.	.	INH	46		3
RORX	Rotate Byte Right through Carry Bit		-	-	\$>	¢ ‡	\$	INH	56		3
ROR <i>opr</i> ,X		D7 B0						IX1	66	ff	6
ROR ,X								IX	76		5
RSP	Reset Stack Pointer	$SP \leftarrow \$00FF$		-	-	-	-	INH	9C		2
		$SP \leftarrow (SP) + 1$; Pull (CCR)									
		$SP \leftarrow (SP) + 1; Pull(A)$		Ι.		.	.				
RTI	Return from Interrupt	$SP \leftarrow (SP) + 1; Pull(X)$	‡>	< ↓	\$	\$	1	INH	80		9
		$SP \leftarrow (SP) + 1; Pull (PCH)$									
		$SP \leftarrow (SP) + 1; Pull (PCL)$									
RTS	Return from Subroutine	$SP \gets (SP) + 1; Pull \; (PCH)$		_	_		-	INH	81		6
		$SP \leftarrow (SP) + 1; Pull (PCL)$									
SBC #opr								IMM	A2	ii	2
SBC opr								DIR	B2	dd	3
SBC opr	Subtract Memory Byte and Carry Bit from	$A \leftarrow (A) - (M) - (C)$		_	\$	¢	\$	EXT	C2		4
SBC opr,X	Accumulator							IX2	D2		
SBC opr,X								IX1	E2	ff	4
SBC ,X								IX	F2		3
SEC	Set Carry Bit	C ← 1		-	-	-	- 1	INH	99		2
SEI	Set Interrupt Mask	l ← 1		1	-	-		INH	9B		2
STA opr								DIR	B7	dd	4
STA opr						.		EXT	C7	hh ll	5
STA opr,X	Store Accumulator in Memory	$M \gets (A)$			· \$>	¢ ‡		IX2	D7	ee ff	
STA opr,X								IX1	E7	ff	5
STA ,X								IX	F7		4
STOP	Stop Oscillator and Enable IRQ Pin			0	-	-		INH	8E		2
STX opr								DIR	BF	dd	4
STX opr								EXT	CF		
STX opr,X	Store Index Register In Memory	$M \gets (X)$	-	-	₽	• ‡	-	IX2	DF	ee ff	
STX opr,X								IX1	EF	ff	5
STX ,X			_	_	_	-		IX	FF		4
SUB #opr								IMM	A0	ii	2
SUB opr								DIR	B0	dd	3
SUB opr	Subtract Memory Byte from Accumulator	$A \gets (A) - (M)$	_	_	\$	1	\$	EXT	C0	hh II	4
SUB opr,X								IX2	D0	ee ff	
SUB opr,X								IX1	E0	ff	4
SUB ,X					1			IX	F0		3

Table 6. Instruction Set Summary (Continued)

Source	Onerstien	Description	Effect on CCR					ess de	ode	rand	les
Form	Operation	Description	н	I	N	z	С	Address Mode	Opcode	Operand	Cycles
		$PC \leftarrow (PC) + 1$; Push (PCL)									
		$SP \leftarrow (SP) - 1$; Push (PCH)									
		$SP \leftarrow (SP) - 1$; Push (X)									
		$SP \leftarrow (SP) - 1$; Push (A)									
SWI	Software Interrupt			1				INH	83		10
		$SP \leftarrow (SP) - 1$; Push (CCR)									
	$SP \leftarrow (SP) - 1; I \leftarrow 1$										
		$PCH \leftarrow Interrupt Vector High Byte$									
		$PCL \gets Interrupt \; Vector \; Low \; Byte$									
TAX	Transfer Accumulator to Index Register	$X \leftarrow (A)$				-	—	INH	97		2
TST opr								DIR	3D	dd	4
TSTA								INH	4D		3
TSTX Test Memory Byte for Negative or Zero		(M) – \$00	_	_	\$	\$		INH	5D		3
TST opr,X		() 400			'	'		IX1	6D	ff	5
TST ,X									7D		4
ТЗТ ,Х ТХА	Transfer Index Degister to Assumulator	Δ. (9F		
	Transfer Index Register to Accumulator	$A \gets (X)$	-	-	-	-	-	INH	-		2
WAIT	Stop CPU Clock and Enable Interrupts			0>		<u> </u>	[—	INH	8F		2
	nulator	opr Operand (one			b by	tes)				
	/borrow flag	PC Program cour									
	ition code register address of operand	PCH Program cour PCL Program cour									
	address of operand and relative offset of branch insi	•			-						
	addressing mode	<i>rel</i> Relative prog		<u> </u>			offse	et byte			
	0							et byte			
	ded addressing mode	SP Stack pointer									
ff Offse	t byte in indexed, 8-bit offset addressing	X Index register	r								
H Half-o	arry flag	Z Zero flag									
0	and low bytes of operand address in extended addres	ssing # Immediate va	lue								
	rrupt mask Logical AND										
	mediate operand byte v Logical OR					_					
	diate addressing mode	Logical EXCL	US	IVE	O	R					
	ent addressing mode	() Contents of					~ 4)				
IX Index	exed, no offset addressing mode -() Negation (two exed, 8-bit offset addressing mode						nt)				

Table 6. Instruction Set Summary (Continued)

- IX1 Indexed, 8-bit offset addressing mode
- Indexed, 16-bit offset addressing mode Memory location Negative flag IX2
- Μ
- Ν
- Any bit n

- ← ? Loaded with
- lf
- Concatenated with :
- \$ Set or cleared
- Not affected ____

Map
pcode
ō
7
e
Tab

		LSB	0	-	2	3	4	5	9	7	ø	6	A	B	υ	۵	ш	ш	
		MSB MSB		ε ε	ε X	<u>к х</u>	<u>∞ ×</u>	ε ×	ε ×	4 X	<u>د x</u>	<u>х</u> 3	ε X	ε X	<u>X 2</u>	<u>X</u> 2	<u>∞ ×</u>	4 X	
	×	L.	sub 1	CMP 1	1 SBC	CPX 1	4 AND	1 BIT	1 LDA	STA 1	EOR	ADC	ORA	ADD	ЧМГ	1 JSR		STX 1	Jal
	IX1	ш	2 SUB IX1	2 CMP 4	2 SBC 4	2 CPX 2 IX1	AND 2 IX1	BIT 2 IX1	2 LDA 2 IX1	STA 2 IX1	EOR 4	2 ADC 4		ADD 4		JSR 2 IX1	2 LDX 2 IX1	2 STX 2 IX1	MSB of Opcode in Hexadecim Number of Cycles Number of Bytes/Addressing Mode
Memory	IX2	٥	5 SUB 3 IX2 2	5 CMP 3 IX2 2	3 SBC 5 3 IX2 2	5 CPX 3 IX2 2	AND 3 IX2 2	8IT 5 3 IX2 2	3 LDA 2	8TA 6 3 IX2 2	EOR 5 3 IX2 2	3 ADC 5 3 ADC 2	5 ORA 3 IX2 2	3 ADD 5 3 IX2 2	3 IX2 2	JSR 3 IX2 2	5 LDX 3 IX2 2	3 STX 6 3 IX2 2	MSB of Opcode in Hexadecimal Number of Cycles Number of Batesolod Addression Mode
Register/Memory	EXT	ပ	SUB EXT	CMP 4 EXT	SBC EXT	CPX EXT	AND 4 EXT		3 LDA 3 EXT 3		EOR 3 EXT 3	3 ADC 4 3 EXT 3	ORA EXT		3 JMP 3 3 EXT 3	JSR 6 3 EXT 3		STX STX EXT	
	DIR	æ	3 SUB DIR	2 CMP	3 SBC DIR	3 CPX DIR	3 AND 2 DIR		3 LDA DIR	2 STA 4 2 DIR 3		2 ADC 3 2 DIR 3	3 ORA DIR	ADD 2 DIR 3	JMP 2 2 DIR 3	5 JSR 2 DIR	LDX DIR	STX BIR	BRSET0
	MMI	A	2 SUB 2 IMM 2	2 CMP 2	2 SBC 2 2 IMM 2	2 CPX 2 2 IMM 2	2 AND 2	BIT 2 BIT 2 IMM 2	2 LDA 2 2 IMM 2		EOR 2 EOR 2	2 ADC 2 2 IMM 2	2 ORA 2 IMM 2			BSR 2 REL	2 LDX 2		MSB LSB 0
trol	HNI	6								TAX 1 INH	1 CLC 2	sec 2 1 INH 2	CLI 2 CLI 2 1 NH 2	1 SEI 2	RSP 2	1 NOP 2		TXA 1 INH	kadecimal
Control	HNI	ø	1 RTI 9 1 INH	RTS RTS		10 SWI INH											STOP 2 1 NIH	WAIT	ode in He)
	×	7	1 NEG 5			1 COM 5	LSR 5		1 ROR 5	ASR 1 IX	ASL/LSL	1 ROL	1 DEC 5		1 INC 5	TST 4		1 CLR	LSB of Opcode in Hexadecimal
Vrite	IX1	9	NEG 6 IX1			2 COM 6	LSR 2 IX1		ROR 2 IX11	ASR 2 IX1	ASL/LSL ASL/LSL 1X1	ROL 1X1	DEC 6 2 IX1		a INC 6 INC 1X1	2 TST 5 2 IX1		CLR 2 CLR	
Read-Modify-Write	HNI	5	1 NEGX 1 INH 2			1 COMX 2			RORX 1 INH 2	ASRX 1 INH 2		ROLX 1 INH2	DECX		1 INCX 1 INH 2	TSTX 1 TSTX 1 INH 2		CLRX CLRX 1 NH2	
Read	HNI	4	3 NEGA INH		1 MUL 11	3 COMA INH	3 LSRA INH		3 RORA INH	3 ASRA INH	ASLA/LSLA	3 ROLA INH	3 DECA INH		3 INCA INH	TSTA 1 INH		3 CLRA INH	Offset Bit Offset -Bit Offset
	DIR	e	NEG 5 2 DIR 1			2 COM 5 2 DIR 1	LSR 2 DIR 1		ROR 1	ASR 5 2 DIR 1	ASL/LSL ASLALSLA 2 DIR 1 INH	2 ROL 2 DIR 1	DEC 5 DIR 1		2 INC 5 2 DIR 1	TST 4 2 DIR 1		CLR 2 DIR	REL = Relative IX = Indexed, No Offset IX1 = Indexed, 8-Bit Offset IX2 = Indexed, 16-Bit Offse
Branch	REL	2	BRA 2 REL2	BRN 2 REL	BHI 3 2 REL	BLS 2 REL 2	BCC 3 2 REL2	BCLR2 BCS/BLO DIR 2 REL	BNE 3 2 REL 2	BEQ 3 2 REL 2	BHCC A 2 REL2	BHCS 2 REL 2	BPL 3 2 REL2	2 BMI 3 2 REL	2 BMC 2 REL 2	BMS 2 REL2	BIL 2 REL	BIH 2 REL2	REL = IX = Inc IX1 = It IX2 = It
Bit Manipulation	DIR	-	5 BSET0 2 DIR 2	BCLR0 2 DIR 2	BSET1 2 DIR 2	BCLR1 2 DIR 2	5 BSET2 2 DIR 2	BCLR2 2 DIR	BSET3 2 DIR 2	BCLR3 2 DIR 2	BSET4 BSET4 DIR 2	BCLR4 2 DIR 2	BSET5 BSET5 2 DIR 2	BCLR5 2 DIR 2	BSET6 2 DIR 2	BCLR6 2 DIR 2	BSET7 2 DIR 2	BCLR7 2 DIR 2	erent nediate sct ended
Bit Mani	DIR	0	BRSET0 BRSET0 3 DIR 2	BRCLR0 3 DIR 2	BRSET1 BRSET1 3 DIR 2	BRCLR1 3 DIR 2	BRSET2 BRSET2 BIR 2	BRCLR2 E 3 DIR 2	BRSET3 BRSET3 3 DIR 2	BRCLR3 BRCLR3 3 DIR 2	BRSET4 1 BRSET4 1 3 DIR 2	BRCLR4 BRCLR4 3 DIR 2	BRSET5 BRSET5 3 DIR 2	BRCLR5 3 DIR 2	BRSET6 BRSET6 3 DIR 2	BRCLR6 3 DIR 2	BRSET7 BRSET7 3 DIR 2	BRCLR7 1 3 DIR 2	INH = Inherent IMM = Immediate DIR = Direct EXT = Extended
		LSB LSB	0	-	2	ю	4	5	9	7	œ	6	A	æ	ပ	۵	ш	ш	

22-hc05cpu

CPU

Instruction Set

Resets and Interrupts

Contents

Resets
Power-On Reset
External Reset
COP Watchdog Reset
Low-Voltage Protection
Interrupts
Software Interrupt
External Interrupt
Timer Interrupts61
Input Capture Interrupt61
Output Compare Interrupt61
Timer Overflow Interrupt62
Interrupt Processing

Resets

A reset immediately stops the operation of the instruction being executed, initializes certain control bits, and loads the program counter with a user-defined reset vector address. The following sources can generate resets:

- Power-on reset (POR) circuit
- RESET pin
- COP watchdog

Figure 1. Reset Sources

Power-On Reset A positive transition on the V_{DD} pin generates a power-on reset.

NOTE: The power-on reset is strictly for power-up conditions and cannot be used to detect drops in power supply voltage.

A 4064 t_{CYC} (internal clock cycle) delay after the oscillator becomes active allows the clock generator to stabilize. If the RESET pin is at logic zero at the end of 4064 t_{CYC} , the MCU remains in the reset condition until the signal on the RESET pin goes to logic one.

1. Power-on reset threshold is typically between 1 V and 2 V.

2. Internal clock, internal address bus, and internal data bus are not available externally.

Figure 2. Power-On Reset Timing

A logic zero applied to the RESET pin for one and one-half tere **External Reset** generates an external reset. A Schmitt trigger senses the logic level at the **RESET** pin.

NOTES:

- Internal clock, internal address bus, and internal data bus are not available externally.
 The next rising edge of the internal clock after the rising edge of RESET initiates the reset sequence.

Figure 3. External Reset Timing

Table 1. External Reset Timing

Characteristic	Symbol	Min	Max	Unit
RESET Pulse Width	t _{RL}	1.5		t _{CYC}

COP WatchdogA timeout of the COP watchdog generates a COP reset. The COPResetwatchdog is part of a software error detection system and must be
cleared periodically to start a new timeout period. To clear the COP
watchdog and prevent a COP reset, write a logic zero to bit 0 (COPC) of
the COP register at location \$1FF0.

Low-Voltage Protection

A drop in power supply voltage below the minimum operating V_{DD} voltage is called a brownout condition. A brownout while the MCU is in a non-reset state can corrupt MCU operation and necessitate a power-on reset to resume operation.

The best protection against brownout is an undervoltage sensing circuit that pulls the $\overline{\text{RESET}}$ pin low when it detects a low-power supply voltage. The undervoltage sensing circuit may be made of discrete components or an integrated circuit can be used.

For information about brownout and the COP watchdog, see the **Computer Operating Properly Watchdog** section.

Interrupts

The following sources can generate interrupts:

- SWI instruction
- IRQ/V_{PP} pin
- Capture/compare timer

An interrupt temporarily stops normal program execution to process a particular event. An interrupt does not stop the operation of the instruction being executed, but takes effect when the current instruction completes its execution. Interrupt processing automatically saves the CPU registers on the stack and loads the program counter with a user-defined interrupt vector address.

Software	The software interrupt (SWI) instruction causes a non-maskable
Interrupt	interrupt.

ExternalAn interrupt signal on the \overline{IRQ}/V_{PP} pin latches an external interruptInterruptrequest. When the CPU completes its current instruction, it tests the IRQlatch. If the IRQ latch is set, the CPU then tests the I bit in the condition
code register. If the I bit is clear, the CPU then begins the interrupt
sequence.

The CPU clears the IRQ latch during interrupt processing, so that another interrupt signal on the $\overline{\text{IRQ}}/V_{\text{PP}}$ pin can latch another interrupt request during the interrupt service routine. As soon as the I bit is cleared during the return from interrupt, the CPU can recognize the new interrupt request. **Figure 4** shows the $\overline{\text{IRQ}}/V_{\text{PP}}$ pin interrupt logic.

Figure 4. External Interrupt Logic

Setting the I bit in the condition code register disables external interrupts.

Interrupt triggering sensitivity of the \overline{IRQ}/V_{PP} pin is a programmable option. The \overline{IRQ}/V_{PP} pin can be negative-edge triggered or negative-edge- and low-level triggered. The level-sensitive triggering option allows multiple external interrupt sources to be wire-ORed to the \overline{IRQ}/V_{PP} pin. An external interrupt request, shown in **Figure 5**, is latched as long as any source is holding the \overline{IRQ}/V_{PP} pin low.

Figure 5. External Interrupt Timing

Characteristic	Symbol	Min	Max	Unit
Interrupt Pulse Width Low (Edge-Triggered)	t _{ILIH}	125	—	ns
Interrupt Pulse Period	t _{ILIL}	Note ⁽²⁾	—	t _{CYC}

Table 2. External Interrupt Timing $(V_{DD} = 5.0 \text{ Vdc})^{(1)}$

1. V_{DD} = 5.0 Vdc ±10%, V_{SS} = 0 Vdc, T_A = T_L to T_H

2. The minimum $t_{\rm ILIL}$ should not be less than the number of interrupt service routine cycles plus 19 $t_{\rm CYC}.$

Table 3. External Interrupt Timing ($(V_{DD} = 3.3 \text{ Vdc})^{(1)}$
--------------------------------------	------------------------------------

Characteristic	Symbol	Min	Max	Unit
Interrupt Pulse Width Low (Edge-Triggered)	t _{ILIH}	250	_	ns
Interrupt Pulse Period	t _{ILIL}	Note ⁽²⁾		t _{CYC}

1. V_{DD} = 3.3 Vdc ±10%, V_{SS} = 0 Vdc, T_A = T_L to T_H

2. The minimum t_{ILIL} should not be less than the number of interrupt service routine cycles plus 19 $t_{\text{CYC}}.$

Timer Interrupts The capture/compare timer can generate the following interrupts:

- Input capture interrupt
- Output compare interrupt
- Timer overflow interrupt

Setting the I bit in the condition code register disables timer interrupts.

- Input CaptureAn input capture interrupt request occurs if the input capture flag, ICF,Interruptbecomes set while the input capture interrupt enable bit, ICIE, is also set.ICF is in the timer status register, and ICIE is in the timer control register.
- Output CompareAn output compare interrupt request occurs if the output compare flag,InterruptOCF, becomes set while the output compare interrupt enable bit, OCIE,is also set. OCF is in the timer status register, and OCIE is in the timercontrol register.

Timer Overflow A timer overflow interrupt request occurs if the timer overflow flag, TOF, Interrupt becomes set while the timer overflow interrupt enable bit, TOIE, is also set. TOF is in the timer status register, and TOIE is in the timer control register.

Interrupt Processing The CPU takes the following actions to begin servicing an interrupt:

- Stores the CPU registers on the stack in the order shown in ٠ Figure 6
- Sets the I bit in the condition code register to prevent further • interrupts
- Loads the program counter with the contents of the appropriate ٠ interrupt vector locations:
 - \$1FFC and \$1FFD (software interrupt vector)
 - \$1FFA and \$1FFB (external interrupt vector)
 - \$1FF8 and \$1FF9 (timer interrupt vector)

The return from interrupt (RTI) instruction causes the CPU to recover the CPU registers from the stack as shown in Figure 6.

Figure 6. Interrupt Stacking Order

Function	Source	Local Mask	Global Mask	Priority (1 = Highest)	Vector Address	
Reset	Power-On RESET Pin COP Watchdog ⁽¹⁾	None	None None None	1 1 1	\$1FFE-\$1FFF	
Software Interrupt (SWI)	User Code	None	None	Same Priority as Instruction	\$1FFC-\$1FFD	
External Interrupt	IRQ/V _{PP} Pin	None	I Bit	2	\$1FFA-\$1FFB	
Timer Interrupts	ICF Bit OCF Bit TOF Bit	ICIE Bit OCIE Bit TOIE Bit	l Bit	3	\$1FF8-\$1FF9	

1. The COP watchdog is programmable in the mask option register.

Figure 7. Interrupt Flowchart

Low-Power Modes

Contents

Stop Mode	
Wait Mode	
Data-Retention Mode	

Stop Mode

The STOP instruction puts the MCU in its lowest power-consumption mode and has the following effects on the MCU:

- Stops the internal oscillator, the CPU clock, and the internal clock, turning off the capture/compare timer, the COP watchdog, the SIOP, and the ADC
- Clears the I bit in the condition code register, enabling external interrupts
- Clears the ICIE, OCIE, and TOIE bits in the timer control register, disabling further timer interrupts

The STOP instruction does not affect any other registers or any I/O lines.

The following events bring the MCU out of stop mode:

- An external interrupt signal on the IRQ/V_{PP} pin A high-to-low transition on the IRQ/V_{PP} pin loads the program counter with the contents of locations \$1FFA and \$1FFB. The timer resumes counting from the last value before the STOP instruction.
- External reset A logic zero on the RESET pin resets the MCU and loads the program counter with the contents of locations \$1FFE and \$1FFF. The timer begins counting from \$FFFC.

When the MCU exits stop mode, processing resumes after a stabilization delay of 4064 oscillator cycles.

An active edge on the PD7/TCAP pin during stop mode sets the ICF flag when an external interrupt brings the MCU out of stop mode. An external interrupt also latches the value in the timer registers into the input capture registers.

If a reset brings the MCU out of stop mode, then an active edge on the PD7/TCAP pin during stop mode has no effect on the ICF flag or the input capture registers.

See Figure 1 for stop recovery timing information.

Figure 1. Stop Recovery Timing

Figure 2 shows the sequence of events caused by the STOP instruction.

Figure 2. STOP Instruction Flowchart

Wait Mode

The WAIT instruction puts the MCU in an intermediate power-consumption mode and has the following effects on the MCU:

- Clears the I bit in the condition code register, enabling interrupts
- Stops the CPU clock, but allows the internal clock to drive the capture/compare timer, the COP watchdog, and the ADC

The WAIT instruction does not affect any other registers or any I/O lines.

The following conditions restart the CPU clock and bring the MCU out of wait mode:

- External interrupt A high-to-low transition on the IRQ/V_{PP} pin loads the program counter with the contents of locations \$1FFA and \$1FFB.
- Timer interrupt Input capture, output compare, and timer overflow interrupt requests load the program counter with the contents of locations \$1FF8 and \$1FF9.
- COP watchdog reset A timeout of the COP watchdog resets the MCU and loads the program counter with the contents of locations \$1FFE and \$1FFF. Software can enable timer interrupts so that the MCU can periodically exit wait mode to reset the COP watchdog.
- External reset A logic zero on the RESET pin resets the MCU and loads the program counter with the contents of locations \$1FFE and \$1FFF.

Figure 3 shows the sequence of events caused by the WAIT instruction.

Figure 3. WAIT Instruction Flowchart

Figure 4 shows the effect of the STOP and WAIT instructions on the CPU clock and the timer clock.

Figure 4. STOP/WAIT Clock Logic

Data-Retention Mode

In data-retention mode, the MCU retains RAM contents and CPU register contents at V_{DD} voltages as low as 2.0 Vdc. The data-retention feature allows the MCU to remain in a low-power consumption state during which it retains data, but the CPU cannot execute instructions.

To put the MCU in data-retention mode:

- 1. Drive the RESET pin to logic zero.
- 2. Lower the V_{DD} voltage. The RESET pin must remain low continuously during data-retention mode.

To take the MCU out of data-retention mode:

- 1. Return V_{DD} to normal operating voltage.
- 2. Return the $\overline{\text{RESET}}$ pin to logic one.

Parallel I/O Ports

Contents

Introduction	72
Port A.	73
Port A Data Register (PORTA)	73
Data Direction Register A (DDRA)	74
Port B.	76
Port B Data Register (PORTB)	76
Data Direction Register B (DDRB)	77
Port C	79
Port C Data Register (PORTC)	79
Data Direction Register C (DDRC)	80
Port D	82
Port D Data Register (PORTD)	82
Data Direction Register D (DDRD)	83

Introduction

Twenty bidirectional pins and one input-only pin form four parallel input/output (I/O) ports. All the bidirectional port pins are programmable as inputs or outputs.

NOTE: Connect any unused I/O pins to an appropriate logic level, either V_{DD} or V_{ss} . Although the I/O ports do not require termination for proper operation, termination reduces excess current consumption and the possibility of electrostatic damage.

Addr.	Name:	R/W	Bit 7	6	5	4	3	2	1	Bit 0		
\$0000	Port A Data Register (PORTA)	Read: Write:	PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0		
		Reset:										
\$0001	Port B Data Register (PORTB)	Read:	PB7	PB6	PB5	0	0	0	0	0		
		Write: Reset:		Unaffected by reset								
\$0002	Port C Data Register (PORTC)	Read: Write:	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0		
		Reset:										
\$0003	Port D Data Register (PORTD)	Read: Write:	PD7	0	PD5	1	0	0	0	0		
		Reset:										
\$0004	Data Direction Register A (DDRA)	Read: Write:	DDRA7	DDRA6	DDRA5	DDRA4	DDRA3	DDRA2	DDRA1	DDRA0		
		Reset:	0	0	0	0	0	0	0	0		
\$0005	Data Direction Register B (DDRB)	Read: Write:	DDRB7	DDRB6	DDRB5	0	0	0	0	0		
		Reset:	0	0	0	0	0	0	0	0		
	= Unimplemented											

Figure 1. Parallel I/O Port Register Summary
Addr.	Name:	R/W	Bit 7	6	5	4	3	2	1	Bit 0
\$0006	Data Direction Register C (DDRC)	Read: Write:	DDRC7	DDRC6	DDRC5	DDRC4	DDRC3	DDRC2	DDRC1	DDRC0
		Reset:	0	0	0	0	0	0	0	0
\$0007	\$0007 Data Direction Register D (DDRD)		0	0	DDRD5	0	0	0	0	0
\$UUU7					DDKD3					
		Reset:	0	0	0	0	0	0	0	0
				= Unimp	lemented	ł				

Figure 1. Parallel I/O Port Register Summary (Continued)

Port A

Port A Data

Register (PORTA)

is an 8-	bit gene	ral-purp	ose I/O j	oort.			
ort A data	a registe	er contair	ns a latch	n for eac	h of the e	eight por	t A pins.
Bit 7	6	5	4	3	2	1	Bit 0
PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0
	ort A dat	ort A data registe Bit 7 6	ort A data register contair Bit 7 6 5	ort A data register contains a latch Bit 7 6 5 4	Bit 7 6 5 4 3	ort A data register contains a latch for each of the e Bit 7 6 5 4 3 2	ort A data register contains a latch for each of the eight por Bit 7 6 5 4 3 2 1

Reset:

Unaffected by reset

Figure 2. Port A Data Register (PORTA)

PA[7:0] — Port A Data Bits

These read/write bits are software programmable. Data direction of each port A pin is under the control of the corresponding bit in data direction register A. Reset has no effect on port A data.

Data Direction Register A (DDRA)

Data direction register A determines whether each port A pin is an input or an output.

Figure 3. Data Direction Register A (DDRA)

DDRA[7:0] — Data Direction Register A Bits

These read/write bits control port A data direction. Reset clears DDRA[7:0], configuring all eight port A pins as inputs.

- 1 = Corresponding port A pin configured as output
- 0 = Corresponding port A pin configured as input
- **NOTE:** Avoid glitches on port A pins by writing to the port A data register before changing data direction register A bits from 0 to 1.

Figure 4 shows the I/O logic of port A.

Figure 4. Port A I/O Circuit

Writing a logic one to a DDRA bit enables the output buffer for the corresponding port A pin; a logic zero disables the output buffer.

When bit DDRAx is a logic one, reading address \$0000 reads the PAx data latch. When bit DDRAx is a logic zero, reading address \$0000 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. **Table 1** summarizes the operation of the port A pins.

Data Direction Bit	Direction Bit I/O Pin Mode		Accesses to Data Bit			
Data Direction Bit		Read	Write			
0	Input, Hi-Z ⁽¹⁾	Pin	Latch ⁽²⁾			
1	Output	Latch	Latch			

 Table 1. Port A Pin Operation

1. Hi-Z = high impedance

2. Writing affects data register, but does not affect input.

5-mc68hc705p9

Port B

Port B is a 3-bit I/O port that shares its pins with the serial I/O port (SIOP).

NOTE: Do not use port B for general-purpose I/O while the SIOP is enabled.

Port B Data Register (PORTB) The port B data register contains a latch for each of the three port B pins.

Figure 5. Port B Data Register (PORTB)

PB[7:5] - Port B Data Bits

These read/write bits are software programmable bits. Data direction of each port B pin is under the control of the corresponding bit in data direction register B. Reset has no effect on port B data.

NOTE: Writing to data direction register B does not affect the data direction of port B pins that are being used by the SIOP. However, data direction register B always determines whether reading port B returns the states of the latches or the states of the pins.

SCK — Serial Clock

When the SIOP is enabled, SCK is the SIOP clock output (in master mode) or the SIOP clock input (in slave mode).

6-mc68hc705p9

SDI — Serial Data Input

When the SIOP is enabled, SDI is the SIOP data input.

SDO — Serial Data Output

When the SIOP is enabled, SDO is the SIOP data output.

Data DirectionData direction register B determines whether each port B pin is an inputRegister B (DDRB)or an output.

NOTE: Enabling and then disabling the SIOP configures data direction register B for SIOP operation and can also change the port B data register. After disabling the SIOP, initialize data direction register B and the port B data register as your application requires.

DDRB[7:5] — Data Direction Register B Bits

These read/write bits control port B data direction. Reset clears DDRB[7:5], configuring all three port B pins as inputs.

- 1 = Corresponding port B pin configured as output
- 0 = Corresponding port B pin configured as input
- **NOTE:** Avoid glitches on port B pins by writing to the port B data register before changing data direction register B bits from 0 to 1.

Figure 7 shows the I/O logic of port B.

Figure 7. Port B I/O Logic

Writing a logic one to a DDRB bit enables the output buffer for the corresponding port B pin; a logic zero disables the output buffer.

When bit DDRBx is a logic one, reading address \$0001 reads the PBx data latch. When bit DDRBx is a logic zero, reading address \$0001 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. **Table 1** summarizes the operation of the port B pins.

Table	2.	Port I	B Pin	Operation
-------	----	--------	-------	-----------

Data Direction Bit	I/O Pin Mode	Accesses to Data Bit			
		Read	Write		
0	Input, Hi-Z ⁽¹⁾	Pin	Latch ⁽²⁾		
1	Output	Latch	Latch		

1. Hi-Z = high impedance

2. Writing affects data register, but does not affect input.

Port C is an 8-bit I/O port that shares five of its pins with the A/D converter (ADC). The five shared pins are available for general-purpose I/O functions when the ADC is disabled.

Port C Data Register (PORTC) The port C data register contains a latch for each of the eight port C pins.

Figure 8. Port C Data Register (PORTC)

PC[7:0] — Port C Data Bits

These read/write bits are software programmable. Data direction of each port C pin is under the control of the corresponding bit in data direction register C. Reset has no effect on port C data.

V_{RH} — Voltage Reference High Bit

When the ADC is turned on, the PC7/V_{RH} pin is the positive ADC reference voltage.

AN[3:0] — Analog Input Bits

When the ADC is turned on, the AN0–AN3 pins are software-selectable analog inputs. Unused analog inputs can be used as digital inputs, but pins PC3/AN3, PC4/AN2, PC5/AN1, and PC6/AN0 cannot be used as digital outputs while the ADC is on. Only pins PC0, PC1, and PC2 can be used as digital outputs when the ADC is on.

9-mc68hc705p9

The port C data register reads normally while the ADC is on, except that the bit corresponding to the currently selected ADC input pin reads as logic zero.

Writing to bits PC7–PC3 while the ADC is on can produce unpredictable ADC results.

Data Direction Data direction register C determines whether each port C pin is an input Register C (DDRC) or an output.

\$0006	Bit 7	6	5	4	3	2	1	Bit 0
Read:	DDRC7			DDRC4				
Write:	DDRCI	DDRCO	DDRC5	DDRC4	DDRC3	DDRC2	DDRCT	DDRCU
Reset:	0	0	0	0	0	0	0	0

Figure 9. Data Direction Register C (DDRC)

DDRC[7:0] — Data Direction Register C Bits

These read/write bits control port C data direction. Reset clears DDRC[7:0], configuring all port C pins as inputs.

- 1 = Corresponding port C pin configured as output
- 0 = Corresponding port C pin configured as input
- NOTE: Avoid glitches on port C pins by writing to the port C data register before changing data direction register C bits from 0 to 1.

Writing to bits DDRC7–DDRC3 while the ADC is on can produce unpredictable ADC results.

Figure 10 shows the I/O logic of port C.

Figure 10. Port C I/O Logic

Writing a logic one to a DDRC bit enables the output buffer for the corresponding port C pin; a logic zero disables the output buffer.

When bit DDRCx is a logic one, reading address \$0002 reads the PCx data latch. When bit DDRCx is a logic zero, reading address \$0002 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. **Table 1** summarizes the operation of the port C pins.

Table	3.	Port	С	Pin	0	peration
-------	----	------	---	-----	---	----------

Data Direction Bit	I/O Pin Mode	Accesses to Data Bit			
Data Direction Bit		Read	Write		
0	Input, Hi-Z ⁽¹⁾	Pin	Latch ⁽²⁾		
1	Output	Latch	Latch		

1. Hi-Z = high impedance

2. Writing affects data register, but does not affect input.

¹¹⁻mc68hc705p9

Port D

Port D is a 2-bit port with one I/O pin and one input-only pin. Port D shares the input-only pin, PD7/TCAP, with the capture/compare timer. PD7/TCAP is the timer input capture pin. The PD7/TCAP pin can always be a general-purpose input, even if input capture interrupts are enabled.

Port D Data Register (PORTD) The port D data register contains a latch for each of the two port D pins.

Figure 11. Port D Data Register (PORTD)

PD7 and PD5 — Port D Data Bits

These read/write bits are software programmable. Data direction of each port D pin is under the control of the corresponding bit in data direction register D. Reset has no effect on port D data.

TCAP — Timer Capture

TCAP is the input capture pin for the timer.

Data Direction Register D (DDRD)

Data direction register D determines whether each port D pin is an input or an output.

Figure 12. Data Direction Register D (DDRD)

DDRD5 — Data Direction Register D Bit

This read/write bit controls the data direction of pin PD5. Reset clears DDRD5, configuring PD5 as an input.

1 = PD5 configured as output

0 = PD5 configured as input

NOTE: Avoid glitches on port D pins by writing to the port D data register before changing data direction register D bits from 0 to 1.

Figure 13 shows the I/O logic of port D.

Figure 13. Port D I/O Logic

Writing a logic one to a DDRD bit enables the output buffer for the corresponding port D pin; a logic zero disables the output buffer.

13-mc68hc705p9

When bit DDRDx is a logic one, reading address \$0003 reads the PDx data latch. When bit DDRDx is a logic zero, reading address \$0003 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. **Table 1** summarizes the operation of the port D pins.

Table 4. Port D Pin Operation

Data Direction Bit	I/O Pin Mode	Accesses	s to Data Bit
Data Direction Bit		Read	Write
0	Input, Hi-Z ⁽¹⁾	Pin	Latch ⁽²⁾
1	Output	Latch	Latch

1. Hi-Z = high impedance

2. Writing affects data register, but does not affect input.

14-mc68hc705p9

Computer Operating Properly Watchdog COP

Contents

Features	35
Introduction	36
Operation	36
COP Watchdog Timeout	36
COP Watchdog Timeout Period	36
Clearing the COP Watchdog	37
Interrupts	37
COP Register	37
Low-Power Modes	38
Stop Mode	38
Wait Mode	38

Features

- Protection from runaway software
- 65.5-ms timeout period (with 2-MHz bus frequency)
- Wait mode operation

Introduction

The purpose of the computer operating properly (COP) watchdog is to reset the MCU in case of software failure. Software that is operating properly periodically services the COP watchdog and prevents the reset from occurring. The COP watchdog function is programmable in the mask option register.

Operation

COP Watchdog Timeout	The COP watchdog is a 16-bit counter that generates a reset if allowed to time out. Periodically clearing the counter starts a new timeout period and prevents the COP from resetting the MCU. A COP watchdog timeout indicates that the software is not executing instructions in the correct sequence.
NOTE:	The internal clock drives the COP watchdog. Therefore, the COP watchdog cannot generate a reset for errors that cause the internal clock to stop.
	The COP watchdog also depends on a power supply voltage at or above a minimum specification and is not guaranteed to protect against brownout. For information about brownout protection, see the Resets and Interrupts section.
COP Watchdog Timeout Period	Use the following formula to calculate the COP timeout period: COP Timeout Period = $\frac{131,072 \text{ cycles}}{f_{BUS}}$
	where
	$f_{BUS} = \frac{crystal frequency}{2}$

Clearing the COPTo clear the COP watchdog and prevent a COP reset, write a logic zeroWatchdogto bit 0 (COPC) of the COP register at location \$1FF0.

If the main program executes within the COP timeout period, the clearing routine needs to be executed only once. If the main program takes longer than the COP timeout period, the clearing routine must be executed more than once.

NOTE: Place the clearing routine in the main program and not in an interrupt routine. Clearing the COP watchdog in an interrupt routine might prevent COP watchdog timeouts even though the main program is not operating properly.

Interrupts

The COP watchdog does not generate interrupts.

COP Register

The COP register is a write-only register that returns the contents of EPROM location \$1FF0 when read.

COPC — COP Clear

COPC is a write-only bit. Periodically writing a logic zero to COPC prevents the COP watchdog from resetting the MCU. Reset clears the COPC bit.

Low-Power Modes

The STOP and WAIT instructions put the MCU in low-power consumption standby modes.

Stop ModeThe STOP instruction clears the COP watchdog counter. Upon exit from
stop mode by external reset:

- The counter begins counting from \$0000.
- The counter is cleared again after the 4064-cycle oscillator stabilization delay.

Upon exit from stop mode by external interrupt:

- The counter begins counting from \$0000.
- The counter is *not* cleared again after the oscillator stabilization delay and has a count of 4064 when the program resumes.

Wait Mode The COP watchdog continues to operate normally after a WAIT instruction. Software should periodically take the MCU out of wait mode and write to the COPC bit to prevent a COP watchdog timeout.

Timer

Contents

Features
Introduction
Operation
Pin Functions
PD7/TCAP
TCMP
Input Capture
Output Compare
Timing
Interrupts
I/O Registers
Timer Control Register
Timer Status Register
Timer Registers
Alternate Timer Registers103
Input Capture Registers104
Output Compare Registers105
Low-Power Modes
Stop Mode
Wait Mode

1-tim1ic1oc_a

Features

Features

- Programmable Polarity of Input Capture Edge
- Programmable Polarity of Output Compare Signal
- Alternate Counter Registers
- 16-Bit Counter
- Interrupt-Driven Operation with Three Maskable Interrupt Flags:
 - Input Capture
 - Output Compare
 - Timer Overflow

Introduction

The timer provides a timing reference for MCU operations. The input capture and output compare functions provide a means to latch the times at which external events occur, to measure input waveforms, and to generate output waveforms and timing delays. **Figure 1** shows the structure of the timer module.

Figure 1. Timer Block Diagram

Timer In

Addr.	Name	R/W	Bit 7	6	5	4	3	2	1	Bit 0
\$0012	Timer Control Register (TCR)	Read: Write:	ICIE	OCIE	TOIE	0	0	0	IEDG	OLVL
		Reset:	0	0	0	0	0	0	U	0
\$0013	Timer Status Register (TSR)	Read: Write:	ICF	OCF	TOF	0	0	0	0	0
		Reset:	U	U	U	0	0	0	0	0
\$0014	Input Capture Register High (ICRH)	Read: Write:	Bit 15	14	13	12	11	10	9	Bit 8
		Reset:				Unaffecte	d by reset			
\$0015	Input Capture Register Low (ICRL)	Read:	Bit 7	6	5	4	3	2	1	Bit 0
		Write: Reset:				Unaffecte	d by reset			
\$0016	Output Compare Register High (OCRH)	Read: Write:	Bit 15	14	13	12	11	10	9	Bit 8
			Reset: Unaffected by reset							
\$0017	Output Compare Register Low (OCRL)		Bit 7	6	5	4	3	2	1	Bit 0
		Reset:				Unaffecte	d by reset			
\$0018	Timer Register High (TRH)	Read: Write:	Bit 15	14	13	12	11	10	9	Bit 8
		Reset:	Reset initializes TRH to \$FF							
\$0019	Timer Register Low (TRL)	Read:	Bit 7	6	5	4	3	2	1	Bit 0
		Write: Reset:			Res	et initialize	es TRL to	\$FC		
\$001A	Alternate Timer Register High (ATRH)	Read:	Bit 15	14	13	12	11	10	9	Bit 8
		Write: Reset:								
\$001B	Alternate Timer Register Low (ATRL)	Read:	Bit 7	6	5	4	3	2	1	Bit 0
ΨΟΟΤΟ	Anternate finite register Low (ATRE)	Write: Reset:				Reset init	ializes ATI	RL to \$FC		
] = Unimpl	emented			U = Unaf	fected	

Figure 2. Timer I/O Register Summary

Operation

	The timing reference for the input capture and output compare functions is a 16-bit free-running counter. The counter is preceded by a divide-by- four prescaler and rolls over every 2^{18} cycles. Timer resolution with a 4- MHz crystal is 2 µs. Software can read the value in the counter at any time without affecting the counter sequence. Because of the 16-bit timer architecture, the I/O registers for the input
	capture and output compare functions are pairs of 8-bit registers.
Pin Functions	The timer uses two pins.
PD7/TCAP	PD7/TCAP is the input capture pin. When an active edge occurs on PD7/TCAP, the timer transfers the current counter value to the input capture registers. PD7/TCAP is also an I/O port pin.
TCMP	TCMP is the output-only output compare pin. When the counter value matches the value written in the output compare registers, the timer transfers the output level bit, OLVL, to the TCMP pin.
Input Capture	The input capture function is a means to record the time at which an external event occurs. When the input capture circuitry detects an active edge on the PD7/TCAP pin, it latches the contents of the timer registers into the input capture registers. The polarity of the active edge is programmable.
	Latching values into the input capture registers at successive edges of the same polarity measures the period of the input signal on the PD7/TCAP pin. Latching the counter values at successive edges of opposite polarity measures the pulse width of the signal. Figure 3 shows the logic of the input capture function.

Figure 3. Input Capture Operation

Output Compare The output compare function is a means of generating an output signal when the 16-bit counter reaches a selected value. Software writes the selected value into the output compare registers. On every fourth internal clock cycle the output compare circuitry compares the value of the counter to the value written in the output compare registers. When a match occurs, the timer transfers the programmable output level bit (OLVL) from the timer control register to the TCMP pin.

Software can use the output compare register to measure time periods, to generate timing delays, or to generate a pulse of specific duration or a pulse train of specific frequency and duty cycle on the TCMP pin. **Figure 4** shows the logic of the output compare function.

Figure 4. Output Compare Operation

6-tim1ic1oc_a

Timing

Table 1. Timer Characteristics	$(V_{DD} = 5.0 \text{ Vdc})^{(1)}$
--------------------------------	------------------------------------

Characteristic	Symbol	Min	Max	Unit
Timer Resolution ⁽²⁾	t _{RESL}	4.0		t _{CYC}
Input Capture Pulse Width	t _H , t _L	125	_	ns
Input Capture Pulse Period	t _{TLTL}	Note (3)	_	t _{CYC}

1. V_{DD} = 5.0 Vdc ± 10%, T_A = T_L to T_H unless otherwise noted.

2. A 2-bit prescaler in the timer is the limiting factor as it counts 4 $t_{\mbox{\tiny CYC}}$

3. The minimum t_{TLTL} should not be less than the number of interrupt service routine cycles plus 19 $t_{\text{CYC}}.$

Table 2. Timer Characteristics $(V_{DD} = 3.3 \text{ Vdc})^{(1)}$

Characteristic	Symbol	Min	Max	Unit
Timer Resolution ⁽²⁾	t _{RESL}	4.0		t _{CYC}
Input Capture Pulse Width	t _H , t _L	250	_	ns
Input Capture Pulse Period	t _{TLTL}	Note (3)		t _{CYC}

1. V_{DD} = 3.3 Vdc ± 10%, T_A = T_L to T_H unless otherwise noted.

2. A 2-bit prescaler in the timer is the limiting factor as it counts 4 $t_{\mbox{\tiny CYC}}.$

3. The minimum t_{TLTL} should not be less than the number of interrupt service routine cycles plus 19 t_{CYC}

Figure 5. Input Capture Characteristics

Timer

If the input capture edge occurs in the shaded area between T10 states, then the input capture flag becomes set during the next T11 state.

Figure 7. Input Capture Timing

NOTES:

- 1. A write to the output compare registers may occur at any time, but a compare only occurs at
- timer state T01. Therefore, the compare may follow the write by up to four cycles. 2. The output compare flag is set at the timer state T11 that follows the comparison latch.

Figure 9. Timer Overflow Timing

Interrupts

Interrupts

The following timer sources can generate interrupts:

- Input capture flag (ICF) The ICF bit is set when an edge of the selected polarity occurs on the input capture pin. The input capture interrupt enable bit, ICIE, enables ICF interrupt requests.
- Output compare flag (OCF) The OCF bit is set when the counter value matches the value written in the output compare registers. The output compare interrupt enable bit, OCIE, enables OCF interrupt requests.
- Timer overflow flag (TOF) The TOF bit is set when the counter value rolls over from \$FFFF to \$0000. The timer overflow enable bit (TOIE) enables timer overflow interrupt requests.

Table 3 summarizes the timer interrupt sources.

Source	Local Mask	Global Mask	Priority (1 = Highest)
ICF Bit OCF Bit TOF Bit	ICIE Bit OCIE Bit TOIE Bit	l Bit	3

Table 3. Timer Interrupt Sources

I/O Registers

The following registers control and monitor the operation of the timer:

- Timer control register (TCR)
- Timer status register (TSR)
- Timer registers (TRH and TRL)
- Alternate timer registers (ATRH and ATRL)
- Input capture registers (ICRH and ICRL)
- Output compare registers (OCRH and OCRL)

Timer Control Register

The timer control register (TCR) performs the following functions:

- Enables input capture interrupts
- Enables output compare interrupts
- Enables timer overflow interrupts
- Controls the active edge polarity of the TCAP signal
- Controls the active level of the TCMP output

\$0012	Bit 7	6	5	4	3	2	1	Bit 0
Read:	ICIE	OCIE	TOIE	0	0	0	IEDG	OLVL
Write:	ICIE	UCIE	TOIL	0	0	0	IEDG	OLVL
Reset:	0	0	0	0	0	0	U	0
	U = Unaffe	ected						

Figure 10. Timer Control Register (TCR)

ICIE — Input Capture Interrupt Enable

This read/write bit enables interrupts caused by an active signal on the PD7/TCAP pin. Reset clears the ICIE bit.

- 1 = Input capture interrupts enabled
- 0 = Input capture interrupts disabled
- OCIE Output Compare Interrupt Enable

This read/write bit enables interrupts caused by an active signal on the TCMP pin. Reset clears the OCIE bit.

- 1 = Output compare interrupts enabled
- 0 = Output compare interrupts disabled
- TOIE Timer Overflow Interrupt Enable

This read/write bit enables interrupts caused by a timer overflow. Reset clears the TOIE bit.

- 1 = Timer overflow interrupts enabled
- 0 = Timer overflow interrupts disabled
- Bits 4-2 Unused

These are read/write bits that always read as logic zeros.

11-tim1ic1oc_a

Write:

Reset:

U

	IEDG — Input Edge								
	The state o negative tra contents of has no effe 1 = Posit 0 = Nega	ansition of the time ct on the ive edge	on the Pl r registe IEDG b e (low-to	D7/TCAI rs to the it. -high tra	P pin trig input ca nsition) t	igers a t apture re triggers	ransfer o gisters. input caj	of the Reset oture	
	OLVL — Output Level								
	The state o logic zero a compare oc 1 = TCM 0 = TCM	ppears o curs. Re P goes l	on the To eset clea nigh on c	CMP pin irs the O output co	when a LVL bit. ompare		•		
Timer Status	The timer status register (TSR) contains flags for the following events:								
Register	 An active signal on the PD7/TCAP pin, transferring the contents of the timer registers to the input capture registers 								
	 A match between the 16-bit counter and the output compare registers, transferring the OLVL bit to the TCMP pin 								
	A timer rollover from \$FFFF to \$0000								
	\$0013 Bit 7	6	5	4	3	2	1	Bit 0	
	Read: ICF	OCF	TOF	0	0	0	0	0	

0

U

= Unimplemented

U

0

Figure 11. Timer Status Register (TSR)

0

U = Unaffected

0

0

ICF — Input Capture Flag

The ICF bit is automatically set when an edge of the selected polarity occurs on the PD7/TCAP pin. Clear the ICF bit by reading the timer status register with ICF set, and then reading the low byte of the input capture registers. Reset has no effect on ICF.

- 1 = Input capture
- 0 = No input capture
- OCF Output Compare Flag

The OCF bit is automatically set when the value of the timer registers matches the contents of the output compare registers. Clear the OCF bit by reading the timer status register with OCF set, and then reading the low byte of the output compare registers. Reset has no effect on OCF.

- 1 = Output compare
- 0 = No output compare
- TOF Timer Overflow Flag

The TOF bit is automatically set when the 16-bit counter rolls over from \$FFFF to \$0000. Clear the TOF bit by reading the timer status register with TOF set, and then reading the low byte of the timer registers. Reset has no effect on TOF.

- 1 = Timer overflow
- 0 = No timer overflow

I/O Registers

Timer

Timer Registers The read-only timer registers (TRH and TRL) contain the current high and low bytes of the 16-bit counter. Reading TRH before reading TRL causes TRL to be latched until TRL is read. Reading TRL after reading the timer status register clears the timer overflow flag (TOF). Writing to the timer registers has no effect.

Figure 12. Timer Registers (TRH and TRL)

Reading TRH returns the current value of the high byte of the counter and causes the low byte to be latched into a buffer. The buffer value remains fixed even if the high byte is read more than once. Reading TRL reads the transparent low byte buffer and completes the read sequence of the timer registers.

Figure 13. Timer Register Reads

NOTE: To prevent interrupts from occurring between readings of TRH and TRL, set the interrupt mask (I bit) in the condition code register before reading TRH, and clear the mask after reading TRL.

Alternate Timer Registers

The read-only alternate timer registers (ATRH and ATRL) contain the current high and low bytes of the 16-bit counter. Reading ATRH before reading ATRL causes ATRL to be latched until ATRL is read. Reading does not affect the timer overflow flag (TOF). Writing to the alternate timer registers has no effect.

Figure 14. Alternate Timer Registers (ATRH and ATRL)

Reading ATRH returns the current value of the high byte of the counter and causes the low byte to be latched into a buffer.

Figure 15. Alternate Timer Register Reads

NOTE: To prevent interrupts between readings of ATRH and ATRL, set the interrupt mask (I bit) in the condition code register before reading ATRH, and clear the mask after reading ATRL.

Timer

Input Capture When a selected edge occurs on the TCAP pin, the current high and low bytes of the 16-bit counter are latched into the read-only input capture registers (ICRH and ICRL). Reading ICRH before reading ICRL inhibits further captures until ICRL is read. Reading ICRL after reading the timer status register clears the input capture flag (ICF). Writing to the input capture registers has no effect.

\$0014	Bit 7	6	5	4	3	2	1	Bit 0
Read:	Bit 15	14	13	12	11	10	9	Bit 8
Write:								
Reset:	Unaffected by reset							
\$0015	7	6	5	4	3	2	1	0
Read:	Bit 7	6	5	4	3	2	1	Bit 0
Write:								
Reset:				Unaffecte	d by reset			
	= Unimplemented							
Figure 16. Input Capture Registers (ICRH and ICRL)								

NOTE: To prevent interrupts between readings of ICRH and ICRL, set the interrupt mask (I bit) in the condition code register before reading ICRH, and clear the mask after reading ICRL.

Output Compare Registers

When the value of the 16-bit counter matches the value in the read/write output compare registers (OCRH and OCRL), the planned TCMP pin action takes place. Writing to OCRH before writing to OCRL inhibits timer compares until OCRL is written. Reading or writing to OCRL after reading the timer status register clears the output compare flag (OCF).

\$0016	Bit 7	6	5	4	3	2	1	Bit 0
Read:	Bit 15	14	13	12	11	10	9	Bit 8
Write:								
Reset:	Unaffected by reset							
\$0017	Bit 7	6	5	4	3	2	1	Bit 0
Read:	Bit 7	6	5	4	3	2	1	Bit 0
Write:	DIL 7	0	5	4	5	Z	I	DILU
Reset:				Unaffecte	d by reset			

Figure 17. Output Compare Registers (OCRH and OCRL)

To prevent OCF from being set between the time it is read and the time the output compare registers are updated, use the following procedure:

- 1. Disable interrupts by setting the I bit in the condition code register.
- 2. Write to OCRH. Compares are now inhibited until OCRL is written.
- 3. Clear bit OCF by reading the timer status register (TSR).
- 4. Enable the output compare function by writing to OCRL.
- 5. Enable interrupts by clearing the I bit in the condition code register.

17-tim1ic1oc_a

Low-Power Modes

The STOP and WAIT instructions put the MCU in low-power consumption standby modes.

Stop ModeThe STOP instruction suspends the timer counter. Upon exit from stop
mode by external reset:

- The timer counter resumes counting from \$FFFC.
- An input capture edge during stop mode does not affect the ICF bit or the input capture registers.

Upon exit from stop mode by external interrupt:

- The counter resumes counting from the suspended value.
- An input capture edge during stop mode sets the ICF bit and transfers the suspended timer counter value to the input capture registers.

Wait ModeThe timer remains active after a WAIT instruction. Any enabled timer
interrupt request can bring the MCU out of wait mode.

Serial Input/Output Port SIOP

Contents

Features
Introduction
Operation
Pin Functions
PB7/SCK
PB5/SDO112
PB6/SDI
Data Movement
Timing
Interrupts
I/O Registers
SIOP Control Register116
SIOP Status Register
SIOP Data Register
Low-Power Modes
Stop Mode
Wait Mode

Features

Features

- Master or Slave Operation
- Programmable MSB-First or LSB-First Operation
- Interrupt-Driven Operation with Transfer Complete Flag
- Data Collision Flag
- Master Mode Frequency = Bus Frequency ÷ 4
- Maximum Slave Mode Frequency = Bus Frequency ÷ 4
- No Minimum Slave Mode Frequency

Introduction

The serial input/output port (SIOP) is a 3-wire master/slave communication port with serial clock, data input, and data output connections. The SIOP enables high-speed synchronous serial data transfer between the MCU and peripheral devices. Shift registers used with the SIOP can increase the number of parallel I/O pins controlled by the MCU. More powerful peripherals such as analog-to-digital converters and real-time clocks are also compatible with the SIOP. **Figure 1** shows the structure of the SIOP module.

Figure 1. SIOP Block Diagram

Addr.	Name		Bit 7	6	5	4	3	2	1	Bit 0
\$000A	SIOP Control Register (SCR)	Read: Write:	0	SPE	0	MSTR	0	0	0	0
		Reset:	0	0	0	0	0	0	0	0
\$000B	SIOP Status Register (SSR)	Read:	SPIF	DCOL	0	0	0	0	0	0
SIOP Status Register (SSF	SIOF Status Register (SSR)	Write:								
		Reset:	0	0	0	0	0	0	0	0
\$000C	SIOP Data Register (SDR)	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
		Reset:				Unaffecte	d by reset			
		[= Unimpl	emented					

Figure 2. SIOP I/O Register Summary

Operation

The master MCU initiates and controls the transfer of data to and from one or more slave peripheral devices. In master mode, a transmission is initiated by writing to the SIOP data register (SDR). Data written to the SDR is parallel-loaded and shifted out serially to the slave device(s).

Many simple slave devices are designed to only receive data from a master or to only supply data to a master. For example, when a serial-to-parallel shift register is used as an 8-bit port, the master MCU initiates transfers of 8-bit data values to the shift register. Since the serial-to-parallel shift register does not send any data to the master, the MCU ignores whatever it receives as a result of the transmission.

The SIOP is simpler than the serial peripheral interface (SPI) on some other Motorola MCUs in that:

- The polarity of the serial clock is fixed.
- There is no slave select pin.
- The direction of serial data does not automatically switch as on the SPI because the SIOP is not intended for use in multimaster systems. Most applications use one MCU as the master to initiate and control data transfer between one or more slave peripheral devices.

A programmable option allows the SIOP to transfer data MSB first or LSB first.

Pin Functions The SIOP uses three pins and shares them with port B:

- PB7/SCK
- PB6/SDI
- PB5/SDO
- **NOTE:** Do not use the PB7/SCK, PB6/SDI, or PB5/SDO pins for general-purpose I/O while the SIOP is enabled.

When bit 6 (SPE) of the SIOP control register (SCR) is set, the SIOP is enabled and the PB7/SCK, PB5/SDO, and PB6/SDI pins are dedicated to SIOP functions. Clearing SPE disables the SIOP and the SIOP pins become standard I/O port pins.

- **NOTE:** Enabling and then disabling the SIOP configures the data direction register bits associated with the SIOP pins for SIOP operation and can also change the associated port data register. After disabling the SIOP, initialize the data direction register and the port data register as the application requires.
- PB7/SCKThe PB7/SCK pin synchronizes the movement of data into and out of the
MCU through the PB6/SDI and PB5/SDO pins. In master mode, the
PB7/SCK pin is an output. The serial clock frequency in master mode is
one-fourth the internal clock frequency.

In slave mode, the PB7/SCK pin is an input. The maximum serial clock frequency in slave mode is one-fourth the internal clock rate. Slave mode has no minimum serial clock frequency.

SIOP Operation

Figure 3 shows the timing relationships among the serial clock, data input, and data output. The state of the serial clock between transmissions is a logic one. The first falling edge on the PB7/SCK pin signals the beginning of a transmission, and data appears at the PB5/SDO pin. Data is captured at the PB6/SDI pin on the rising edge of the serial clock, and the transmission ends on the eighth rising edge of the serial clock.

Figure 3. SIOP Data/Clock Timing

The first falling edge on PB7/SCK begins a transmission. At this time the first bit of received data is accepted at the PB6/SDI pin and the first bit of transmitted data is presented at the PB5/SDO pin.

PB5/SDOThe PB5/SDO pin is the SIOP data output. Between transfers, the state
of the PB5/SDO pin reflects the value of the last bit shifted out on the
previous transmission, if there was one. To preset the beginning state,
write to the corresponding port data bit before enabling the SIOP. On the
first falling edge on the PB7/SCK pin, the first data bit to be shifted out
appears at the PB5/SDO pin.

After SPE is set, the PB5/SDO output driver can be disabled by writing a zero to the corresponding data direction register bit of the port, thereby configuring PB5/SDO as a high-impedance input.

- PB6/SDIThe PB6/SDI pin is the SIOP data input. Valid SDI data must be present
for an SDI setup time, t_s, before the rising edge of the serial clock and
must remain valid for an SDI hold time, t_H, after the rising edge of the
serial clock. (See **Table 1** and **Table 2**.)
- Data Movement Connecting the SIOP data register of a master MCU with the SIOP of a slave MCU forms a 16-bit circular shift register. During an SIOP transfer, the master shifts out the contents of its SIOP data register on its PB5/SDO pin. At the same time, the slave MCU shifts out the contents of its SIOP data register on its PB5/SDO pin. Figure 4 shows how the master and slave exchange the contents of their data registers.

Figure 4. Master/Slave SIOP Shift Register Operation

Figure 5. SIOP Timing

Characteristic	Symbol	Min	Max	Unit
Frequency of Operation Master Slave	f _{SIOP(M)} f _{SIOP(S)}	f _{osc} /64 dc	f _{OSC} /8 525	MHz kHz
Cycle Time Master Slave	t _{SCK(M)} t _{SCK(S)}	4.0	4.0 1920	t _{CYC} ⁽²⁾ ns
Clock (SCK) Low Time $(f_{OP} = 2.1 \text{ MHz})^{(3)(4)}$	t _{SCKL}	932	_	ns
SDO Data Valid Time	t _v	_	200	ns
SDO Hold Time	t _{HO}	0	_	ns
SDI Setup Time	t _s	100	_	ns
SDI Hold Time	t _H	100	_	ns

Table 1. SIOP Timing $(V_{DD} = 5.0 \text{ Vdc})^{(1)}$

1. V_{DD} = 5.0 Vdc ±10%, V_{SS} = 0 Vdc, T_{A} = T_{L} to T_{H} unless otherwise noted.

2. $t_{CYC} = 1 \div f_{OP}$

3. f_{OSC} = crystal frequency; f_{OP} = f_{OSC} ÷ 2 = 2.1 MHz maximum 4. In master mode, the frequency of SCK is f_{OP} ÷ 4.

Characteristic	Symbol	Min	Max	Unit
Frequency of Operation Master Slave	f _{siop (M)} f _{siop(s)}	f _{OSC} /64 dc	f _{osc} /8 250	MHz kHz
Cycle Time Master Slave	t _{scк(м)} t _{scк(s)}	4.0	4.0 4000	t _{CYC} ⁽²⁾
Clock (SCK) Low Time $(f_{OP} = 1.0 \text{ MHz})^{(3)}$ ⁽⁴⁾	t _{SCKL}	1980	_	ns
SDO Data Valid Time	t _v	_	400	ns
SDO Hold Time	t _{HO}	0	_	ns
SDI Setup Time	t _s	200	_	ns
SDI Hold Time	t _H	200	—	ns

Table 2. SIOP Timing $(V_{DD} = 3.3 \text{ Vdc})^{(1)}$

1. V_{DD} = 3.3 Vdc ±10%, V_{SS} = 0 Vdc, T_A = T_L to T_H unless otherwise noted

2. $t_{CYC} = 1 \div f_{OP}$

3. f_{OSC} = crystal frequency; f_{OP} = f_{OSC} ÷ 2 = 1.0 MHz maximum

4. In master mode, the frequency of SCK is $f_{OP} \div 4$.

Interrupts

The SIOP does not generate interrupt requests.

I/O Registers

The following registers control and monitor SIOP operation:

- SIOP control register (SCR)
- SIOP status register (SSR)
- SIOP data register (SDR)

SIOP ControlThe read/write SIOP control register (SCR) contains two bits. One bitRegisterenables the SIOP, and the other configures the SIOP for master mode
or for slave mode.

\$000A	Bit 7	6	5	4	3	2	1	Bit 0
Read: Write:	0	SPE	0	MSTR	0	0	0	0
Reset:	0	0	0	0	0	0	0	0

Figure 6. SIOP Control Register (SCR)

SPE — SIOP Enable

This read/write bit enables the SIOP. Setting SPE initializes the data direction register as follows:

- The PB6/SDI pin is an input.
- The PB5/SDO pin is an output.
- The PB7/SCK pin is an input in slave mode and an output in master mode.

Clearing SPE disables the SIOP and returns the port to its normal I/O functions. The data direction register and the port data register remain in their SIOP-initialized state.

NOTE: After clearing SPE, be sure to initialize the port for its intended I/O use.

Clearing SPE during a transmission aborts the transmission, resets the bit counter, and returns the port to its normal I/O function. Reset clears SPE.

- 1 = SIOP enabled
- 0 = SIOP disabled

MSTR — Master Mode Select

This read/write bit configures the SIOP for master mode. Setting MSTR initializes the PB7/SCK pin as the serial clock output. Clearing MSTR initializes the PB7/SCK pin as the serial clock input. MSTR can be set at any time regardless of the state of SPE. Reset clears MSTR.

1 = Master mode selected

0 =Slave mode selected

¹¹⁻siop_a

I/O Registers

SIOP

SIOP StatusThe read-only SIOP status register (SSR) contains two bits. One bitRegisterindicates that a SIOP transfer is complete, and the other indicates that
an invalid access of the SIOP data register occurred while a transfer was
in progress.

Figure 7. SIOP Status Register (SSR)

SPIF — Serial Peripheral Interface Flag

This clearable, read-only bit is set automatically on the eighth rising edge on the PB7/SCK pin and indicates that a data transmission took place. SPIF does not inhibit further transmissions. Clear SPIF by reading the SIOP status register while SPIF is set and then reading or writing the SIOP data register. Reset clears SPIF.

1 = Transmission complete

0 = Transmission not complete

DCOL — Data Collision Flag

This clearable, read-only bit is automatically set if the SIOP data register is accessed while a data transfer is in progress. Reading or writing the SIOP data register while a transmission is in progress causes invalid data to be transmitted or read. Clear DCOL by reading the SIOP status register with SPIF set and then accessing the SIOP data register. Because the clearing sequence accesses the SIOP data register, the sequence has to be completed before another transmission starts or DCOL is set again.

To clear DCOL when SPIF is not set, turn off the SIOP by writing a zero to SPE and then turn it back on by writing a one to SPE. Reset clears DCOL.

1 = Invalid access of SDR

0 =Valid access of SDR

SIOP Data Register The SIOP data register (SDR) is both the transmit data register and the receive data register. To read or write the SIOP data register, the SPE bit in the SIOP control register must be set.

\$000C	Bit 7	6	5	4	3	2	1	Bit 0
Read:	D:+ 7	6	F	4	2	0	1	Dit 0
Write:	Bit 7	6	5	4	3	Z	1	Bit 0
Reset:				Unaffecte	d by reset			

Figure 8. SIOP Data Register (SDR)

With the SIOP configured for master mode, writing to the SIOP data register initiates a serial transfer. This register is not buffered. Writing to the SIOP data register overwrites the previous contents. Reading or writing to the SIOP data register while a transmission is in progress can cause invalid data to be transmitted or received.

Low-Power Modes

	The WAIT and STOP instructions put the MCU in low-power consumption standby modes.
Stop Mode	The STOP instruction suspends the clock to the SIOP. When the MCU exits stop mode, processing resumes after the internal oscillator stabilization delay of 4064 oscillator cycles.
	A STOP instruction in a master SIOP does not suspend the clock to slave SIOPs.
Wait Mode	The WAIT instruction suspends the clock to the SIOP. When the MCU exits wait mode, processing resumes immediately.
	A WAIT instruction in a master SIOP does not suspend the clock to slave SIOPs.

Analog-to-Digital Converter ADC

Contents

Features
Introduction
Operation
Pin Functions
PC7/V _{RH}
PC6/AN0–PC3/AN3124
Interrupts
Timing and Electrical Characteristics
I/O Registers
ADC Status and Control Register
ADC Data Register
Low-Power Modes
Stop Mode
Wait Mode

Features

- 8-Bit Conversions with ± 1.5-LSB Precision
- Four External and Three Internal Analog Input Channels
- Wait Mode Operation

1-atd4x8nvrl

ADC

Introduction

The ADC consists of a single successive-approximation A/D converter, an input multiplexer to select one of four external or two internal channels, and control circuitry. **Figure 1** shows the structure of the ADC module.

Figure 1. ADC Block Diagram

Addr. Name R/W Bit 7 6 5 4 3 2 1 Bit 0 5 3 2 Read: Bit 7 6 4 1 Bit 0 \$001D ADC Data Register (ADDR) Write: Unaffected by reset Reset: Read: CCF 0 0 \$001E ADC Status/Control Register (ADSCR) ADRC ADON CH2 CH1 CH0 Write: 0 0 0 0 0 0 0 0 Reset: = Unimplemented

Table 1. ADC I/O Register Summary

Operation

The A/D conversion process is ratiometric, using two reference voltages, V_{RH} and V_{SS} . Conversion accuracy is guaranteed only if V_{RH} is equal to V_{DD} .

Pin Functions The ADC uses five pins and shares them with port C:

- PC7/V_{RH}
- PC6/AN0, PC5/AN1, PC4/AN2, and PC3/AN3

 $PC7/V_{RH}$ The voltage reference high pin (PC7/V_{RH}) supplies the high reference
voltage for the ratiometric conversion process. For ratiometric
conversion, the supply voltage of the analog source should be the same
as V_{RH} and be referenced to V_{SS} .

ADC

PC6/AN0-The multiplexer can select one of four external analog input channelsPC3/AN3(AN0, AN1, AN2, or AN3) for sampling. The conversion takes 32 cycles.
The first 12 cycles sample the voltage on the selected input pin by
charging an internal capacitor. In the last 20 cycles, a comparator
successively compares the output of an internal D/A converter to the
sampled analog input. Control logic changes the D/A converter input one
bit at a time, starting with the MSB, until the D/A converter output
matches the sampled analog input. The conversion is monotonic and
has no missing codes. At the end of the conversion, the conversion
complete flag (CCF) becomes set, and the CPU takes two cycles to
move the result to the ADC data register.

NOTE: To prevent excess power dissipation, do not simultaneously use an I/O port pin as a digital input and an analog input.

While the ADC is on, the selected analog input reads as logic zero. The port C pins that are not selected read normally.

An analog input voltage equal to V_{RH} converts to digital \$FF; an input voltage greater than V_{RH} converts to \$FF with no overflow. An analog input voltage equal to V_{SS} converts to digital \$00. For ratiometric conversion, the source of each analog input should use V_{RH} as the supply voltage and be referenced to V_{SS} .

The clock frequency must be equal to or greater than 1 MHz. If the internal clock frequency is less than 1 MHz, the internal RC oscillator (nominally 1.5 MHz) must be used for the ADC conversion clock. Make this selection by setting the ADRC bit to logic one in the ADC status and control register.

Interrupts

The ADC cannot generate interrupt requests.

Timing and Electrical Characteristics

Characteristic	Min	Max	Unit
Resolution	8	8	Bit
Absolute Accuracy $(4.0 > V_{RH} > V_{DD})^{(2)}$	_	±1.5	LSB
Conversion Range (PC7/V _{RH})	V _{SS}	V _{DD}	V
Conversion Time (Includes Sampling Time) External Clock Internal RC Oscillator (ADRC = 1)	32 32	32 32	t _{AD} ⁽³⁾ μs
Monotonicity	Inherent	(Within To	tal Error)
Zero Input Reading ($V_{IN} = 0 V$)	00	01	Hex
Full-Scale Reading ($V_{IN} = V_{RH}$)	FF	FF	Hex
Sample Acquisition Time ⁽⁴⁾ External Clock Internal RC Oscillator (ADRC = 1)	12	12 12	t _{AD} ⁽⁵⁾ μs
Input Capacitance PC6/AN0, PC5/AN1, PC4/AN2, PC3/AN3	_	12	pF
Analog Input Voltage	V _{ss}	V _{RH}	V
Input Leakage ⁽⁶⁾ PC6/AN0, PC5/AN1, PC4/AN2, PC3/AN3 PC7/V _{RH}	_	±1 ±1	μΑ
ADC On Current Stabilization Time	_	100	μs

Table 2. ADC Characteristics $(V_{DD} = 5.0 \text{ Vdc})^{(1)}$

1. V_{DD} = 5.0 Vdc ±10%, V_{SS} = 0 Vdc

2. ADC accuracy may decrease proportionately as V_{RH} is reduced below 4.0 V.

3. t_{AD} = cycle time of the A/D converter

4. Source impedances more than 10 $k\Omega$ adversely affect internal RC charging time during input sampling.

5. $t_{AD} = t_{CYC} (1 \div f_{OP})$ if MCU clock is clock source

6. External system error caused by input leakage approximately equals R source times input current.

I/O Registers

The following registers control and monitor operation of the ADC:

- ADC status and control register (ADSCR)
- ADC data register (ADDR)

ADC Status andThe ADC status and control register (ADSCR) contains a conversionControl Registercomplete flag and four writable control bits. Writing to ADSCR clears the
conversion complete flag and starts a new conversion sequence.

CCF — Conversion Complete Flag

This read-only bit is automatically set when an analog-to-digital conversion is complete, and a new result can be read from the ADC data register. Clear the CCF bit by writing to the ADC status and control register or by reading the ADC data register. Resets clear the CCF bit.

1 = Conversion complete

0 = Conversion not complete

ADRC — ADC RC (Oscillator)

This read/write bit turns on the internal RC oscillator to drive the ADC. If the internal clock frequency (f_{OP}) is less than 1 MHz, ADRC must be set. When the RC oscillator is turned on, it requires a time, t_{ADRC} , to stabilize, and results can be inaccurate during this time. Resets clear the ADRC bit.

1 = Internal RC oscillator drives ADC

0 = Internal clock drives ADC

When the internal RC oscillator is being used as the ADC clock, two limitations apply:

- Because of the frequency tolerance of the RC oscillator and its asynchronism with the internal clock, the conversion complete flag must be used to determine when a conversion sequence is complete.
- The conversion process runs at the nominal 1.5-MHz rate, but the conversion results must be transferred to the ADC data register synchronously with the internal clock; therefore, the conversion process is limited to a maximum of one channel every internal clock cycle.

ADON — ADC On

This read/write bit turns on the ADC. When the ADC is on, it requires a time, t_{ADON} , for the current sources to stabilize. During this time, results can be inaccurate. Resets clear the ADON bit.

1 = ADC turned on 0 = ADC turned off

Bits 4–2 — Not used

Bits 4–2 always read as logic zeros.

CH[2:0] — Channel Select Bits

These read/write bits select one of eight ADC input channels as shown in **Table 3**. Channels 0–3 are the input pins, PC3/AN3, PC4/AN2, PC5/AN1, and PC6/AN0. Channels 4–6 can be used for reference measurements. Channel 7 is reserved for factory testing.

CH[2:1:0]	Channel	Signal
000	0	AN0
001	1	AN1
010	2	AN2
011	3	AN3
100	4	V _{RH}
101	5	(V _{RH} + V _{SS}) / 2
110	6	V _{SS}
111	7	Reserved

Table 3. ADC Input Channel Selection

To prevent excess power dissipation, do not use an ADC pin as an analog input and a digital input at the same time.

Using one of the port pins as the ADC input does not affect the ability to use the remaining port pins as digital inputs.

Reading a port pin that is selected as an analog input returns a logic zero.

ADC Data Register The ADC data register (ADDR) is a read-only register that contains the result of the most recent analog-to-digital conversion.

\$001D	Bit 7	6	5	4	3	2	1	Bit 0
Read:	Bit 7	6	5	4	3	2	1	Bit 0
Write:								
Reset:				Unaffecte	d by reset		-	

Figure 3. ADC Data Register (ADDR)

9-atd4x8nvrl

Low-Power Modes

Stop Mode	The STOP instruction turns off the ADC and aborts any current and pending conversions.
Wait Mode	The ADC continues to operate normally after the WAIT instruction. To reduce power consumption in wait mode:
	 If the ADC is not being used, clear both the ADON and ADRC bits before entering wait mode.
	 If the ADC is being used and the internal clock rate is above 1 MHz, clear the ADRC bit before entering wait mode.

Specifications

Contents

Maximum Ratings

Maximum ratings are the extreme limits to which the MCU can be exposed without permanently damaging it.

The MCU contains circuitry to protect the inputs against damage from high static voltages; however, do not apply voltages higher than those shown in **Table 1**. Keep V_{IN} and V_{OUT} within the range $V_{SS} \leq (V_{IN} \text{ or } V_{OUT}) \leq V_{DD}$. Connect unused inputs to the appropriate voltage level, either V_{SS} or V_{DD}.

Rating	Symbol	Value	Unit
Supply Voltage	V _{DD}	-0.3 to +7.0	V
Current Drain per Pin (Excluding V_{DD} and V_{SS})	I	25	mA
Input Voltage	V _{IN}	$V_{SS} - 0.3$ to V_{DD} + 0.3	V
EPROM Programming Voltage	V _{PP}	16.75	V
Storage Temperature Range	T _{STG}	-65 to +150	°C

 Table 1. Maximum Ratings

NOTE: This device is not guaranteed to operate properly at the maximum ratings. Refer to 5.0 V DC Electrical Characteristics on page 135 and 3.3 V DC Electrical Characteristics on page 136 for guaranteed operating conditions.

Operating Temperature Range

Package Type	Symbol	Value	Unit
MC68HC705P9P ⁽¹⁾ , DW ⁽²⁾ , S ⁽³⁾ (Standard) MC68HC705P9C ⁽⁴⁾ P, CDW, CS (Extended) MC68HC705P9V ⁽⁵⁾ P, VDW, VS (Automotive) MC68HC705P9M ⁽⁶⁾ P, MDW, MS (Automotive)	T _A	T _L to T _H 0 to 70 -40 to +85 -40 to +105 -40 to +125	°C
 P = Plastic dual in-line package (PDIP) DW = Small outline integrated circuit (SOIC) S = Ceramic dual in-line package (Cerdip) C = Extended temperature range (-40 to +85 °C) V = Automotive temperature range (-40 to +105 °C) 			

Table 2. Operating Temperature Range

Thermal Characteristics

6. M = Automotive temperature range (-40 to +125 $^{\circ}$ C)

Characteristic	Symbol	Value	Unit
Thermal Resistance Plastic Dual In-Line Package (PDIP) Small Outline Integrated Circuit (SOIC) Ceramic Dual In-Line Package (Cerdip)	θ_{JA}	60 60 60	°C/W

Power Considerations

The average chip junction temperature, T_J, in °C can be obtained from:

$$T_{J} = T_{A} + (P_{D} \times \theta_{JA})$$
(1)

where:

 T_A = ambient temperature in °C θ_{JA} = package thermal resistance, junction to ambient in °C/W

 $P_D = P_{INT} + P_{I/O}$ $P_{INT} = I_{CC} \times V_{CC}$ = chip internal power dissipation

 $P_{I/O}$ = power dissipation on input and output pins (user-determined)

For most applications, $\mathsf{P}_{I/O} \ll \mathsf{P}_{INT}$ and can be neglected.

Ignoring $P_{I/O}$, the relationship between P_D and T_J is approximately:

$$\mathsf{P}_{\mathsf{D}} = \frac{\mathsf{K}}{\mathsf{T}_{\mathsf{J}} + 273 \ ^{\circ}\mathsf{C}} \tag{2}$$

Solving equations (1) and (2) for K gives:

$$K = P_{D} \times (T_{A} + 273 \,^{\circ}C) + \theta_{JA} \times (P_{D})^{2}$$
(3)

where K is a constant pertaining to the particular part. K can be determined from equation (3) by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving equations (1) and (2) iteratively for any value of T_A .

5.0 V DC Electrical Characteristics

Characteristic	Symbol	Min	Typ ⁽²⁾	Max	Unit
Output Voltage $I_{LOAD} = 10.0 \ \mu A$ $I_{LOAD} = -10.0 \ \mu A$	V _{oL} V _{oH}	 V _{DD} – 0.1		0.1	V
Output High Voltage (I _{LOAD} = -0.8 mA) PA7-PA0, PB7/SCK-PB5/SDO, PC7/V _{RH} -PC0, PD5, TCMP	V _{OH}	V _{DD} - 0.8	_	_	V
Output Low Voltage (I _{LOAD} = 1.6 mA) PA7–PA0, PB7/SCK–PB5/SDO, PC7/V _{RH} –PC0, PD5, TCMP	V _{OL}	_		0.4	V
Input High Voltage PA7–PA0, PB7/SCK–PB5/SDO, PC7/V _{RH} –PC0, PD5, PD7/TCAP, IRQ/V _{PP} , RESET, OSC1	V _{IH}	$0.7 \times V_{DD}$	_	V _{DD}	V
Input Low Voltage PA7–PA0, PB7/SCK–PB5/SDO, PC7/V _{RH} –PC0, PD5, PD7/TCAP, IRQ/V _{PP} , RESET, OSC1	V _{IL}	V _{SS}		$0.2 \times V_{DD}$	V
Supply Current ^{(3) (4) (5) (6)} Run Mode Wait Mode (ADC On) Wait Mode (ADC Off) Stop Mode	I _{DD}		4.7 2.1 1.3	6.5 2.9 1.9	mA mA mA
25 °C 0 to 70 °C (Standard) –40 to 125 °C			2 	30 50 100	μΑ μΑ μΑ
I/O Ports Hi-Z Leakage Current PA7–PA0, PB7/SCK–PB5/SDO, PC7/V _{RH} –PC0, PD5	I _{IL}	_		±10	μΑ
ADC Ports Hi-Z Leakage Current	I _{oz}	_		±1	μA
Input Current RESET, IRQ/V _{PP} , OSC1, PD7/TCAP	I _{IN}		_	±1	μA
Capacitance Ports (As Inputs or Outputs) RESET, IRQ/V _{PP}	C _{OUT} C _{IN}		_	12 8	pF
Programming Voltage	V _{PP}	16.25	16.5	16.75	V
Programming Current	I _{PP}		5	10	mA
Programming Time per Byte	t _{EPGM}	4		_	ms

Table 4. DC Electrical Characteristics $(V_{DD} = 5.0 \text{ Vdc})^{(1)}$

1. V_{DD} = 5.0 Vdc ±10%, V_{SS} = 0 Vdc, T_A = T_L to T_H unless otherwise noted

2. Typical values at midpoint of voltage range, 25 °C only

3. Run mode and wait mode I_{DD} measured using external square wave clock source ($f_{OSC} = 4.2 \text{ MHz}$); all inputs 0.2 V from rail; no dc loads; less than 50 pF on all outputs; C_L = 20 pF on OSC2

4. Wait mode and stop mode I_{DD} measured with all ports configured as inputs; V_{IL} = 0.2 V; V_{IH} = V_{DD} - 0.2 V

5. Stop mode I_{DD} measured with OSC1 = V_{SS}

6. Wait mode I_{DD} affected linearly by OSC2 capacitance

3.3 V DC Electrical Characteristics

Table 5. De Liectrical Characteristics ($v_{DD} = 5.5 v dc)^{1/2}$					
Characteristic	Symbol	Min	Typ ⁽²⁾	Max	Unit
Output Voltage (I _{LOAD} \leq 10.0 μ A)	V _{OL} V _{OH}	 V _{DD} – 0.1		0.1	V
Output High Voltage (I _{LOAD} = -0.2 mA) PA7-PA0, PB7/SCK-PB5/SDO, PC7/V _{RH} -PC0, PD5, TCMP	V _{OH}	V _{DD} - 0.3		_	V
Output Low Voltage (I _{LOAD} = 0.4 mA) PA7–PA0, PB7/SCK–PB5/SDO, PC7/V _{RH} –PC0, PD5, TCMP	V _{OL}	_	_	0.3	V
Input High Voltage PA7–PA0, PB7/SCK–PB5/SDO, PC7/V _{RH} –PC0, PD5, PD7/TCAP, IRQ/V _{PP} , RESET, OSC1	V _{IH}	$0.7 \times V_{DD}$	_	V _{DD}	V
Input Low Voltage PA7–PA0, PB7/SCK–PB5/SDO, PC7/V _{RH} –PC0, PD5, PD7/TCAP, IRQ/V _{PP} , RESET, OSC1	V _{IL}	V _{SS}		$0.2 \times V_{DD}$	V
Data-Retention Mode Supply Voltage	V _{RM}	2.0	_	—	V
Supply Current ^{(3) (4) (5) (6)} Run Mode Wait Mode (ADC On) Wait Mode (ADC Off) Stop Mode 25 °C 0 to 70 °C (Standard) -40 to 125 °C	I _{DD}		1.6 0.9 0.4 1.0 —	2.3 1.3 0.6 20 40 50	mA mA mA μA μA
I/O Ports Hi-Z Leakage Current PA7–PA0, PB7/SCK–PB5/SDO, PC7/V _{RH} –PC0, PD5	IIL		_	±10	μΑ
Input Current RESET, IRQ/V _{PP} , OSC1, PD7/TCAP	I _{IN}	_		±1	μA
Capacitance Ports (As Inputs or Outputs) RESET, IRQ/V _{PP}	C _{OUT} C _{IN}	_		12 8	pF

Table 5. DC Electrical Characteristics $(V_{DD} = 3.3 \text{ Vdc})^{(1)}$

1. V_{DD} = 3.3 Vdc ±10%, V_{SS} = 0 Vdc, T_A = T_L to T_H unless otherwise noted

2. Typical values at midpoint of voltage range, 25 °C only

3. Run mode and wait mode I_{DD} measured using external square wave clock source ($f_{OSC} = 2.1$ MHz); all inputs 0.2 V from rail; no dc loads; less than 50 pF on all outputs; C_L = 20 pF on OSC2

4. Wait mode and stop mode I_{DD} measured with all ports configured as inputs; V_{IL} = 0.2 V; V_{IH} = V_{DD} - 0.2 V

5. Stop mode I_{DD} measured with OSC1 = V_{SS}

6. Wait mode I_{DD} affected linearly by OSC2 capacitance

Driver Characteristics

NOTES:

1. Shaded area indicates variation in driver characteristics due to changes in temperature and for normal processing tolerances. Within the limited range of values shown, V vs I curves are approximately straight lines.

2. At V_{DD} = 5.0 V, devices are specified and tested for V_{OL} ≤ 800 mV @ I_{OL} = -0.8 mA.

3. At V_{DD} = 3.3 V, devices are specified and tested for V_{OL} \leq 300 mV @ I_{OL} = -0.2 mA.

Figure 1. Typical High-Side Driver Characteristics

NOTES:

1. Shaded area indicates variation in driver characteristics due to changes in temperature and for normal processing tolerances. Within the limited range of values shown, V vs I curves are approximately straight lines.

2. At V_{DD} = 5.0 V, devices are specified and tested for V_{OL} \leq 400 mV @ I_{OL} = 1.6 mA.

3. At V_{DD} = 3.3 V, devices are specified and tested for V_{OL} \leq 300 mV @ I_{OL} = 0.4 mA.

Figure 2. Typical Low-Side Driver Characteristics

Typical Supply Current vs. Internal Clock Frequency

Figure 3. Typical Supply Current vs. Internal Clock Frequency

Maximum Supply Current vs. Internal Clock Frequency

Figure 4. Maximum Supply Current vs. Internal Clock Frequency

5.0 V Control Timing

Table 6. Control Timing (V _{DD} = 5.0 Vdc) ⁽¹⁾						
Characteristic	Symbol	Min	Max	Unit		
Oscillator Frequency Crystal External Clock	f _{osc}	 dc	4.2 4.2	MHz		
Internal Operating Frequency (f _{OSC} ÷ 2) Crystal External Clock	f _{OP}	 dc	2.1 2.1	MHz		
Cycle Time (1 ÷ f _{OP})	t _{CYC}	480	_	ns		
Crystal Oscillator Startup Time	t _{oxov}	_	100	ms		
Stop Recovery Startup Time (Crystal Oscillator)	t _{ilCH}	_	100	ms		
RESET Pulse Width	t _{RL}	1.5	_	t _{CYC}		
Timer Resolution ⁽²⁾ Input Capture Pulse Width Input Capture Pulse Period	t _{RESL} t _H , t _L t _{TLTL}	4.0 125 Note ⁽³⁾		t _{cyc} ns t _{cyc}		
Interrupt Pulse Width Low (Edge-Triggered)	t _{ILIH}	125	_	ns		
Interrupt Pulse Period	t _{ILIL}	Note ⁽⁴⁾	_	t _{CYC}		
OSC1 Pulse Width	t _{OH} , t _{OL}	90	_	ns		
RC Oscillator Stabilization Time	t _{RCON}	_	5	μs		
ADC On Current Stabilization Time	t _{ADON}	_	100	μs		

. (1) .

1. V_{DD} = 5.0 Vdc ±10%, V_{SS} = 0 Vdc, T_{A} = T_{L} to T_{H} unless otherwise noted

2. A 2-bit prescaler in the timer is the limiting factor as it counts 4 $t_{\mbox{\scriptsize CYC}}$

3. The minimum t_{TLTL} should not be less than the number of interrupt service routine cycles plus 19 t_{CYC}

4. The minimum $\boldsymbol{t}_{\text{ILIL}}$ should not be less than the number of interrupt service routine cycles plus 19 t_{CYC}

3.3 V Control Timing

Characteristic	Symbol	Min	Мах	Unit
Oscillator Frequency Crystal External Clock	f _{osc}	dc	2.0 2.0	MHz
Internal Operating Frequency (f _{OSC} ÷ 2) Crystal External Clock	f _{OP}	 dc	1.0 1.0	MHz
Cycle Time (1 ÷ f _{OP})	t _{CYC}	1	_	ms
Crystal Oscillator Startup Time	t _{oxov}	_	100	ms
Stop Recovery Startup Time (Crystal Oscillator)	t _{ILCH}	_	100	ms
RESET Pulse Width	t _{RL}	1.5		t _{CYC}
Timer Resolution ⁽²⁾ Input Capture Pulse Width Input Capture Pulse Period	t _{RESL} t _H , t _L t _{TLTL}	4.0 250 Note ⁽³⁾		t _{cyc} ns t _{cyc}
Interrupt Pulse Width Low (Edge-Triggered)	t _{ILIH}	250	_	ns
Interrupt Pulse Period	t _{ILIL}	Note ⁽⁴⁾	_	t _{CYC}
OSC1 Pulse Width	t _{OH} , t _{OL}	200		ns

Table 7. Control Timing $(V_{DD} = 3.3 \text{ Vdc})^{(1)}$

1. V_{DD} = 3.3 Vdc ±10%, V_{SS} = 0 Vdc, T_{A} = T_{L} to T_{H} unless otherwise noted

2. A 2-bit prescaler in the timer is the limiting factor as it counts 4 $t_{\mbox{\scriptsize CYC}}$

3. The minimum t_{TLTL} should not be less than the number of interrupt service routine cycles plus 19 t_{CYC}

4. The minimum $t_{_{\rm ILIL}}$ should not be less than the number of interrupt service routine cycles plus 19 $t_{_{\rm CYC}}$

Test Load

Figure 5. Test Load

Mechanical Specifications

The MC68HC705P9 is available in the following packages:

- 710 Plastic dual in-line package (PDIP)
- 733 Ceramic dual in-line package (Cerdip)
- 751F Small outline integrated circuit (SOIC)

The following figures show the latest packages at the time of this publication. To make sure that you have the latest package specifications, contact one of the following:

- Local Motorola Sales Office
- Motorola Mfax
 - Phone 602-244-6609
 - EMAIL rmfax0@email.sps.mot.com
- Worldwide Web (wwweb) at http://design-net.com

Follow Mfax or wwweb on-line instructions to retrieve the current mechanical specifications.

28-Pin PDIP -Case #710

- NOTES: 1. POSITIONAL TOLERANCE OF LEADS (D), SHALL BE WITHIN 0.25mm (0.010) AT MAXIMUM MATERIAL CONDITION, IN RELATION TO SEATING PLANE AND EACH OTHER. 2. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 3. DIMENSION B DOES NOT INCLUDE MOLD FLASH.

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	36.45	37.21	1.435	1.465
В	13.72	14.22	0.540	0.560
С	3.94	5.08	0.155	0.200
D	0.36	0.56	0.014	0.022
F	1.02	1.52	0.040	0.060
G	2.54 BSC		0.100 BSC	
Н	1.65	2.16	0.065	0.085
J	0.20	0.38	0.008	0.015
ĸ	2.92	3.43	0.115	0.135
L	15.24	BSC	0.600 BSC	
М	0°	15°	0°	15°
Ν	0.51	1.02	0.020	0.040

28-Pin Cerdip — Case #733

- NOTES:

 - DIMENSIONS A AND B INCLUDES MENISCUS.
 DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	1.435	1.490	36.45	37.84
В	0.500	0.605	12.70	15.36
С	0.160	0.230	4.06	5.84
D	0.015	0.022	0.38	0.55
F	0.050	0.065	1.27	1.65
G	0.100 BSC		2.54 BSC	
J	0.008	0.012	0.20	0.30
к	0.125	0.160	3.18	4.06
L	0.600	BSC	15.24 BSC	
м	0°	15°	0°	15°
N	0.020	0.050	0.51	1.27

28-Pin SOIC -Case #751F

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.13 (0.005) TOTAL IN EXCESS OF D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	17.80	18.05	0.701	0.711
B	7.40	7.60	0.292	0.299
C	2.35	2.65	0.093	0.104
D	0.35	0.49	0.014	0.019
F	0.41	0.90	0.016	0.035
G	1.27 BSC		0.050	BSC
J	0.23	0.32	0.009	0.013
K	0.13	0.29	0.005	0.011
M	0 °	8 °	0°	8 °
Р	10.05	10.55	0.395	0.415
R	0.25	0.75	0.010	0.029
Index

Α

В

bootloader ROM
bootload procedure
bootloader circuit
location
brownout
bypass capacitors15

С

C bit
case outlines
CCF bit
central processor unit
ceramic resonator circuit16
CH[2:0] bits
computer operating properly
watchdog85
condition code register
(CCR)36, 46, 59, 61–62, 102–105
COP
COP register (COPR)
COP watchdog
COP in stop mode
COP in wait mode
COP register (COPR)
enabling and disabling
features
operation
timeout period
COP watchdog reset
COPC bit
COPE bit
CPU
block diagram35
control unit
features
instruction set summary48

instruction types43
instructions set40
opcode map
registers
CPU registers
accumulator (A)
condition code register
(CCR) .36, 46, 59, 61–62, 102–105
index register (X)40–43
program counter (PC)42, 45, 56, 62
stack pointer (SP)
crystal
AT-cut
strip
tuning fork
crystal oscillator circuit

D

Е

electrical specifications	1
control timing140–14	1
current versus internal clock	
frequency	9
DC electrical characteristics135–13	6
driver characteristics	7
maximum ratings	2
operating temperature range	
power considerations	4

test load
thermal characteristics
electrostatic damage72
EPGM bit
EPROM erasure
EPROM programming register
(EPROG)
EPROM/OTPROM
bootloader circuit
EPROM erasing
locations
programming26
external interrupt17, 59-60, 88, 106
external interrupt vector
external reset

F

features									ł								ł									1	0
----------	--	--	--	--	--	--	--	--	---	--	--	--	--	--	--	--	---	--	--	--	--	--	--	--	--	---	---

L

I bit
I/O bits
ADON bit
ADRC bit
AN[3:0] bits
C bit
CCF bit
CH[2:0] bits128
COPC bit
COPE bit
DCOL bit
DDRA[7:0] bits74
DDRB[7:5] bits
DDRC[7:0] bits80
DDRD5 bit83
EPGM bit26
l bit
ICF bit
ICIE bit61, 98–99
IEDG bit100

IRQ bit	
LATCH bit	
MSTR bit	
OCF bit	61, 98, 101, 105
OCIE bit	
OLVL bit	
PA[7:0] bits	
PB[7:5] bits	
PC[7:0] bits	
PD5 bit	
PD7 bit	
SIOP bit	
SPE bit	
SPIF bit	
TOF bit	
TOIE bit	
I/O pins	
\overline{IRQ}/V_{PP} pin	2 17 26_27 31 50
OSC1 pin	
OSC2 pin	
PB5/SDO pin	77, 111-112, 110
PB6/SDI pin	
PB7/SCK pin	
PC3/AN0 pin	
PC3/AN3 pin	
PC4/AN2 pin	
PC5/AN1 pin	
PC6/AN0 pin	
PC7/V _{RH} pin	
PD7/TCAP pin	
RESET pin	
TCMP pin	18, 93–94, 100, 105
V _{ss} pin	15
I/O port pin termination .	
I/O registers	
ADC data register	
(ADDR)	.124, 126–127, 129
ADC status and control	ol register
(ADSCR)	
alternate timer registe	rs (ATRH/L)
COP register (COPR)	
data direction register	A (DDRA)74

data direction register B (DDRB)77
data direction register C (DDRC)80
data direction register D (DDRD)83
EPROM programming register (EPROG)26
input capture registers
(ICRH/ICRL)
(ICRH/L) 100–101, 104, 106
mask option register
(MOR)12, 25, 31, 86
output compare registers (OCRH/L)100–101, 105
output compare registers
(OCRH/OCRL)94
port A data register (PORTA)73
port B data register (PORTB)
port C data register (PORTC)
port D data register (PORTD)
SIOP control register (SCR)
SIOP data register (SDR)118–119
SIOP status register (SSR)
timer control register (TCR)61–62, 99
timer registers (TRH/L)100–102
timer status register
(TSR)61–62, 100, 104–105
ICF bit
ICIE bit
IEDG bit
index register (X)
input capture interrupt
input capture registers
(ICRH/L)93, 100–101, 104, 106
instruction set
addressing modes40
instruction set summary48
instruction types43
opcode map54
internal clock
frequency15

internal RC oscillator124, 127
interrupts
external interrupt
external interrupt logic
external interrupt timing
interrupt flowchart64
interrupt processing
interrupt sources
interrupt stacking order
reset/interrupt vector addresses63
software interrupt59
timer interrupts61
introduction, MC68HC705P99
IRQ bit
IRQ latch
IRQ/V _{PP} pin

J

junction tempe	rature	34
----------------	--------	----

L

LATCH bit
literature updates
low voltage protection
low-power modes
ADC in stop and wait modes
COP in stop and wait modes
data-retention mode
SIOP in stop and wait modes
STOP instruction flowchart
stop mode
stop recovery timing
STOP/WAIT clock logic
timer in stop and wait modes
WAIT instruction flowchart
wait mode

Μ

memory	
EPROM/OTPROM	
features	19
parallel I/O register summary .	21
RAM	
MSTR bit	117

Ν

noise			ļ			ļ								15,	17	,

0

OCF bit
OCIE bit61, 98–99
OLVL bit
on-chip oscillator15
frequency
stabilization delay
opcode map54
operating temperature12
operating temperature range
options
programmable12
order numbers12
OSC1 pin15
OSC2 pin15
output compare interrupt
output compare registers
(OCRH/L)94, 100–101, 105

Ρ

PA[7:0] bits	73
package dimensions	
Cerdip	13
PDIP14	13
SOIC	14
package types1	2
parallel I/O ports7	71
PB[7:5] bits	76
PB5/SDO pin	6

PB6/SDI pin
PB7SCK pin
PC[7:0] bits
PC3/AN3 pin
PC4/AN2 pin
PC5/AN1 pin
PC6/AN0 pin
PC7/V _{RH} pin
PD5 bit
PD7 bit
PD7/TCAP pin
pin assignments14
pin descriptions
pin functions
port A
data direction register A (DDRA)74 port A data register (PORTA)73
port B
data direction register B (DDRB)77
port B data register (PORTB)
port C
data direction register C (DDRC)80
port C data register (PORTC)
port D
port D data register (PORTD)
ports
parallel I/O port register summary72
port A
port B
port D
power dissipation
power supply (V _{DD})
power supply (V _{PP})
power-on reset
program counter (PC)

programmable options	
COP watchdog enable/disable	
external interrupt pin triggering	12, 31
SIOP data format	12, 110

Q

quartz window		5
---------------	--	---

R

RAM
locations
stack
Reading102
registers
ADC I/O register summary123
CPU registers
parallel I/O port register summary72
parallel I/O register summary21
SIOP I/O register summary
timer I/O register summary
RESET pin
reset sources
COP watchdog56
power-on
RESET pin56
reset vector
resets
COP watchdog reset
COP watchdog reset operation
external reset
external reset timing
low-voltage protection reset
power-on reset (POR)
power-on reset (POR) timing57 reset sources56
reset/interrupt vector addresses63
resets and interrupts55

S

serial i	npu	t/ou	ιtpι	ıt	рс	ort								.1	07	7
SIOP								÷						.1	07	7

SIOP (serial input/output port)
block diagram109
description
features
I/O register summary109
I/O registers116
low-power modes
operation
timing
SIOP bit
SIOP control register (SCR)111, 116, 119
SIOP data register (SDR)118–119
SIOP status register (SSR)118
software failure
software interrupt vector
SPE bit
specifications
See "electrical specifications."132
See "mechanical specifications."142
SPIF bit
stack pointer (SP)
stack RAM
stop mode
effect on ADC
effect on capture/compare timer106
effect on COP watchdog
effect on SIOP
STOP instruction flowchart67
stop recovery timing66
STOP/WAIT clock logic
supply voltage (V _{DD})

Т

TCMP pin	18, 93–94,	100, 105
thermal resistance		.133–134

timer
block diagram91
features
I/O register summary92
I/O registers
interrupts
low-power modes
operation
reading
timing
timer control register (TCR)61-62, 99
timer interrupt vector62
timer registers (TRH/L)100–102
timer resolution
timer status register
(TSR)
TOF bit
TOIE bit

V

V_{DD} power supply	.15, 30
V_{PP} power supply	29
V_{SS} pin	15

W

wait mode	68
effect on ADC	130
effect on capture/compare timer .	106
effect on COP watchdog	88
effect on SIOP	120
STOP/WAIT clock logic	70
WAIT instruction flowchart	69

Literature Updates

This document contains the latest data available at publication time. For updates, contact one of the following:

Literature Distribution Centers

Call or order literature by mail.

- USA/Europe: Motorola Literature Distribution P.O. Box 20912 Phoenix, Arizona 85036 Phone 1 800 441-2447 or 602 303-5454
- Japan: Nippon Motorola Ltd. Tatsumi-SPD-JLDC Toshikatsu Otsuki 6F Seibu-Butsuryu Center 3-14-2 Tatsumi Koto-Ku Tokyo 135, Japan Phone 03-3521-8315
- Hong Kong: Motorola Semiconductors H.K. Ltd. 8B Tai Ping Industrial Park 51 Ting Kok Road Tai Po, N.T., Hong Kong Phone 852-26629298

Mfax

Call to access this worldwide faxing service.

RMFAX0@email.sps.mot.com TOUCH-TONE 602 244-6609

Mfax

Or, on the http://Design-net.com home page, select the Mfax icon. Obtain a fax of complete, easy-to-use Mfax instructions by entering your FAX number and then pressing the 1 key.

Motorola SPS World Marketing World Wide Web Server

Use the Internet to access this World Wide Web Server. Use the following URL:

http://Design-net.com

CSIC Microcontroller Division's Web Site

Directly access the CSIC Microcontroller Division's web site with the following URL:

http://Design-net.com/csic/CSIC_home.html

--- ---

MC68HC705P9 Rev. 3 Technical Data Book

Please help us to continue improving the quality and usefulness of our data books by filling out this form and sending your comments to us. You can return the form by mail, or FAX it to 512-891-3236.

Thank you for your help and continued support!

1. How do you rate the quality of this data book?

 High
 Low

 Organization

 Readability

 Accuracy

 Figures

2. Are you able to find the information you need easily?

3. What are your recommendations for making this data book more useful?

4. What additional information would you like to see included in future data books?

	PLEASE PASTE POSTAGE HERE
	Motorola 6501 William Cannon Drive West
	Mail Stop OE17 Austin, Texas 78735-8598 USA
	Attention: CSIC Publications Department
MOTOROLA CSIC Microcontroller Division	
	Second: fold back along this line
Please supply the followin	g information (optional).
Name:	
Company Name:	
Title:	
Address:	

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights or the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (A) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE (602) 244-6609

INTERNET: http://Design-net.com

USA/EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1-800-441-2447

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, Toshikatsu Otsuki, 6F Seibu-Butsuryu-Center, 3-14-3 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-3521-8315

HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Tok Road, Tai Po, N.T., Hong Kong. 852-26629298