74F114

DESCRIPTION

The 74F114, Dual Negative edge-triggered JK-Type Flip-Flop with common clock and reset inputs, features individual J, K, Clock (\overline{CP}), Set (\overline{SD}) and Reset (\overline{RD}) inputs, true and complementary outputs. The \overline{SD} and \overline{RD} inputs, when Low, set or reset the outputs as shown in the Function Table regardless of the level at the other inputs.

A High level on the clock (\overline{CP}) input enables the J and K inputs and data will be accepted. The logic levels and data will be accepted. The logic levels at the J and K inputs may be allowed to change while the \overline{CP} is High and flip-flop will perform according to the Function Table as long as minimum setup and hold times are observed. Output changes are initiated by the High-to-Low transition of the \overline{CP} .

TYPE	TYPICAL f _{MAX}	TYPICAL SUPPLY CURRENT (TOTAL)
74F114	100MHz	15mA

PIN CONFIGURATION

ORDERING INFORMATION

DESCRIPTION	$\begin{array}{l} \text{COMMERCIAL RANGE} \\ \text{V}_{\text{CC}} = 5\text{V} \pm 10\%, \\ \text{T}_{\text{amb}} = 0^{\circ}\text{C to} + 70^{\circ}\text{C} \end{array}$	PKG. DWG. #		
14-pin plastic DIP	N74F114N	SOT27-1		
14-pin plastic SO	N74F114D	SOT108-1		

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F (U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
J0, J1	J inputs	1.0/1.0	20µA/0.6mA
K0, K1	K inputs	1.0/1.0	20µA/0.6mA
<u>S</u> D0, <u>S</u> D1	Set inputs (active Low)	1.0/5.0	20µA/3.0mA
RD	Reset input (active Low)	1.0/10.0	20µA/6.0mA
CP	Clock Pulse input (active falling edge)	1.0/8.0	20µA/4.8mA
Q0, Q0; Q1, Q1	Data outputs	50/33	1.0mA/20mA

NOTE: One (1.0) FAST unit load is defined as: 20μ A in the High state and 0.6mA in the Low state.

LOGIC SYMBOL

IEC/IEEE SYMBOL

74F114

LOGIC DIAGRAM

FUNCTION TABLE

	INPUTS				OUTI	PUTS	OPERATING MODE
SD	RD	CP	J	к	Q	Q	OFERATING MODE
L	Н	Х	Х	Х	Н	L	Asynchronous Set
Н	L	Х	Х	Х	L	н	Asynchronous Reset
L	L	х	х	Х	H*	H*	Undetermined *
н	Н	\downarrow	h	I	q	q	Toggle
н	Н	\downarrow	I	h	L	н	Load "0" (Reset)
Н	Н	\downarrow	h	I	Н	L	Load "1" (Set)
Н	Н	\downarrow	I	I	q	q	Hold "no change"

H = High voltage level

h = High voltage level one setup time prior to High-to-Low clock transition

L = Low voltage level

I = Low voltage level one setup time prior to High-to-Low clock transition

q = Lower case letters indicate the state of the reference output prior to the High-to-Low clock transition

 $\dot{X} = Don't care$

 \downarrow = High-to-Low clock transition

Asynchronous inputs: Low input to SD sets Q to High level, Low input to RD sets Q to Low level

Set and Reset are independent of clock

Simultaneous Low on both \overline{SD} and \overline{RD} makes both Q and \overline{Q} High.

* = Both outputs will be High while both SD and RD are Low, but the output states are unpredictable if SD and RD go High simultaneously.

ABSOLUTE MAXIMUM RATINGS

(Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage	-0.5 to +7.0	V
V _{IN}	Input voltage	-0.5 to +7.0	V
I _{IN}	Input current	-30 to +5	mA
V _{OUT}	Voltage applied to output in High output state	–0.5 to V_{CC}	V
I _{OUT}	Current applied to output in Low output state	40	mA
T _{amb}	Operating free-air temperature range	0 to +70	°C
T _{stg}	Storage temperature range	-65 to +150	°C

74F114

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		UNIT		
	PARAMETER	MIN	NOM	MAX	GIAIT
V _{CC}	Supply voltage	4.5	5.0	5.5	V
V _{IH}	High-level input voltage	2.0			V
V _{IL}	Low-level input voltage			0.8	V
I _{IK}	Input clamp current			-18	mA
I _{OH}	High-level output current			-1	mA
I _{OL}	Low-level output current			20	mA
T _{amb}	Operating free-air temperature range	0		+70	°C

DC ELECTRICAL CHARACTERISTICS

(Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIO		LIMITS			UNIT
STWBOL			TEST CONDITION	MIN	TYP ²	MAX	UNIT	
N			$V_{CC} = MIN, V_{IL} = MAX$	±10%V _{CC}	2.5			V
V _{OH}	High-level output voltage	High-level output voltage		±5%V _{CC}	2.7	3.4		v
M	Low-level output voltage		$V_{CC} = MIN, V_{IL} = MAX$	±10%V _{CC}		0.35	0.50	V
V _{OL}			$V_{IH} = MIN, I_{OL} = MAX$	±5%V _{CC}		0.35	0.50	v
V _{IK}	Input clamp voltage		$V_{CC} = MIN, I_I = I_{IK}$		-0.73	-1.2	V	
I _I	Input current at maximum input voltage		$V_{CC} = MAX, V_I = 7.0V$			100	μΑ	
I _{IH}	High-level input current		$V_{CC} = MAX, V_I = 2.7V$				20	μA
		Jn, Kn					-0.6	mA
	Low lovel input ourrept	CP					-4.8	mA
IIL .	Low-level input current	SDn	$V_{CC} = MAX, V_I = 0.5V$				-3.0	mA
	RD		1				-6.0	mA
I _{OS}	Short-circuit output current ³		V _{CC} = MAX		-60		-150	mA
I _{CC}	Supply current (total) ⁴		V _{CC} = MAX			15	21	mA

NOTES:

 For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
All typical values are at V_{CC} = 5V, T_{amb} = 25°C.
Not more than one output should be shorted at a time. For testing I_{OS}, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting a full time to the terminant of terminant of the terminant of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, I_{OS} tests should be performed last.

4. Measure I_{CC} with the clock input grounded and all outputs open, with the Q and \overline{Q} outputs High in turn.

74F114

AC ELECTRICAL CHARACTERISTICS

		TEST CONDITION						
SYMBOL	PARAMETER		$V_{CC} = +5.0V$ $T_{amb} = +25^{\circ}C$ $C_{L} = 50pF, R_{L} = 500\Omega$			V _{CC} = +5. T _{amb} = 0°C C _L = 50pF,	UNIT	
			MIN	ТҮР	MAX	MIN	MAX	
f _{MAX}	Maximum clock frequency	Waveform 1	85	100		80		MHz
t _{PLH} t _{PHL}	Propagation delay CP to Qn or Qn	Waveform 1	2.0 2.0	5.0 5.5	6.5 7.5	2.0 2.0	7.5 8.5	ns
t _{PLH} t _{PHL}	Propagation delay SDn, RD to Qn or Qn	Waveform 2,3	2.0 2.0	4.5 4.5	6.5 6.5	2.0 2.0	7.5 7.5	ns

AC SETUP REQUIREMENTS

	PARAMETER							
SYMBOL		TEST CONDITION	V_{CC} = +5.0V T _{amb} = +25°C C _L = 50pF, R _L = 500Ω			V _{CC} = +5. T _{amb} = 0°C C _L = 50pF,	UNIT	
			MIN	TYP	MAX	MIN	MAX	
t _S (H) t _S (L)	Setup time, High or Low Jn, Kn to CP	Waveform 1	4.0 3.5			5.0 4.0		ns
t _h (H) t _h (L)	Hold time, High or Low Jn, Kn to CP	Waveform 1	0.0 0.0			0.0 0.0		ns
t _W (H) t _W (L)	CP Pulse width High or Low	Waveform 1	4.5 4.5			5.0 5.0		ns
t _W (L)	SDn, RD Pulse width Low	Waveform 2,3	4.5			5.0		ns
t _{REC}	Recovery time SDn, RD to CP	Waveform 2,3	4.5			5.0		ns

AC WAVEFORMS

For all waveforms, $V_M = 1.5V$.

The shaded areas indicate when the input is permitted to change for predictable output performance.

Waveform 1. Propagation Delay for Data to Output, Data Setup Time and Hold Times, and Clock Pulse Width

Waveform 2. Propagation Delay for Set to Output, Set Pulse Width, and Recovery Time for Set to Clock

Waveform 3. Propagation Delay for Reset to Output, Reset Pulse Width, and Recovery Time for Reset to Clock

74F114

TEST CIRCUIT AND WAVEFORMS

SF00006