DSP56305

Advance Information SINGLE CHIP CHANNEL CODEC DIGITAL SIGNAL PROCESSOR

Motorola designed the DSP56305 to deliver the high performance required to support Global System for Mobile (GSM) communications applications that use digital signal processing to perform channel equalization, channel coding, and speech coding. By combining three dedicated on-chip hardware co-processors (filter, Viterbi, and cyclic code) with a DSP56300 core, the DSP56305 performs all the complex signal processing required by a single Radio Frequency (RF) carrier in one chip, satisfying the demand for high integration cost effectively. The DSP56300 core includes an on-chip PLL, a Data ALU, an instruction cache, on-chip debugging modules, on-chip program and data memory, six DMA channels, and an external memory expansion port. In addition to the co-processors, the DSP56305 provides two types of serial ports, a PCI/Universal bus 32-bit Host Interface, and timers (see **Figure 1**). The DSP56305 provides an industry-leading performance rate of 80 MIPS at 3.3 V.

This document contains information on a new product. Specifications and information herein are subject to change without notice.

TABLE OF CONTENTS

SECTION 1	SIGNAL/CONNE	CTION DESCRIPTIONS1-1		
SECTION 2	SPECIFICATIONS			
SECTION 3	PACKAGING	PACKAGING		
SECTION 4	DESIGN CONSI	DERATIONS4-1		
SECTION 5	ORDERING INFO	ORMATION		
APPENDIX A				
APPENDIX B	DSP56301 BOO	TSTRAP CODE LISTING B-1		
	INDEX	Index-1		
	FOR TE	CHNICAL ASSISTANCE:		
	Telephone:	1-800-521-6274		
	Email:	dsphelp@dsp.sps.mot.com		
	Internet:	http://www.motorola-dsp.com		

Data Sheet Conventions

This data sheet uses the following conventions:

OVERBARUsed to indicate a signal that is active when pulled low (For example, the RESET
pin is active when low.)

"asserted" Means that a high true (active high) signal is high or that a low true (active low) signal is low

"deasserted"

Means that a high true (active high) signal is low or that a low true (active low) signal is high

Examples:

Signal/Symbol	Logic State	Signal State	Voltage ¹
PIN	True	Asserted	V_{IL}/V_{OL}
PIN	False	Deasserted	V_{IH}/V_{OH}
PIN	True	Asserted	V_{IH}/V_{OH}
PIN	False	Deasserted	V_{IL}/V_{OL}

Note: Values for V_{IL} , V_{OL} , V_{IH} , and V_{OH} are defined by individual product specifications.

DSP56305 FEATURES

High Performance DSP56300 Core

- 80 Million Instructions Per Second (MIPS) with an 80 MHz clock at 3.3 V
- Object code compatible with the DSP56000 core
- Highly parallel instruction set
- Data Arithmetic Logic Unit (ALU)
 - Fully pipelined 24 x 24-bit parallel Multiplier-Accumulator
 - 56-bit parallel barrel shifter (fast shift and normalization; bit stream generation and parsing)
 - Conditional ALU instructions
 - 24-bit or 16-bit arithmetic support under software control
- Program Control Unit (PCU)
 - Position Independent Code (PIC) support
 - Addressing modes optimized for DSP applications (including immediate offsets)
 - On-chip instruction cache controller
 - On-chip memory-expandable hardware stack
 - Nested hardware DO loops
 - Fast auto-return interrupts
 - Direct Memory Access (DMA)
 - Six DMA channels supporting internal and external accesses
 - One-, two-, and three- dimensional transfers (including circular buffering)
 - End-of-block-transfer interrupts
 - Triggering from interrupt lines and all peripherals
- Phase Lock Loop (PLL)
 - Allows change of low power Divide Factor (DF) without loss of lock
 - Output clock with skew elimination

- Hardware debugging support
 - On-Chip Emulation (OnCE[™]) module
 - Joint Action Test Group (JTAG) Test Access Port (TAP) port
 - Address tracing mode reflects internal Program RAM accesses at the external port

On-Chip Memories

• Program RAM, instruction cache, X data RAM, and Y data RAM sizes are programmable:

Program RAM Size	Instruction Cache Size	X Data RAM Size	Y Data RAM Size	Instruction Cache ¹	Switch Mode ²
6656 × 24-bit	0	3840 × 24-bit	2048 × 24-bit	disabled (CE = 0)	disabled (MS = 0)
5632 × 24-bit	1024 × 24-bit	384 0 × 24-bit	2048 × 24-bit	enabled $(CE = 1)$	disabled $(MS = 0)$
7680×24-bit	0	2816 × 24-bit	²⁰⁴⁸ × 24-bit	disabled $(CE = 0)$	enabled (MS = 1)
6656 × 24-bit	1024 × 24-bit	2816×24 -bit	2048 × 24-bit	enabled (CE = 1)	enabled (MS = 1)

- Note: 1. Controlled by the Cache Enable (CE) bit in the Status Register (SR)
 2. Controlled by the Memory Select (MS) bit in the Operating Mode Register (OMR)
 - 6144 × 24-bit Program ROM
 - 3072 × 24-bit Y data ROM
 - 192 × 24-bit bootstrap ROM

Off-Chip Memory Expansion

- Data memory expansion to two 16 M \times 24-bit word memory spaces in 24-Bit mode or two 64 K \times 16-bit memory spaces in 16-Bit Compatibility mode
- Program memory expansion to one 16 M \times 24-bit words memory space in 24-Bit mode or 64 K \times 16-bit in 16-Bit Compatibility mode
- External memory expansion port
- Chip select logic provides glueless interface to SRAMs and SSRAMs
- On-chip DRAM controller provides glueless interface to DRAMs

On-Chip Peripherals

- PCI Rev. 2.1-compliant 32-bit parallel PCI/Universal Host Interface (HI32) with glueless interface to other DSP563xx buses
- ISA interface requires only 74LS45-style buffer
- Two Enhanced Synchronous Serial Interfaces (ESSI0 and ESSI1)
- Serial Communications Interface (SCI) with baud rate generator
- Triple timer module
- Up to forty-two programmable General Purpose Input/Output pins (GPIO), depending on which peripherals are enabled

On-Chip Co-Processors

- Filter Co-Processor (FCOP) implements a wide variety of convolution and correlation filtering algorithms. In GSM applications, the FCOP cross-correlates between the received training sequence and a known midamble sequence to estimate the channel impulse response, and then performs match filtering of received data symbols using coefficients derived from that estimated channel.
- Viterbi Co-Processor (VCOP) implements a Maximum Likelihood Sequential Estimation (MLSE) algorithm for channel decoding and equalization (uplink) and channel convolution coding (downlink). The VCOP supports constraint lengths (k) of 4, 5, 6, or 7 with number of states 8, 16, 32, or 64, respectively; code rates of 1/2, 1/3, 1/4, or 1/6; and trace-back Trellis depth of 36.
- Cyclic-code Co-Processor (CCOP) executes cyclic code calculations for data ciphering and deciphering, as well as parity code generation and check. The CCOP is fully programmable and not dedicated to a specific algorithm, but it is well suited for GSM A5.1 and A5.2 data ciphering algorithms. The CCOP can generate mask sequences for data ciphering, and supports Fire encode and decode for burst error correction, as well as generation of Cyclic Redundancy Code (CRC) syndrome for any polynomial of any degree up to 48.

Reduced Power Dissipation

- Very low power CMOS design
- Wait and Stop low power standby modes
- Fully-static logic, operation frequency down to DC
- Optimized power management circuitry

PRODUCT DOCUMENTATION

The three documents listed in **Table 1** are required for a complete description of the DSP56305 and are necessary to design properly with the part. Documentation is available from one of the following locations (see back cover for detailed information):

- A local Motorola distributor
- A Motorola semiconductor sales office
- A Motorola Literature Distribution Center
- The World Wide Web (WWW) (the source for the latest information)

Topic	Description	Order Number
DSP56300 Family Manual	Detailed description of the DSP56300 family architecture, 24-bit core, and instruction set	DSP56300FM/AD
DSP56305 User's Manual	Detailed description of DSP56305 memory, peripherals, and interfaces	DSP56305UM/AD
DSP56305 Technical Data	DSP56305 pin and package descriptions, and electrical and timing specifications	DSP56305/D

Table 1 DSP56305 Documentation

dsp

SECTION 1

SIGNAL/CONNECTION DESCRIPTIONS

SIGNAL GROUPINGS

The input and output signals of the DSP56305 are organized into functional groups, as shown in **Table 1-1** and as illustrated in **Figure 1-1**.

The DSP56305 is operated from a 3 V supply; however, some of the inputs can tolerate 5 V. A special notice for this feature is added to the signal descriptions of those inputs.

Functional Group		Number of Signals	Detailed Description
Power (V _{CC})	\mathbb{N}	25	Table 1-2
Ground (GND)		26	Table 1-3
Clock	J *	2	Table 1-4
PLL	2	3	Table 1-5
Address Bus	Port A ¹	24	Table 1-6
Data Bus	24	Table 1-7	
Bus Control		15	Table 1-8
Interrupt and Mode Control	5	Table 1-9	
Host Interface (HI32)	Port B ²	52	Table 1-11
Extended Synchronous Serial Interface (ESSI) Ports C and D ³		12	Table 1-12 and Table 1-13
Serial Communication Interface (SCI)	Port E ⁴	3	Table 1-14
Timer	3	Table 1-15	
JTAG/OnCE Port	6	Table 1-16	
Note: 7. Port A signals define the external memory interface port, including the external address bus, data bus, and control signals.			

 Table 1-1
 DSP56305 Functional Signal Groupings

2. Port B signals are the HI32 port signals multiplexed with the GPIO signals.

3. Port C and D signals are the two ESSI port signals multiplexed with the GPIO signals.

4. Port E signals are the SCI port signals multiplexed with the GPIO signals.

Figure 1-1 is a diagram of DSP56305 signals by functional group.

Signal Groupings

2. The ESSI0, ESSI1, and SCI signals are multiplexed with the Port C GPIO signals (PC0–PC5), Port D GPIO signals (PD0–PD5), and Port E GPIO signals (PE0–PE2), respectively.

3. TIO0–TIO2 can be configured as GPIO signals.

Figure 1-1 Signals Identified by Functional Group

Signal Groupings

Deperson	PCI Bus	Universal Bus	Port B GPIO	HP Reference
DSP56305				
	HAD0	HA3	PB0	HP0
	HAD1	HA4	PB1	HP1
	HAD2	HA5	PB2	HP2
	HAD3	HA6	PB3	HP3
	HAD4	HA7	PB4	HP4 🔿
	HAD5	HA8	PB5	HP5
	HAD6	HA9	PB6	HP6
	HAD7	HA10	PB7	HP7
	HAD8	HD0	PB8	HP8
	HAD9	HD1	PB9	HP9
	HAD10	HD2	PB10	HR10
	HAD11	HD3	PB11 <	HP11
	HAD12	HD4	PB12	HP12
	HAD13	HD5	PB13	HP13
	HAD14	HD6 HD7	PB14 PB15	HP14 HP15
	HAD15 HC0/HBE0	HD7 HA0	PB15 PB16	HP16
	HC0/HBE0 HC1/HBE1	HA1	PB17	HP17
	HC2/HBE2	HA2	PB18	HP18
	HC3/HBE3	Tie to pull-up or V _{CC}	PB19	HP19
Host Interface (HI32)/	HTRDY	HDBEN	PB20	HP20
	HIRDY	HDBDR	PB21	HP21
Port B Signals	HDEVSEL	HSAK /	PB22	HP22
	HLOCK	HBS 🔨 🔪	RB23	HP23
	HPAR	HDAK	Internal disconnect	HP24
	HPERR	HDRQ	Internal disconnect	HP25
	HGNT	HAEN	Internal disconnect	HP26
		HTA	Internal disconnect	HP27
	HSERR	HIRQ	Internal disconnect	HP28
	HSTOP	HWR/HRW	Internal disconnect	HP29
	HIDŚĘL	HRD/HDS	Internal disconnect	HP30
	HFRAME	Tie to pull-up or V _{CC}	Internal disconnect	HP31
	HCLK	Tie to pull-up or V _{CC}	Internal disconnect	HP32
	HAD16	HD8	Internal disconnect	HP33
	HAD17 HAD18	HD9 HD10	Internal disconnect Internal disconnect	HP34 HP35
	HAD19	HD10	Internal disconnect	HP36
	HAD20	HD12	Internal disconnect	HP37
	HAD21	HD13	Internal disconnect	HP38
	HAD22	HD14	Internal disconnect	HP39
	HAD23	HD15	Internal disconnect	HP40
	HAD24	HD16	Internal disconnect	HP41
$ \langle \langle \rangle \rangle $	HAD25	HD17	Internal disconnect	HP42
	HAD26	HD18	Internal disconnect	HP43
$\langle \rangle \rangle \rangle \rangle \rangle \rangle$	HAD27	HD19	Internal disconnect	HP44
15)/	HAD28	HD20	Internal disconnect	HP45
$\mathbf{X} \neq \mathbf{Y}$	HAD29	HD21	Internal disconnect	HP46
	HAD30	HD22	Internal disconnect	HP47
	HAD31	HD23	Internal disconnect	HP48
/ <i>//</i>	HRST	HRST	Internal disconnect	HP49
	HINTA		Internal disconnect	HP50
	PVCL	Leave unconnected	Leave unconnected	PVCL
	l			

Figure 1-2 Host Interface/Port B Detail Signal Diagram

Power

POWER

Power Name	Description	
V _{CCP}	PLL Power — V_{CCP} provides isolated power for the Phase Lock Loop (PLI). The voltage should be well-regulated and the input should be provided with an extremely low impedance path to the V_{CC} power rail. There is one V_{CCP} input.	
V _{CCQ} (4)	Quiet Power —V _{CCQ} provides isolated power for the internal processing logic. This input must be tied externally to all other chip power inputs. The user must provide adequate external decoupling capacitors. There are four V _{CCQ} inputs.	
V _{CCA} (6)	Address Bus Power —V _{CCA} provides isolated power for sections of the address bus I/O drivers. This input must be tied externally to all other chip power inputs. The user must provide adequate external decoupling capacitors. There are six V _{CCA} inputs.	
V _{CCD} (4)	Data Bus Power —V _{CCD} provides isolated power for sections of the data bus I/O drivers. This input must be tied externally to all other chip power inputs. The user must provide adequate external decoupling capacitors. There are four V _{CCD} inputs.	
V _{CCN} (2)	Bus Control Power —V _{CCN} provides isolated power for the bus control I/O drivers. This input must be tied externally to all other chip power inputs. The user must provide adequate external decoupling capacitors. There are two V _{CCN} inputs.	
V _{CCH} (6)	Host Power —V _{CCH} provides isolated power for the HI32 I/O drivers. This input must be tied externally to all other chip power inputs. The user must provide adequate external decoupling capacitors. There is one V _{CCH} input.	
V _{CCS} (2)	CCS (2) ESSI, SCI, and Timer Power —V _{CCS} provides isolated power for the ESSI, SCI, a timer I/O drivers. This input must be tied externally to all other chip power input The user must provide adequate external decoupling capacitors. There are two V inputs.	
Note: These designations are package-dependent. Some packages connect all V _{CC} inputs except V _{CCP} to each other internally. On those packages, all power input, except V _{CCP} , are labeled V _{CC} . The numbers of connections indicated in this table are minimum values; the total V _{CC} connections are package-dependent.		

GROUND

Ground Name	Description		
GND _P	PLL Ground —GND _P is ground dedicated for PLL use. The connection should be provided with an extremely low-impedance path to ground. V_{CCP} should be bypassed to GND _P by a 0.47 μ F capacitor located as close as possible to the chip package. There is one GND _P connection.		
GND _{1P}	PLL Ground 1 — GND_{1P} is ground dedicated for PLL use. The connection should be provided with an extremely low-impedance path to ground. There is one GND_{P1} connection.		
GND _Q (4)	Quiet Ground — GND_Q provides isolated ground for the internal processing logic. This connection must be tied externally to all other chip ground connections. The user must provide adequate external decoupling capacitors. There are four GND_Q connections.		
GND _A (6)	Address Bus Ground— GND_A provides isolated ground for sections of the address bus I/O drivers. This connection must be tied externally to all other chip ground connections. The user must provide adequate external decoupling capacitors. There are four GND_A connections.		
GND _D (4)	Data Bus Ground —GND _D provides isolated ground for sections of the data bus I/O drivers. This connection must be tied externally to all other chip ground connections. The user must provide adequate external decoupling capacitors. There are four GND _D connections.		
GND _N (2)	Bus Control Ground — GND_N provides isolated ground for the bus control I/O drivers. This connection must be tied externally to all other chip ground connections. The user must provide adequate external decoupling capacitors. There are two GND_N connections.		
GND _H (6)	Host Ground —GND _H provides isolated ground for the HI32 I/O drivers. This connection must be tied externally to all other chip ground connections. The user must provide adequate external decoupling capacitors. There is one GND_{H} connection.		
GND _S (2) ESSI, SCI, and Timer Ground —GND _S provides isolated ground for the ESSI, SCI, and timer I/O drivers. This connection must be tied externally to all other chip ground connections. The user must provide adequate external decoupling capacitors. There are two GND _S connections.			
Note: These designations are package-dependent. Some packages connect all GND inputs except GND _P and GND _{1P} to each other internally. On those packages, all power input, except GND _P and GND _{1P} , are labeled GND. The numbers of connections indicated in this table are minimum values; the total GND connections are package-dependent.			

Table 1-3	Grounds
-----------	---------

Clock

CLOCK

 Table 1-4
 Clock Signals

Signal Name	Туре	State During Reset	Signal Description
EXTAL	Input	Input	External Clock/Crystal Input —EXTAL interfaces the internal crystal oscillator input to an external crystal or an external clock.
XTAL	Output	Chip Driven	Crystal Output —XTAL connects the internal crystal oscillator output to an external crystal. If an external clock is used, leave XTAL unconnected.

PHASE LOCK LOOP (PLL)

Signal Name	Туре	State During Reset	Signal Description
PCAP	Input	Input	PLL Capacitor —PCAP is an input connecting an off-chip capacitor to the PLL filter. Connect one capacitor terminal to PCAP and the other terminal to V _{CCP} . If the PLL is not used, PCAP may be tied to V _{CC} , GND, or left floating.
CLKOUT	Output	Chip-driven	Clock Output —CLKOUT provides an output clock synchronized to the internal core clock phase. If the PLL is enabled and both the multiplication and division factors equal one, then CLKOUT is also synchronized to EXTAL. If the PLL is disabled, the CLKOUT frequency is half the frequency of EXTAL.
PINIT/NMI	Input	Input	PLL Initial/Non-Maskable Interrupt —During assertion of RESET, the value of PINIT/NMI is written into the PLL Enable (PEN) bit of the PLL control register, determining whether the PLL is enabled or disabled. After RESET deassertion and during normal instruction processing, the PINIT/NMI Schmitt-trigger input is a negative-edge-triggered Non-Maskable Interrupt (NMI) request internally synchronized to CLKOUT.

 Table 1-5
 Phase Lock Loop Signals

EXTERNAL MEMORY EXPANSION PORT (PORT A)

- **Note:** When the DSP56305 enters a low-power standby mode (Stop or Wait), it releases bus mastership and tri-states the relevant Port A signals: A0–A17, D0–D23, AA0/RAS0–AA3/RAS3, RD, WR, BS, CAS, BCLK, and BCLK.
- **Note:** If hardware refresh of external DRAM is enabled, Port A exits the Wait mode to allow the refresh to occur and then returns to the Wait mode.

EXTERNAL ADDRESS BUS

Table 1-6	External Address Bus Signals	
-----------	------------------------------	--

Signal Name	Туре	State During Reset, Wait, or Stop	Signal Description
A0-A23	Output	Tri-stated	Address Bus—When the DSP is the bus master, A0–A23 are active-high outputs that specify the address for external program and data memory accesses. Otherwise, the signals are tri-stated. To minimize power dissipation, A0–A23 do not change state when external memory spaces are not being accessed.

EXTERNAL DATA BUS

Signal Name	Туре	State During Reset, Wait, or Stop	Signal Description
D0-D23	Input/ Output		Data Bus —When the DSP is the bus master, D0–D23 are active-high, bidirectional input/outputs that provide the bidirectional data bus for external program and data memory accesses. Otherwise, D0–D23 are tri-stated.

EXTERNAL BUS CONTROL

Table 1-8External Bus Control Signals

Signal Name	Туре	State During Reset, Wait, or Stop	Signal Description
AA0-AA3/ RAS0-RAS3	Output	Tri-stated	Address Attribute or Row Address Strobe—When defined as AA, these signals can be used as chip selects or additional address lines. When defined as RAS, these signals can be used as RAS for Dynamic Random Access Memory (DRAM) interface. These signals are tri-statable outputs with programmable polarity.

Signal Name	Туре	State During Reset, Wait, or Stop	Signal Description
RD	Output	Tri-stated	Read Enable —When the DSP is the bus master, \overline{RD} is an active-low output that is asserted to read external memory on the data bus (D0–D23). Otherwise, \overline{RD} is tri-stated.
WR	Output	Tri-stated	Write Enable—When the DSP is the bus master, WR is an active-low output that is asserted to write external memory on the data bus (D0–D23). Otherwise, the signals are tri-stated.
BS	Output	Tri-stated	Bus Strobe —When the DSP is the bus master, BS is asserted for half a clock cycle at the start of a bus cycle to provide an "early bus start" signal for a bus controller. If the external bus is not used during an instruction cycle, BS remains deasserted until the next external bus cycle.
TA	Input	Ignored Input	Transfer Acknowledge —If the DSP56305 is the bus master and there is no external bus activity, or the DSP56305 is not the bus master, the TA input is ignored. The TA input is a Data Transfer Acknowledge (DTACK) function that can extend an external bus cycle indefinitely. Any number of wait states (1, 2,, infinity) may be added to the wait states inserted by the Bus Control Register (BCR) by keeping TA deasserted. In typical operation, TA is deasserted at the start of a bus cycle, is asserted to enable completion of the bus cycle, and is deasserted before the next bus cycle. The current bus cycle completes one clock period after TA is asserted synchronous to CLKOUT. The number of wait states is determined by the TA input or by the BCR, whichever is longer. The BCR can be used to set the minimum number of wait states in external bus cycles.
			In order to use the \overline{TA} functionality, the BCR must be programmed to at least one wait state. A zero wait state access can not be extended by \overline{TA} deassertion, otherwise improper operation may result. TA can operate synchronously or asynchronously depending on the setting of the TAS bit in the Operating Mode Register (OMR).
			TA functionality may not be used while performing DRAM type accesses, otherwise improper operation may result.

 Table 1-8
 External Bus Control Signals (Continued)

Signal Name	Туре	State During Reset, Wait, or Stop	Signal Description
BR	Output	Driven high (deasserted)	Bus Request — \overline{BR} is an active-low output, never tri-stated. \overline{BR} is asserted when the DSP requests bus mastership. \overline{BR} is deasserted when the DSP no longer needs the bus. \overline{BR} may be asserted or deasserted independent of whether the DSP56305 is a bus master or a bus slave. Bus "parking" allows \overline{BR} to be deasserted even though the DSP56305 is the bus master (see the description of bus "parking" in the \overline{BB} signal description). The Bus Request Hole (BRH) bit in the BCR allows \overline{BR} to be asserted under software control even though the DSP does not need the bus. \overline{BR} is typically sent to an external bus arbitrator that controls the priority, parking, and tenure of each master on the same external bus. \overline{BR} is only affected by DSP requests for the external bus, never for the internal bus. During hardware reset, \overline{BR} is deasserted and the arbitration is reset to the bus Slave state.
BG	Input	Ignored Input	Bus Grant \overrightarrow{BG} is asserted by an external bus arbitration circuit when the DSP56305 becomes the next bus master. \overrightarrow{BG} must be asserted / deasserted synchronous to CLKOUT for proper operation. When \overrightarrow{BG} is asserted, the DSP56305 must wait until \overrightarrow{BB} is deasserted before taking bus mastership. When \overrightarrow{BG} is deasserted, bus mastership is typically given up at the end of the current bus cycle. This may occur in the middle of an instruction that requires more than one external bus cycle for execution.
BB	Input/ Output	Input	Bus Busy — \overline{BB} indicates that the bus is active. \overline{BB} must be asserted and deasserted synchronous to CLKOUT. Only after \overline{BB} is deasserted can the pending bus master become the bus master (and then assert the signal again). The bus master may keep \overline{BB} asserted after ceasing bus activity regardless of whether \overline{BR} is asserted or deasserted. This is called "bus parking" and allows the current bus master to reuse the bus without re-arbitration until another device requires the bus. The deassertion of \overline{BB} is done by an "active pull-up" method (i.e., \overline{BB} is driven high and then released and held high by an external pull-up resistor).
			BB requires an external pull-up resistor.

 Table 1-8
 External Bus Control Signals (Continued)

Signal Name	Туре	State During Reset, Wait, or Stop	Signal Description
BL	Output	Driven high (deasserted)	Bus Lock — \overline{BL} is asserted at the start of an external divisible Read-Modify-Write (RMW) bus cycle, remains asserted between the read and write cycles, and is deasserted at the end of the write bus cycle. This provides an "early bus start" signal for the bus controller. BL may be used to "resource" lock" an external multi-port memory for secure semaphore updates. Early deassertion provides an "early bus end" signal useful for external bus control. If the external bus is not used during an instruction cycle, BL remains deasserted until the next external indivisible RMW cycle. The only instructions that assert \overline{BL} automatically are the BSET, CLR, and BCHG instructions when they are used to modify external memory. An operation can also assert \overline{BL} by setting the BLH bit in the Bus Control Register.
CAS	Output	Tri-stated	Column Address Strobe —When the DSP is the bus master, CAS is used by DRAM to strobe the column address. Otherwise, if the Bus Mastership Enable (BME) bit in the DRAM Control Register is cleared, the signal is tri-stated.
BCLK	Output	Tri-stated	Bus Clock —When the DSP is the bus master, BCLK is an active-high output used by Synchronous Static Random Access Memory (SSRAM) to sample address, data, and control signals. BCLK is active either during SSRAM accesses or as a sampling signal when the program Address Tracing mode is enabled (by setting the ATE bit in the OMR). When BCLK is active and synchronized to CLKOUT by the internal PLL, BCLK precedes CLKOUT by one-fourth of a clock cycle. The BCLK rising edge may be used to sample the internal Program Memory access on the A0–A23 address lines.
BCLK	Output	Tri-stated	Bus Clock —When the DSP is the bus master, \overline{BCLK} is an active-low output that is the inverse of the BCLK signal. When the DSP is not the bus master, the signal is tri-stated.
Ż	>>	·	·

 Table 1-8
 External Bus Control Signals (Continued)

INTERRUPT AND MODE CONTROL

The interrupt and mode control signals select the chip's operating mode as it comes out of hardware reset. After RESET is deasserted, these inputs are hardware interrupt request lines.

Signal Name	Туре	State During Reset	Signal Description
RESET	Input	Input	Reset —RESET is an active-low, Schmitt-trigger input. Deassertion of RESET is internally synchronized to the clock out (CLKOUT). When asserted, the chip is placed in the Reset state and the internal phase generator is reset. The Schmitt-trigger input allows a slowly rising input (such as a capacitor charging) to reset the chip reliably. If RESET is deasserted synchronous to CLKOUT, exact start-up timing is guaranteed, allowing multiple processors to start synchronously and operate together in "lock-step." When the RESET signal is deasserted, the initial chip operating mode is latched from the MODA, MODB, MODC, and MODD inputs. The RESET signal must be asserted after power up. This input is 5 V tolerant.
MODA	Input	Input	Mode Select A —MODA selects the initial chip operating mode during hardware reset and becomes a level-sensitive or negative-edge-triggered, maskable interrupt request input IRQA during normal instruction processing. MODA, MODB, MODC, and MODD select one of sixteen initial chip operating modes, latched into the OMR when the RESET signal is deasserted
ĪRQĀ	Input		External Interrupt Request A —IRQA is an active-low Schmitt-trigger input, internally synchronized to CLKOUT. If IRQA is asserted synchronous to CLKOUT, multiple processors can be re-synchronized using the WAIT instruction and asserting IRQA to exit the Wait state. If the processor is in the Stop standby state and IRQA is asserted, the processor will exit the Stop state.
	\downarrow	}	These inputs are 5 V tolerant.

Table 1-9 Interrupt and Mode Control
--

Interrupt and Mode Control

Signal Name	Туре	State During Reset	Signal Description		
MODB	Input	Input	Mode Select B —MODB selects the initial chip operating mode during hardware reset and becomes a level-sensitive or negative-edge-triggered, maskable interrupt request input IRQB during normal instruction processing. MODA, MODB, MODC, and MODD select one of sixteen initial chip operating modes, latched into the OMR when the RESET signal is deasserted.		
ĪRQB	Input		External Interrupt Request B —IRQB is an active-low Schmitt-trigger input, internally synchronized to CLKOUT. If IRQB is asserted synchronous to CLKOUT, multiple processors can be re-synchronized using the WAIT instruction and asserting IRQB to exit the Wait state. If the processor is in the Stop standby state and IROC is asserted, the processor will exit the Stop state.		
MODC	Input	Input	Mode Select C —MODC selects the initial chip operating mode during hardware reset and becomes a level-sensitive or negative-edge-triggered, maskable interrupt request input IRQC during normal instruction processing. MODA, MODB, MODC, and MODD select one of sixteen initial chip operating modes, latched into the OMR when the RESET signal is deasserted.		
ĪRQC	Input		External Interrupt Request C —IRQC is an active-low Schmitt-trigger input, internally synchronized to CLKOUT. If IRQC is asserted synchronous to CLKOUT, multiple processors can be re-synchronized using the WAIT instruction and asserting IRQC to exit the Wait state. If the processor is in the Stop standby state and IRQC is asserted, the processor will exit the Stop state.		

Table 1-9 Interrupt and Mode Control (Continued)

Signal Name	Туре	State During Reset	Signal Description
MODD	Input	Input	Mode Select D —MODD selects the initial chip operating mode during hardware reset and becomes a level-sensitive or negative-edge-triggered, maskable interrupt request input IRQD during normal instruction processing. MODA, MODB, MODC, and MODD select one of sixteen initial chip operating modes, latched into the OMR when the RESET signal is deasserted.
ĪRQD	Input		External Interrupt Request D —IRQD is an active-low Schmitt-trigger input, internally synchronized to CLKOUT. If IRQD is asserted synchronous to CLKOUT, multiple processors can be re-synchronized using the WAIT instruction and asserting IRQD to exif the Wait state. If the processor is in the Stop standby state and IRQD is asserted, the processor will exit the Stop state. These inputs are 5 V tolerant.

 Table 1-9
 Interrupt and Mode Control (Continued)

HOST INTERFACE (HI32)

The Host Interface (HI32) provides a fast parallel data to 32-bit port, which may be connected directly to the host bus.

The HI32 supports a variety of standard buses, and provides a glueless connection to a PCI bus and a number of industry-standard microcomputers, microprocessors, DSPs, and DMA hardware.

Host Port Usage Considerations

Careful synchronization is required when reading multiple-bit registers that are written by another asynchronous system. This is a common problem when two asynchronous systems are connected (as they are in the Host port). The considerations for proper operation are discussed in the following table:

Action	Description
Asynchronous read of receive byte registers	When reading the receive byte registers, Receive register High (RXH), Receive register Middle (RXM), or Receive register Low (RXL), the host interface programmer should use interrupts or poll the Receive register Data Full (RXDF) flag which indicates that data is available. This assures that the data in the receive byte registers will be valid.
Asynchronous write to transmit byte registers	The host interface programmer should not write to the transmit byte registers, Transmit register High (TXH), Transmit register Middle (TXM), or Transmit register Low (TXL), unless the Transmit register Data Empty (TXDE) bit is set indicating that the transmit byte registers are empty. This guarantees that the transmit byte registers will transfer valid data to the Host Receive (HRX) register.
Asynchronous write to host vector	The host interface programmer should change the Host Vector (HV) register only when the Host Command bit (HC) is clear. This will guarantee that the DSP interrupt control logic will receive a stable vector.

Table 1-10	Host Port Usage	Considerations
------------	-----------------	----------------

Host Port Configuration

The functions of the signals associated with the HI32 vary according to the programmed configuration of the interface as determined by the 24-bit DSP Control Register (DCTR). Refer to the DSP56305 User's Manual for detailed descriptions of this and the other configuration registers used with the HI32.

Signal Name	Туре	State During Reset	Signal Description
HAD0–HAD7	Input/ Output	Tri-stated	Host Address/Data 0–7—When the HI32 is programmed to interface a PCI bus and the HI function is selected, these signals are lines 0–7 of the bidirectional, multiplexed Address/Data bus.
HA3–HA10	Input		Host Address 3–10 —When HI32 is programmed to interface a universal non-PCI bus and the HI function is selected, these signals are lines 3–10 of the input Address bus.
PB0–PB7	Input or Output		Port B 0–7 —When the HI32 is configured as GPIO through the DCTR, these signals are individually programmed as inputs or outputs through the HI32 Data Direction Register (DIRH). These inputs are 5 V tolerant.
HAD8–HAD15	Input/ Output	Tri-stated	Host Address/Data 8–15—When the HI32 is programmed to interface a PCI bus and the HI function is selected, these signals are lines 8–15 of the bidirectional, multiplexed Address/Data bus.
HD0-HD7		\sim	
	Input/ Output		Host Data 0–7 —When HI32 is programmed to interface a universal non-PCI bus and the HI function is selected, these signals are lines 0–7 of the bidirectional Data bus.
PB8–PB15			
	Input or Output		Port B 8–15 —When the HI32 is configured as GPIO through the DCTR, these signals are individually
			programmed as inputs or outputs through the HI32 DIRH.
		$\mathbf{\mathcal{V}}$	These inputs are 5 V tolerant.

 Table 1-11
 Host Interface

Signal Name	Туре	State During Reset	Signal Description
HC0-HC3/ HBE0-HBE3	Input/ Output	Tri-stated	Command 0–3/Byte Enable 0–3 —When the HI32 is programmed to interface a PCI bus and the HI function is selected, these signals are lines 0–7 of the bidirectional, multiplexed Address/Data bus.
HA0-HA2	Input		Host Address 0–2 —When HI32 is programmed to interface a universal non-PCI bus and the HI function is selected, these signals are lines 0–2 of the input Address bus.
			Note: The fourth signal in this set should be connected to a pull-up resistor or directly to V _{CC} when using a non-PCI bus.
PB16–PB19	Input or Output		Port B 16–19 —When the HI32 is configured as GPIO through the DCTR, these signals are individually programmed as inputs or outputs through the HI32 DIRH.
			These inputs are 5 V tolerant.
HTRDY	Input/ Output	Tri-stated	Host Target Ready —When the HI32 is programmed to interface a PCI bus and the HI function is selected, this is the Host Target Ready signal.
HDBEN	Output		Host Data Bus Enable —When HI32 is programmed to interface a universal non-PCI bus and the HI function is selected, this signal is Host Data Bus Enable output.
PB20	Input or Output		Port B 20 —When the HI32 is configured as GPIO through the DCTR, this signal is individually programmed as an input or output through the HI32 DIRH.
			This input is 5 V tolerant.
HIRDY	Input/ Output	Tri-stated	Host Initiator Ready —When the HI32 is programmed to interface a PCI bus and the HI function is selected, this is the Host Initiator Ready signal.
HDBDR	Output		Host Data Bus Direction —When HI32 is programmed to interface a universal non-PCI bus and the HI function is selected, this signal is Host Data Bus Direction output.
PB21	Input or Output		Port B 21 —When the HI32 is configured as GPIO through the DCTR, this signal is individually programmed as an input or output through the HI32 DIRH.
			This input is 5 V tolerant.

Table 1-11Host Interface (Continued)

Signal Name	Туре	State During Reset	Signal Description
HDEVSEL	Input/ Output	Tri-stated	Host Device Select —When the HI32 is programmed to interface a PCI bus and the HI function is selected, this is the Host Device Select signal.
HSAK	Output		Host Select Acknowledge—When HI32 is programmed to interface a universal non-PCI bus and the HI function is selected, this signal is Host Select Acknowledge output.
PB22	Input or Output		Port B 22 —When the HI32 is configured as GPIO through the DCTR, this signal is individually programmed as an input or output through the HI32 DIRH. This input is 5 V tolerant.
HLOCK	Input/ Output	Tri-stated	Host Lock—When the HI32 is programmed to interface a PCI bus and the HI function is selected, this is the Host Lock signal.
HBS	Input		Host Bus Strobe—When HI32 is programmed to interface a universal non-PCI bus and the HI function is selected, this signal is Host Bus Strobe Schmitt-trigger input.
PB23	Input or Output		Port B 23 —When the HI32 is configured as GPIO through the DCTR, this signal is individually programmed as an input or output through the HI32 DIRH.
HPAR	Input/ Output	Tri-stated	This input is 5 V tolerant. Host Parity —When the HI32 is programmed to interface a PCI bus and the HI function is selected, this is the Host Parity signal.
HDAK	Input		Host DMA Acknowledge—When HI32 is programmed to interface a universal non-PCI bus and the HI function is selected, this signal is Host DMA Acknowledge Schmitt-trigger input.
$\langle \mathcal{O} \rangle$	\succ		Port B —When the HI32 is configured as GPIO through the DCTR, this signal is internally disconnected.
			This input is 5 V tolerant.

 Table 1-11
 Host Interface (Continued)

Signal Name	Туре	State During Reset	Signal Description
HPERR	Input/ Output	Tri-stated	Host Parity Error —When the HI32 is programmed to interface a PCI bus and the HI function is selected, this is the Host Parity Error signal.
HDRQ	Output		 Host DMA Request—When HI32 is programmed to interface a universal non-PCI bus and the HI function is selected, this signal is Host DMA Request output. Port B —When the HI32 is configured as GPIO through the DCTR, this signal is internally disconnected.
			This input is 5 V tolerant.
HGNT	Input	Input	Host Bus Grant—When the H132 is programmed to interface a PCI bus and the HI function is selected, this is the Host Bus Grant signal.
HAEN	Input		 Host Address Enable—When HI32 is programmed to interface a universal non-PCI bus and the HI function is selected, this signal is Host Address Enable output. Port B—When the HI32 is configured as GPIO through the DCTR, this signal is internally disconnected. This input is 5 V tolerant.
HREQ	Output	Tri-stated	Host Bus Request —When the HI32 is programmed to interface a PCI bus and the HI function is selected, this is the Host Bus Request signal.
НТА	Output		Host Transfer Acknowledge—When HI32 is programmed to interface a universal non-PCI bus and the HI function is selected, this signal is Host Data Bus Enable output.
			Port B —When the HI32 is configured as GPIO through the DCTR, this signal is internally disconnected.
$\langle \rangle \rangle$			This input is 5 V tolerant.

Table 1-11Host Interface (Continued)

Signal Name	Туре	State During Reset	Signal Description
HSERR	Output, open drain	Tri-stated	Host System Error —When the HI32 is programmed to interface a PCI bus and the HI function is selected, this is the Host System Error signal.
HIRQ	Output, open drain		Host Interrupt Request —When HI32 is programmed to interface a universal non-PCI bus and the HI function is selected, this signal is Host Interrupt Request output.
			Port B —When the HI32 is configured as GPIO through the DCTR, this signal is internally disconnected.
			This input is 5 V tolerant.
HSTOP	Input/ Output	Tri-stated	Host Stop —When the HI32 is programmed to interface a PCI bus and the HI function is selected, this is the Host Stop signal.
HWR/HRW	Input		Host Write/Host Read-Write—When HI32 is programmed to interface a universal non-PCI bus and the HI function is selected, this signal is Host Write/Host Read-Write Schmitt-trigger input. Port B — When the HI32 is configured as GPIO through the DCTR, this signal is internally disconnected.
			This input is 5 V tolerant.
HIDSEL	Input	Input	Host Initialization Device Select —When the HI32 is programmed to interface a PCI bus and the HI function is selected, this is the Host Initialization Device Select signal.
HRD/HDS	Input		Host Read/Host Data Strobe—When HI32 is programmed to interface a universal non-PCI bus and the HI function is selected, this signal is Host Data Read/Host Data Strobe Schmitt-trigger input.
	\searrow		Port B —When the HI32 is configured as GPIO through the DCTR, this signal is internally disconnected.
			This input is 5 V tolerant.

 Table 1-11
 Host Interface (Continued)

Signal Name	Туре	State During Reset	Signal Description
HFRAME	Input/ Output	Tri-stated	 Host Frame—When the HI32 is programmed to interface a PCI bus and the HI function is selected, this is the Host cycle Frame signal. Non-PCI bus—When HI32 is programmed to interface a universal non-PCI bus and the HI function is selected, this signal must be connected to a pull-up resistor or directly to V_{CC}. Port B —When the HI32 is configured as GPIO through the DCTR, this signal is internally disconnected. This input is 5 V tolerant.
HCLK	Input	Input	 Host Clock—When the HI32 is programmed to interface a PCI bus and the HI function is selected, this is the Host Bus Clock input. Non-PCI bus—When HI32 is programmed to interface a universal non-PCI bus and the HI function is selected, this signal must be connected to a pull-up resistor or directly to V_{CC}. Port B —When the HI32 is configured as GPIO through the DCTR, this signal is internally disconnected. This input is 5 V tolerant.
HAD16– HAD31	Input/ Output	Tri-stated	Host Address/Data 16–31—When the HI32 is programmed to interface a PCI bus and the HI function is selected, these signals are lines 16–31 of the bidirectional, multiplexed Address/Data bus.
HD8-HD23	Input/ Output	V	Host Data 8–23—When HI32 is programmed to interface a universal non-PCI bus and the HI function is selected, these signals are lines 8–23 of the bidirectional Data bus. Port B —When the HI32 is configured as GPIO through the DCTR, these signals are internally disconnected.
			These inputs are 5 V tolerant.

Table 1-11Host Interface (Continued)

Signal Name	Туре	State During Reset	Signal Description
HRST	Input	Tri-stated	Hardware Reset—When the HI32 is programmed to interface a PCI bus and the HI function is selected, this is the Hardware Reset input.
HRST	Input		 Hardware Reset—When HI32 is programmed to interface a universal non-PCI bus and the HI function is selected, this signal is the Hardware Reset Schmitt-trigger input. Port B —When the HI32 is configured as GPIO through the DCTR, this signal is internally disconnected. This input is 5 V tolerant.
HINTA	Output, open drain	Tri-stated	 Host Interrupt A—When the HI function is selected, this signal is the Interrupt A open-drain output. Port B —When the HI32 is configured as GPIO through the DCTR, this signal is internally disconnected. This input is 5 V tolerant.
PVCL	Input	Input	PCI Voltage Clamp —When the HI32 is programmed to interface a PCI bus and the HI function is selected and the PCI bus uses a 3 V signal environment, connect this pin to V_{CC} (3.3 V) to enable the high voltage clamping required by the PCI specifications. In all other cases, including a 5 V PCI signal environment, leave the input unconnected.

 Table 1-11
 Host Interface (Continued)

Enhanced Synchronous Serial Interface 0 (ESSI0)

ENHANCED SYNCHRONOUS SERIAL INTERFACE 0 (ESSI0)

There are two synchronous serial interfaces (ESSI0 and ESSI1) that provide a fullduplex serial port for serial communication with a variety of serial devices, including one or more industry-standard codecs, other DSPs, microprocessors, and peripherals which implement the Motorola Serial Peripheral Interface (SPI).

Signal		State During		Signal Description
Name	Туре	Reset	Stop	Signal Description
SC00	Input or Output	Input	Disconnected	Serial Control 0 —The function of SC00 is determined by the selection of either Synchronous or Asynchronous mode. For Asynchronous mode, this signal will be used for the receive clock I/O (Schmitt- trigger input). For Synchronous mode, this signal is used either for Transmitter 1 output or for Serial I/O Flag 0.
PC0				Port C 0 —The default configuration following reset is GPIO input PC0. When configured as PC0, signal direction is controlled through the Port Directions Register (PRR0). The signal can be configured as ESSI signal SC00 through the Port Control Register (PCR0). This input is 5 V tolerant.
SC01	Input/ Output	Input	Disconnected	Serial Control 1 —The function of this signal is determined by the selection of either Synchronous or Asynchronous mode. For Asynchronous mode, this signal is the receiver frame sync I/O. For Synchronous mode, this signal is used either for Transmitter 2 output or for Serial I/O Flag 1.
PC1	Input or Output	7		Port C 1 —The default configuration following reset is GPIO input PC1. When configured as PC1, signal direction is controlled through PRR0. The signal can be configured as an ESSI signal SC01 through PCR0.
	/ /			This input is 5 V tolerant.

Table 1-12	Enhanced Synchronous Serial Interface 0 (ESSI0)	

Enhanced Synchronous Serial Interface 0 (ESSI0)

Signal	Turna	State During		Signal Description
Name	Туре	Reset	Stop	- Signal Description
SC02	Input/ Output	Input	Disconnected	Serial Control Signal 2—SC02 is used for frame sync I/O. SC02 is the frame sync for both the transmitter and receiver in Synchronous mode, and for the transmitter only in Asynchronous mode. When configured as an output, this signal is the internally generated frame sync signal. When configured as an input, this signal receives an external frame sync signal for the transmitter (and the receiver in synchronous operation).
PC2	Input or Output			Port C 2 —The default configuration following reset is GPIO input PC2. When configured as PC2, signal direction is controlled through PRR0. The signal can be configured as an ESSI signal SC02 through PCR0. This input is 5 V tolerant.
SCK0	Input/ Output	Input	Disconnected	Serial Clock SCK0 is a bidirectional Schmitt-trigger input signal providing the serial bit rate clock for the ESSI interface. The SCK0 is a clock input or output used by both the transmitter and receiver in Synchronous modes, or by the transmitter in Asynchronous modes. Although an external serial clock can be independent of and asynchronous to the DSP system clock, it must exceed the minimum clock cycle time of 6 T (i.e., the system clock frequency must be at least three times the external ESSI clock frequency). The ESSI needs at least three DSP phases inside each half of the serial clock.
РС3	Input or Output			Port C 3 —The default configuration following reset is GPIO input PC3. When configured as PC3, signal direction is controlled through PRR0. The signal can be configured as an ESSI signal SCK0 through PCR0.
	>			This input is 5 V tolerant.

 Table 1-12
 Enhanced Synchronous Serial Interface 0 (ESSI0) (Continued)

Enhanced Synchronous Serial Interface 0 (ESSI0)

Signal	Туре	State During		Signal Description
Name		Reset	Stop	
SRD0	Input/ Output	Input	Disconnected	Serial Receive Data —SRD0 receives serial data and transfers the data to the ESSI receive shift register. SRD0 is an input when data is being received.
PC4	Input or Output			Port C 4 —The default configuration following reset is GPIO input PC4. When configured as PC4, signal direction is controlled through PRR0. The signal can be configured as an ESSI signal SRD0 through PCR0. This input is 5 V tolerant.
STD0	Input/ Output	Input	Disconnected	Serial Transmit Data STD0 is used for transmitting data from the serial transmit shift register. STD0 is an output when data is being transmitted.
PC5	Input or Output			Port C5 The default configuration following reset is GPIO input PC5. When configured as PC5, signal direction is controlled through PRR0. The signal can be configured as an ESSI signal STD0 through PCR0. This input is 5 V tolerant.

Table 1-12Enhanced Synchronous Serial Interface 0 (ESSI0) (Continued)

ENHANCED SYNCHRONOUS SERIAL INTERFACE 1 (ESSI1)

Signal	Turna	State During		Signal Description
Name	Туре	Reset	Stop	- Signal Description
SC10	Input or Output	Input	Disconnected	Serial Control 0 —The function of SC10 is determined by the selection of either Synchronous or Asynchronous mode. For Asynchronous mode, this signal will be used for the receive clock I/O (Schmitt- trigger input). For Synchronous mode, this signal is used either for Transmitter 1 output or for Serial I/O Flag 0.
PD0				Port D 0 —The default configuration following reset is GPIO input PD0. When configured as PD0, signal direction is controlled through the Port Directions Register (PRR1). The signal can be configured as an ESSL signal SC10 through the Port Control Register (PCR1). This input is 5 V tolerant.
SC11	Input/ Output	Input	Disconnected	Serial Control 1—The function of this signal is determined by the selection of either Synchronous or Asynchronous mode. For Asynchronous mode, this signal is the receiver frame sync I/O. For Synchronous mode, this signal is used either for Transmitter 2 output or for Serial I/O Flag 1.
PD1	Input or Output			Port D 1 —The default configuration following reset is GPIO input PD1. When configured as PD1, signal direction is controlled through PRR1. The signal can be configured as an ESSI signal SC11 through PCR1. This input is 5 V tolerant.
$\overline{\mathbb{Q}}$				be configured as an ESSI signal SC11 through PCR1.

 Table 1-13
 Enhanced Synchronous Serial Interface 1 (ESSI1)

Enhanced Synchronous Serial Interface 1 (ESSI1)

Signal	Tuno	State During		- Signal Description
Name	Туре	Reset	Stop	Signal Description
SC12	Input/ Output	Input	Disconnected	Serial Control Signal 2—SC12 is used for frame sync I/O. SC12 is the frame sync for both the transmitter and receiver in Synchronous mode, and for the transmitter only in Asynchronous mode. When configured as an output, this signal is the internally generated frame sync signal. When configured as an input, this signal receives an external frame sync signal for the transmitter (and the receiver in Synchronous operation).
PD2	Input or Output			Port D 2 —The default configuration following reset is GPIO input PD2. When configured as PD2, signal direction is controlled through PRR1. The signal can be configured as an ESSI signal SC12 through PCR1. This input is 5 V tolerant.
SCK1	Input/ Output	Input	Disconnected	Serial Clock SCK1 is a bidirectional Schmitt-trigger input signal providing the serial bit rate clock for the ESSI interface. The SCK1 is a clock input or output used by both the transmitter and receiver in Synchronous modes, or by the transmitter in Asynchronous modes. Although an external serial clock can be independent of and asynchronous to the DSP system clock, it must exceed the minimum clock cycle time of 6 T (i.e., the system clock frequency must be at least three times the external ESSI clock frequency). The ESSI needs at least three DSP phases inside each half of the serial clock.
PD3	Input or Output			Port D 3 —The default configuration following reset is GPIO input PD3. When configured as PD3, signal direction is controlled through PRR1. The signal can be configured as an ESSI signal SCK1 through PCR1.
	<u> </u>			This input is 5 V tolerant.

Enhanced Synchronous Serial Interface 1 (ESSI1)

Signal	Туре	State During		Signal Description
Name		Reset	Stop	Signal Description
SRD1	Input/ Output	Input	Disconnected	Serial Receive Data—SRD1 receives serial data and transfers the data to the ESSI receive shift register. SRD1 is an input when data is being received.
PD4	Input or Output			Port D 4 —The default configuration following reset is GPIO input PD4. When configured as PD4, signal direction is controlled through PRR1. The signal can be configured as an ESSI signal SRD1 through PCR1. This input is 5 V tolerant.
STD1	Input/ Output	Input	Disconnected	Serial Transmit Data STD1 is used for transmitting data from the serial transmit shift register. STD1 is an output when data is being transmitted. Port D 5 The default configuration following reset is
PD5	Input or Output			GPIO input PD5. When configured as PD5, signal direction is controlled through PRR1. The signal can be configured as an ESSI signal STD1 through PCR1. This input is 5 V tolerant.

 Table 1-13
 Enhanced Synchronous Serial Interface 1 (ESSI1) (Continued)

Serial Communication Interface (SCI)

SERIAL COMMUNICATION INTERFACE (SCI)

The Serial Communication interface (SCI) provides a full duplex port for serial communication to other DSPs, microprocessors, or peripherals, such as modems.

Signal	Туре	State During		Signal Description
Name	Туре	Reset	Stop	
RXD	Input	Input	Disconnected	Serial Receive Data—This input receives byte oriented serial data and transfers it to the SCI receive shift register.
PE0	Input or Output			Port E 0 —The default configuration following reset is GPIO input PE0. When configured as PE0, signal direction is controlled through the SCI Port Directions Register (PRR). The signal can be configured as an SCI signal RXD through the SCI Port Control Register (PCR). This input is 5V tolerant.
TXD	Output	Input	Disconnected	Serial Transmit Data —This signal transmits data from SCI transmit data register.
PE1	Input or Output			Port E 1 —The default configuration following reset is GPIO input PE1. When configured as PE1, signal direction is controlled through the SCI PRR. The signal can be configured as an SCI signal TXD through the SCI PCR.
		\approx \setminus		This input is 5 V tolerant.
SCLK	Input/ Output	Input	Disconnected	Serial Clock —This is the bidirectional Schmitt- trigger input signal providing the input or output clock used by the transmitter and/or the receiver.
PE2	Input or Output	>		Port E 2 —The default configuration following reset is GPIO input PE2. When configured as PE2, signal direction is controlled through the SCI PRR. The signal can be configured as an SCI signal SCLK through the SCI PCR. This input is 5 V tolerant.

 Table 1-14
 Serial Communication Interface (SCI)

TimerS

TIMERS

Three identical and independent timers are implemented in the DSP56305. Each timer can use internal or external clocking, and can interrupt the DSP56305 after a specified number of events (clocks), or can signal an external device after counting a specific number of internal events.

Signal	Tuno	State During		Signal Description
Name	Туре	Reset	Stop	Signal Description
TIO0	Input or Output	Input	Disconnected	Timer 0 Schmitt-Trigger Input/Output—When Timer 0 functions as an external event counter or in Measurement mode, TIO0 is used as input. When Timer 0 functions in Watchdog, Timer, or Pulse Modulation mode, TIO0 is used as output. The default mode after reset is GPIO input. This can be changed to output or configured as a Timer Input/ Output through the Timer 0 Control/Status Register (TCSR0). This input is 5 V tolerant.
TIO1	Input or Output	Input	Disconnected	Timer 1 Schmitt-Trigger Input/Output—When Timer 1 functions as an external event counter or in Measurement mode, TIO1 is used as input. When Timer 1 functions in Watchdog, Timer, or Pulse Modulation mode, TIO1 is used as output. The default mode after reset is GPIO input. This can be changed to output or configured as a Timer Input/ Output through the Timer 1 Control/Status Register (TCSR1). This input is 5 V tolerant.
TIO2	Input or Output	Input	Disconnected	Timer 2 Schmitt-Trigger Input/Output—When Timer 2 functions as an external event counter or in Measurement mode, TIO2 is used as input. When Timer 2 functions in Watchdog, Timer, or Pulse Modulation mode, TIO2 is used as output. The default mode after reset is GPIO input. This can be changed to output or configured as a Timer Input/ Output through the Timer 2 Control/Status Register (TCSR2). This input is 5 V tolerant.

Table 1-15 T	riple Timer Signals
--------------	---------------------

JTAG/OnCE Interface

JTAG/ONCE INTERFACE

Signal Name	Туре	State During Reset	Signal Description
ТСК	Input	Input	Test Clock —TCK is a test clock input signal used to synchronize the JTAG test logic. This input is 5 V tolerant.
TDI	Input	Input	Test Data Input —TDI is a test data serial input signal used for test instructions and data. TDI is sampled on the rising edge of TCK and has an internal pull-up resistor. This input is 5 V tolerant.
TDO	Output	Tri-stated	Test Data Output TDQ is a test data serial output signal used for test instructions and data. TDO is tristatable and is actively driven in the shift-IR and shift-DR controller states. TDO changes on the falling edge of TCK.
TMS	Input	Input	Test Mode Select —TMS is an input signal used to sequence the test controller's state machine. TMS is sampled on the rising edge of TCK and has an internal pull-up resistor. This input is 5 V tolerant.
TRST	Input	Input	Test Reset —TRST is an active-low Schmitt-trigger input signal used to asynchronously initialize the test controller. TRST has an internal pull-up resistor. TRST must be asserted after power up. Always assert TRST immediately after power-up. This input is 5 V tolerant.

Table 1-16 JTAG/OnCE Interface
JTAG/OnCE Interface

Signal Name	Туре	State During Reset	Signal Description
DE	Input/Output	Input	Debug Event —DE is an open-drain bidirectional active-low signal providing, as an input, a means of entering the Debug mode of operation from an external command controller, and, as an output, a means of acknowledging that the chip has entered the Debug mode. This signal, when asserted as an input, causes the DSP56300 core to finish the current instruction being executed, save the instruction pipeline information, enter the Debug mode, and wait for commands to be entered from the debug serial input line. This signal is asserted as an output for three clock cycles when the chip enters the Debug mode as a result of a debug request or as a result of meeting a breakpoint condition. The DE has an internal pull-up resistor.

Table 1-16 JTAG/OnCE Interface (Continued)

dsp

JTAG/OnCE Interface

SECTION 2

SPECIFICATIONS

INTRODUCTION

The DSP56305 is fabricated in high density CMOS with Transistor-Transistor Logic (TTL) compatible inputs and outputs. The DSP56305 specifications are preliminary and are from design simulations, and may not be fully tested or guaranteed at this early stage of the product life cycle. Finalized specifications will be published after full characterization and device qualifications are complete.

MAXIMUM RATINGS

CAUTION

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, normal precautions should be taken to avoid exceeding maximum voltage ratings. Reliability is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g., either GND or V_{CC}).

Note: In the calculation of timing requirements, adding a maximum value of one specification to a minimum value of another specification does not yield a reasonable sum. A maximum specification is calculated using a worst case variation of process parameter values in one direction. The minimum specification is calculated using the worst case for the same parameters in the opposite direction. Therefore, a "maximum" value for a specification will never occur in the same device that has a "minimum" value for another specification; adding a maximum to a minimum represents a condition that can never exist.

Thermal Characteristics

Rating ¹	Symbol	Value ^{1, 2}	Unit
Supply Voltage	V _{CC}	-0.3 to +4.0	V
All input voltages excluding "5 V tolerant" inputs ³	V _{IN}	$GND - 0.3$ to $V_{CC} + 0.3$	V
All "5 V tolerant" input voltages ³	V _{IN5}	GND – 0.3 to V _{CC} + 3.95	V
Current drain per pin excluding $V_{\mbox{\scriptsize CC}}$ and GND	Ι	10	mA
Operating temperature range	Τ _J	-40 to +100	<u>ې</u>
Storage temperature	T _{STG}	-55 to +150	С
Note: 1. GND = 0 V, V_{CC} = 3.3 V ± 0.3 V, T_{J} = -40°C t	o +100°C, CL	= 50 pF + 2 TTL Loads	

Table 2-1Maximum Ratings

GND = 0 V, V_{CC} = 3.3 V ± 0.3 V, I_J = -40°C to +100°C, CL = 50 pF + 2 11C Loads)
 Absolute maximum ratings are stress ratings only, and functional operation at the maximum is not guaranteed. Stress beyond the maximum rating may affect device reliability or cause permanent damage to the device.

3. **CAUTION**: All "5 V Tolerant" input voltages can not be more than 3.95 V greater than the supply voltage; this restriction applies to "power on", as well as during normal operation. "5 V Tolerant" inputs are inputs that tolerate 5 V.

THERMAL CHARACTERISTICS

Table 2-2	Therr	nal Ch	arac	teristics
-----------	-------	--------	------	-----------

Characteristic	Symbol	PBGA ³ Value	Unit
Junction-to-ambient thermal resistance	$R_{\theta JA}$ or θ_{JA}	50	°C/W
Junction-to-case thermal resistance	$R_{\theta JC}$ or θ_{JC}	9	°C/W
Thermal characterization parameter	Ψ _{JT}	5	°C/W

Junction-to-ambient thermal resistance is based on measurements on a horizontal single sided printed circuit board per SEMI G38-87 in natural convection.(SEMI is Semiconductor Equipment and Materials International, 805 East Middlefield Rd., Mountain View, CA 94043, (415) 964-5111)
 Junction-to-case thermal resistance is based on measurements using a cold plate per SEMI G30-88, with the exception that the cold plate temperature is used for the case temperature.
 Estimated values; testing not complete

DC ELECTRICAL CHARACTERISTICS

Characteristics	Symbol	Min	Тур	Max	Unit
Supply voltage	V _{CC}	3.0	3.3	3.6 们	V
Input high voltage • D0–D23, BG, BB, TA • MOD ¹ /IRQ ¹ , RESET, PINIT/ NMI and all JTAG/ESSI/SCI/ Timer/HI32 pins	V _{IH} V _{IHP}	2.0 2.0	=	V _{CC} V _{CC} + 3.95	V V
• EXTAL ⁸	V _{IHX}	$0.8 \times V_{CC}$	<	V _{CC}	V
Input low voltage • D0–D23, \overline{BG} , \overline{BB} , \overline{TA} , $MOD^1/$ \overline{IRQ}^1 , \overline{RESET} , PINIT	V _{IL}	- 0.3	F	0.8	V V
All JTAG/ESSI/SCI/Timer/ HI08 pins	V _{ILP}	- 0.3		0.8	V
• EXTAL ⁸	V _{ILX}	- 0.3		$0.2 \times V_{CC}$	
Input leakage current	I _{IN}	- 10		10	μΑ
High impedance (off-state) input current (@ 2.4 V / 0.4 V)	I _{TSI}	- 10	> -	10	μA
Output high voltage • TTL (I _{OH} = -0.4 mA) ^{5,7} • CMOS (I _{OH} = -10 μA) ⁵	V _{OH}	V _{CC} - 0.4 V _{CC} - 0.01			V V
Output low voltage • TTL ($I_{OL} = 3.0 \text{ mA}$, open-drain pins $I_{OL} = 6.7 \text{ mA}$) ^{5,7}	VOL	_		0.4	V
• CMOS $(I_{OL} = 10 \mu A)^5$		—	—	0.01	V
Internal supply current ² : • In Normal mode • In Wait mode ³	I _{CCI} I _{CCW}		102 6	145 9	mA mA
In Stop mode ⁴	I _{CCS}		100	150	μA
PLL supply current in Stop mode ⁵			1	2.5	mA
Input capacitance ⁵	C _{IN}			10	pF

 Table 2-3
 DC Electrical Characteristics⁶

AC Electrical Characteristics

		Characteristics	Symbol	Min	Тур	Max	Unit		
Note:	1.	Refers to MODA/IRQA, MODE	B/IRQB, MOI	DC/IRQC, and	d MODD/IRQD pi	ns			
	2.	Power Consumption Co	nsideratio	ns on page 4-	-4 provides a form	ila to compute th	e		
		estimated current requirements in Normal mode. In order to obtain these results, all inputs must be							
		terminated (i.e., not allowed to							
		(see Appendix A). The power consumption numbers in this specification are 90% of the measured							
		results of this benchmark. This reflects typical DSP applications. Typical internal supply current is							
		measured with $V_{CC} = 3.0$ V at $T_J = 100^{\circ}$ C. Maximum internal supply current is measured with $V_{CC} = 3.0$							
		V at $T_{I} = 100^{\circ}C.$							
	3.	In order to obtain these results, all inputs must be terminated (i.e., not allowed to float). PLL and XTAL							
		signals are disabled during Stop state.							
	4.	In order to obtain these results, all inputs, which are not disconnected at Stop mode, must be							
		terminated (i.e., not allowed to	-		1				
	5.	Periodically sampled and not 10	00% tested						
	6.	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}; T_{I} = -40^{\circ}\text{C} \text{ t}$		= 50 pF + 2 T	TL Loads				
	7.	This characteristic does not app							
	8.	Driving EXTAL to the low V _{IHX}	or the high '	V_{ILX} value ma	y cause additional	power consumpt	ion (DC		
		current). To minimize power co							
		$0.9 \times V_{CC}$ and the maximum V_{II}							
					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				

#### Table 2-3 DC Electrical Characteristics⁶ (Continued)

## AC ELECTRICAL CHARACTERISTICS

The timing waveforms shown in the AC electrical characteristics section are tested with a V_{IL} maximum of 0.3 V and a V_{IH} minimum of 2.4 V for all pins except EXTAL, which is tested using the input levels shown in **Note 6** of the previous table. AC timing specifications, which are referenced to a device input signal, are measured in production with respect to the 50% point of the respective input signal's transition. DSP56305 output levels are measured with the production test machine V_{OL} and V_{OH} reference levels set at 0.8 V and 2.0 V, respectively.

Internal Clocks

# INTERNAL CLOCKS

Characteristics	Symbol		Expression ^{1, 2}	
	Symbol	Min	Тур	Max
Internal operation frequency and CLKOUT with PLL enabled	f		$\frac{(Ef \times MF)}{(PDF \times DF)}$	
Internal operation frequency and CLKOUT with PLL disabled	f		Ef/2	
Internal clock and CLKOUT high period • With PLL disabled • With PLL enabled and MF ≤ 4 • With PLL enabled and MF > 4	T _H	0.49×ET _C × PDF×DF/MF 0.47×ET _C × PDF×DF/MF	ETC	$$ $0.51 \times ET_C \times$ $PDF \times DF/MF$ $0.53 \times ET_C \times$ $PDF \times DF/MF$
Internal clock and CLKOUT low period • With PLL disabled • With PLL enabled and MF ≤ 4 • With PLL enabled and MF > 4	TL	$0.49 \times \text{ET}_{\text{C}} \times \text{PDF} \times \text{DF}/\text{MF}$ $0.47 \times \text{ET}_{\text{C}} \times \text{PDF} \times \text{DF}/\text{MF}$	ET _C	$\begin{array}{c}\\ 0.51 \times \text{ET}_{\text{C}} \times\\ \text{PDF} \times \text{DF}/\text{MF}\\ 0.53 \times \text{ET}_{\text{C}} \times\\ \text{PDF} \times \text{DF}/\text{MF} \end{array}$
Internal clock and CLKOUT cycle time with PLL enabled	T _C	_	$\frac{\text{ET}_{\text{C}} \times \text{PDF} \times}{\text{DF}/\text{MF}}$	—
Internal clock and CLKOUT cycle time with PLL disabled	T _C	_	$2 \times \text{ET}_{\text{C}}$	—
Instruction cycle time	I _{CYC}		T _C	
Note: 1. DF = Division Factor Ef = External frequency $ET_C$ = External clock cycle MF = Multiplication Factor RDF = Predivision Factor $T_C$ = internal clock cycle 2. See the <b>PLL and Clock</b> detailed discussion of the F	Generatio	on section in the DSP	56300 Family M	<b>1anual</b> for a

Table 2-4	Internal Clocks	, CLKOUT
-----------	-----------------	----------

## **EXTERNAL CLOCK OPERATION**

The DSP56305 system clock may be derived from the on–chip crystal oscillator, as shown on the cover page, or it may be externally supplied. An externally supplied square wave voltage source should be connected to EXTAL, leaving XTAL not connected physically to the board or socket (See **Figure 2-2**.).



Figure 2-1 Crystal Oscillator Circuits

**External Clock Operation** 



Figure 2-2 External Clock Timing

 Table 2-5
 Clock Operation

No.	Characteristics		80 MHz	
	Characteristics	Symbol	Min	Max
1	Frequency of EXTAL (EXTAL Pin Frequency) The rise and fall time of the external clock should be 3 ns maximum.	Ef	0	80.0
2	<ul> <li>EXTAL input high^{1,2}</li> <li>With PLL disabled (46.7%–53.3% duty cycle)</li> <li>With PLL enabled (42.5%–57.5% duty cycle)</li> </ul>	ET _H	5.84 ns 5.31 ns	∞ 157.0 µs
3	EXTAL input low ^{1,2} <ul> <li>With PLL disabled (46.7%–53.3% duty cycle)</li> <li>With PLL enabled (42.5%–57.5% duty cycle)</li> </ul>	ETL	5.84 ns 5.31 ns	∞ 157.0 µs
4	EXTAL cycle time ² <ul> <li>With PLL disabled</li> <li>With PLL enabled</li> </ul>	ET _C	12.50 ns 12.50 ns	∞ 273.1 µs
5	CLKOUT change from EXTAL fall with PLL disabled		4.3 ns	11.0 ns
6	CLKOUT from EXTAL with PLL enabled ^{3,5} a. MF = 1, PDF = 1, Ef > 15 MHz b. MF = 2 or 4, PDF = 1, Ef > 15 MHz, or, MF $\leq$ 4, PDF $\neq$ 1, Ef / PDF > 15 MHz		0.0 ns 0.0 ns	1.8 ns 1.8 ns

# Phase Lock Loop (PLL) Characteristics

NT-		Characteristics		80 MHz	
No.		Min	Max		
	(See	action cycle time = $I_{CYC} = T_C^4$ <b>Fable 2-4</b> .) (46.7%–53.3% duty cycle)	I _{CYC}	(	
	•	With PLL disabled		25.0 ns	∞
	•	With PLL enabled		12.50 ns	8.53 μs
Note:	1.	Measured at 50% of the input transition			$\searrow$
	2.	The maximum value for $PLL$ enabled is given for minimum $V_{CO}$ and	l maximum	MF.	
	3.	Periodically sampled and not 100% tested			
	4.	The maximum value for PLL enabled is given for minimum $V_{CO}$ and	l maximum	DF.	
	5.	The skew is not guaranteed for any other MF value.			
	6. The indicated duty cycle is for the specified maximum frequency for which a part is rated. The				
	minimum clock high or low time required for correction operation, however, remains the same				
		lower operating frequencies; therefore, when a lower clock frequence			
		may vary from the specified duty cycle as long as the minimum high	time and lo	ow time requ	uirements
		are met.			

Table 2-5	<b>Clock Operation</b>	(Continued)
-----------	------------------------	-------------

# PHASE LOCK LOOP (PLL) CHARACTERISTICS

Characteristics	80 N	ЛНz	T Tan it
Characteristics	Min	Max	Unit
$V_{CO}$ frequency when PLL enabled (MF × E _f × 2/PDF)	30	160	MHz
PLL external capacitor (PCAP pin to $V_{CCP}$ ) ( $C_{PCAP}^{(1)}$ • @ MF $\leq 4$ • @ MF > 4	(MF × 425) – 125 MF × 520	(MF × 590) – 175 MF × 920	pF pF
Note: $C_{PCAP}$ is the value of the PLL capacitor (connected between a value in pF for $C_{PCAP}$ can be computed from one of the follo (500 × MF) – 150, for MF ≤ 4, or 690 × MF, for MF > 4.		_{CCP} ). The recommer	nded

## Table 2-6 PLD Characteristics

# RESET, STOP, MODE SELECT, AND INTERRUPT TIMING

NI-	Chanadariatian	<b>T</b>	80 N	Unit	
No.	Characteristics	Expression	Min	Max	Unit
8	Delay from $\overline{\text{RESET}}$ assertion to all pins at reset value ³		-	26.0	ns
9	<ul> <li>Required RESET duration⁴</li> <li>Power on, external clock generator, PLL disabled</li> <li>Power on, external clock generator, PLL enabled</li> <li>Power on, internal oscillator</li> <li>During STOP, XTAL disabled (PCTL Bit 16 = 0)</li> <li>During STOP, XTAL enabled (PCTL Bit 16 = 1)</li> <li>During normal operation</li> </ul>	$50 \times \text{ET}_{\text{C}}$ $1000 \times \text{ET}_{\text{C}}$ $75000 \times \text{ET}_{\text{C}}$ $75000 \times \text{ET}_{\text{C}}$ $2.5 \times \text{T}_{\text{C}}$ $2.5 \times \text{T}_{\text{C}}$	625.0 12.5 1.0 1.0 31.3 31.3		ns ms ms ms ns ns ns
10	Delay from asynchronous RESET deassertion to first external address output (internal reset deassertion) ⁵ • Minimum • Maximum	3.25 × T _C + 2.0 20.25 T _C + 9.95	42.6	 263.1	ns ns
11	Synchronous reset setup time from RESET deassertion to CLKOUT Transition 1 • Minimum • Maximum	Т _С	7.4 —	 12.5	ns ns
12	<ul> <li>Synchronous reset deasserted, delay time from the CLKOUT Transition 1 to the first external address output</li> <li>Minimum</li> <li>Maximum</li> </ul>	$3.25 \times T_{C} + 1.0$ 20.25 T _C + 5.0	41.6	 258.1	ns ns
13	Mode select setup time		30.0	_	ns
14	Mode select hold time		0.0		ns
15	Minimum edge-triggered interrupt request assertion width		8.25		ns
16	Minimum edge-triggered interrupt request deassertion width		8.25		ns
17	<ul> <li>Delay from IRQA, IRQB, IRQC, IRQD, NMI assertion to external memory access address out valid</li> <li>Caused by first interrupt instruction fetch</li> <li>Caused by first interrupt instruction execution</li> </ul>	$4.25 \times T_{C} + 2.0$ $7.25 \times T_{C} + 2.0$	55.1 92.6	_	ns ns
18	Delay from IRQA, IRQB, IRQC, IRQD, NMI assertion to general-purpose transfer output valid caused by first interrupt instruction execution	$10 \times T_{C} + 5.0$	130.0		ns

T-1-1-07	Deast Store Made Calast and Interment Timined
1 abie 2-7	Reset, Stop, Mode Select, and Interrupt Timing ⁶

Tuble 27 Reset, otop, mode select, and mentupe finning (continued)								
No.	Characteristics	Expression	80 N	/IHz	Unit			
110.			Min	Max				
19	Delay from address output valid caused by first interrupt instruction execute to interrupt request deassertion for level sensitive fast interrupts ¹	$3.75 \times T_{C} + WS$ $\times T_{C} - 12.4$	_	Exp. ⁸	ns			
20	Delay from $\overline{\text{RD}}$ assertion to interrupt request deassertion for level sensitive fast interrupts ¹	$3.25 \times T_{C} + WS \\ \times T_{C} - 12.4$		Exp.8	ns			
21	<ul> <li>Delay from WR assertion to interrupt request deassertion for level sensitive fast interrupts¹</li> <li>SSRAM for all WS</li> </ul>	(3.75 + WS)		Exp. ⁸	ns			
	DRAM for all WS	$\times T_{C} - 12.4$ (3.5 + WS) × T _C - 12.4	~ —	Exp. ⁸	ns			
	• SRAM WS = 1	(WS + 3.5) × T _C - 12.4		Exp. ⁸	ns			
	• SRAM WS = 2, 3	$(WS + 3) \times T_C$ - 12.4		Exp. ⁸	ns			
	• SRAM WS ≥ 4	$(2.5 + WS) \times T_C$ - 12.4		Exp. ⁸	ns			
22	Synchronous interrupt setup time from IRQA, IRQB, IRQC, IRQD, NMI assertion to the CLKOUT. Transition 2		7.4	T _C	ns			
23	Synchronous interrupt delay time from the CLKOUT Transition 2 to the first external address output valid caused by the first instruction fetch after coming out of Wait Processing state							
	Minimum     Maximum	$9.25 \times T_{C} + 1.0 24.75 \times T_{C} + 5.0$	116.6 —	 314.4	ns ns			
24	Duration for IRQA assertion to recover from Stop state		7.4	_	ns			
25	Delay from IRQA assertion to fetch of first instruction (when exiting Stop) ^{2,3} • PLL is not active during Stop (PCTL Bit 17 = 0) and	PLCYFT	1.6	17.0	me			
	Stop delay is enabled (OMR Bit $6 = 0$ )	$PDF + (128 \text{ K} - PLC/2) \times T_C$	1.0	17.0	ms			
$\left \right\rangle$	• PLL is not active during Stop (PCTL Bit 17 = 0) and Stop delay is not enabled (OMR Bit 6 = 1)	PLC × ET _C × PDF + (23.75 ± $0.5$ ) × T _C	290.6 ns	15.4 ms				
	<ul> <li>PLL is active during Stop (PCTL Bit 17 = 1) (Implies No Stop Delay)</li> </ul>	$(8.25 \pm 0.5) \times T_{\rm C}$	96.9	109.4	ns			

Table 2-7	Reset, Stop, Mode Select, a	and Interrupt Timing ⁶ (Continued)
-----------	-----------------------------	-----------------------------------------------

N.	Chamatariatian	<b>T</b>	80 MHz		Unit
No.	Characteristics	Expression	Min	Max	Unit
26	<ul> <li>Duration of level sensitive IRQA assertion to ensure interrupt service (when exiting Stop)^{2, 3}</li> <li>PLL is not active during Stop (PCTL Bit 17 = 0) and Stop delay is enabled (OMR Bit 6 = 0)</li> <li>PLL is not active during Stop (PCTL Bit 17 = 0) and Stop delay is not enabled (OMR Bit 6 = 1)</li> <li>PLL is active during Stop (PCTL Bit 17 = 1) (implies no Stop delay)</li> </ul>	$PDF + (128K - PLC/2) \times T_C$	17.0 15.4 68.8		ms ms ns
27	Interrupt Requests Rate • HI08, ESSI, SCI, Timer • DMA • IRQ, NMI (edge trigger) • IRQ, NMI (level trigger)	12T _C 8T _C 8T _C 12T _C	> 	150.0 100.0 100.0 150.0	ns ns ns ns
28	DMA Requests Rate • Data read from HI08, ESSI, SCI • Data write to HI08, ESSI, SCI • Timer • IRQ, NMI (edge trigger)	6T _C 7T _C 2T _C 3T _C		75.0 87.5 25.0 37.5	ns ns ns ns
29	Delay from IRQA, IRQB, IRQC, IRQD, NMI assertion to external memory (DMA source) access address out valid	$4.25 \times T_{C} + 2.0$	55.1		ns
Note:	<ol> <li>When using fast interrupts and IRQA, IRQB, IRQC, and IRQ through 21 apply to prevent multiple interrupt service. To a deasserted Edge-Triggered mode is recommended when us</li> </ol>	avoid these timing r	estrictior	ns, the	-

recommended when using Level-Sensitive mode.

**Table 2-7** Reset, Stop, Mode Select, and Interrupt Timing⁶ (Continued)

	Characteristics Expression 80 MHz										
No.		Characteristics	Expression	Min	Max	Unit					
	2. This timing depends on several settings:										
	For PLL disable, using internal oscillator (PLL Control Register (PCTL) Bit $16 = 0$ ) and oscillator disabled during Stop (PCTL Bit $17 = 0$ ), a stabilization delay is required to assure the oscillator is stable before executing programs. In that case, resetting the Stop delay (OMR Bit $6 = 0$ ) will provide the proper delay. While it is possible to set OMR Bit $6 = 1$ , it is not recommended and these specifications do not guarantee timings for that case.										
	For PLL disable, using internal oscillator (PCTL Bit 16 = 0) and oscillator enabled during Stop (PCTI Bit 17=1), no stabilization delay is required and recovery time will be minimal (OMR Bit 6 setting is ignored).										
	For PLL disable, using external clock (PCTL Bit 16 = 1), no stabilization delay is required and recover time will be defined by the PCTL Bit 17 and OMR Bit 6 settings. For PLL enable, if PCTL Bit 17 is 0, the PLL is shutdown during Stop. Recovering from Stop require the PLL to get locked. The PLL lock procedure duration, PLL Lock Cycles (PLC), may be in the range 0 to 1000 cycles. This procedure occurs in parallel with the stop delay counter, and stop recovery wi end when the last of these two events occurs. The stop delay counter completes count or PLL lock procedure completion. PLC value for PLL disable is 0.										
		The maximum value for $ET_C$ is 4096 (maximum MF) divided 66 MHz it is 4096/66 MHz = 62 µs). During the stabilization and their width may vary, so timing may vary as well.									
	3. 4.	Periodically sampled and not 100% tested For an external clock generator, RESET duration is measured asserted, $V_{CC}$ is valid, and the EXTAL input is active and va		n which Ī	RESET is	3					
For internal oscillator, <b>RESET</b> duration is measured during the time in which $\overline{\text{RESET}}$ is asser $V_{CC}$ is valid. The specified timing reflects the crystal oscillator stabilization time after power number is affected both by the specifications of the crystal and other components connected oscillator and reflects worst case conditions.											
	5.	When the $V_{CC}$ is valid, but the other "required RESET durates not been yet met, the device circuitry will be in an uninitiality power consumption and heat-up. Designs should minimize If PLL does not lose lock	zed state that can r	esult in s	ignificar	nt					
	6. 7. 8.	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ ; $T_J = -40^{\circ}\text{C}$ to $+100^{\circ}\text{C}$ , $C_L = 50 \text{ pF} + 2 \text{ TT}$ WS = number of wait states (measured in clock cycles, numl Use expression to compute maximum value.									

<b>Table 2-7</b> Reset, Stop, Mode Select, and Interrupt Timing (Continued	Table 2-7	Reset, Stop, Mode Select, and Interrupt Timing ⁶ (Continued)
----------------------------------------------------------------------------	-----------	-------------------------------------------------------------------------





Figure 2-6 External Interrupt Timing (Negative Edge-Triggered)





# **EXTERNAL MEMORY INTERFACE (PORT A)**

N		Characteristics Symbol Europeaniem		80 N	/Hz	
No.	Characteristics	Symbol	Expression ¹	Min	Max	Unit
100	Address valid and AA assertion pulse width • $1 \le WS \le 3$ • $4 \le WS \le 7$ • $WS \ge 8$	t _{RC} , t _{WC}	$(WS + 1) \times T_{C} - 4.0$ $(WS + 2) \times T_{C} - 4.0$ $(WS + 3) \times T_{C} - 4.0$	21.0 71.0 133.5		ns ns ns
101	Address and AA valid to $\overline{WR}$ assertion • WS = 1 • 2 ≤ WS ≤ 3 • WS ≥ 4	t _{AS}	$0.25 \times T_{C} = 3.0$ $0.75 \times T_{C} = 4.0$ $1.25 \times T_{C} = 4.0$	0.1 5.4 11.6		ns ns ns
102	$\overline{WR} \text{ assertion pulse width}$ $WS = 1$ $2 \le WS \le 3$ $WS \ge 4$	t _{WP}	$1.5 \times T_{C} - 4.5$ WS × T _C - 4.0 (WS - 0.5) × T _C - 4.0	14.8 21.0 39.8		ns ns ns
103	$\overline{WR} \text{ deassertion to address not valid}  \bullet 1 \le WS \le 3  \bullet 4 \le WS \le 7  \bullet WS \ge 8 $	twr	$0.25 \times T_{C} - 3.0$ $1.25 \times T_{C} - 4.0$ $2.25 \times T_{C} - 4.0$	0.0 11.6 24.1		ns ns ns
104	Address and AA valid to input data valid [WS $\geq$ 1]	t _{AA} , t _{AC}	$(WS + 0.75) \times T_C - 9.5$	—	12.4	ns
105	$\overline{\text{RD}}$ assertion to input data valid [WS $\geq$ 1]	t _{OE}	$(WS + 0.25) \times T_C - 9.5$	_		ns
106	RD deassertion to data not valid (data hold time)	t _{OHZ}		0.0		ns
107	Address valid to $\overline{WR}$ deassertion [WS $\geq 1$ ]	t _{AW}	$(WS + 0.75) \times T_C - 4.0$	17.9		ns
108	Data valid to WR deassertion (data setup time) [WS ≥ 1]	$t_{\rm DS}(t_{\rm DW})$	$(WS - 0.25) \times T_C - 3.3$	_		ns
109	Data hold time from $\overline{WR}$ deassertion • $1 \le WS \le 3$ • $4 \le WS \le 7$ • $WS \ge 8$	t _{DH}	$0.25 \times T_{C} - 3.0$ $1.25 \times T_{C} - 3.7$ $2.25 \times T_{C} - 3.7$	 11.8 24.3		ns ns ns
110	$\overline{\text{WR}} \text{ assertion to data active} \\ \bullet  \text{WS} = 1 \\ \bullet  2 \le \text{WS} \le 3 \\ \bullet  \text{WS} \ge 4$		$0.75 \times T_{C} - 3.7$ $0.25 \times T_{C} - 3.7$ $-0.25 \times T_{C} - 3.7$	5.7 -0.6 -6.8	 	ns ns ns

 Table 2-8
 SRAM Read and Write Accesses

N.	Characteristics	Characteristics Symbol Expression ¹				TT			
No.	Characteristics	Symbol	Expression ¹	Min	Max	Unit			
111	$\overline{\text{WR}}$ deassertion to data highimpedance• $1 \le \text{WS} \le 3$ • $4 \le \text{WS} \le 7$ • $\text{WS} \ge 8$		$\begin{array}{c} 0.25 \times T_{\rm C} + 0.2 \\ 1.25 \times T_{\rm C} + 0.2 \\ 2.25 \times T_{\rm C} + 0.2 \end{array}$		3.3 15.8 28.3	ns ns ns			
112	Previous $\overline{\text{RD}}$ deassertion to data active (write) • $1 \le \text{WS} \le 3$ • $4 \le \text{WS} \le 7$ • $\text{WS} \ge 8$		$1.25 \times T_{C} - 4.0$ 2.25 × T _C - 4.0 3.25 × T _C - 4.0	11.6 24.1 36.6	$\sim$	ns ns ns			
113	$\overline{\text{RD}} \text{ deassertion time} \\ \bullet  1 \le \text{WS} \le 3 \\ \bullet  4 \le \text{WS} \le 7 \\ \bullet  \text{WS} \ge 8$		$0.75 \times T_{C} - 4.0$ 1.75 × T _C - 4.0 2.75 × T _C - 4.0	5.4 17.9 30.4		ns ns ns			
114	$\overline{WR} \text{ deassertion time}$ $WS = 1$ $2 \le WS \le 3$ $4 \le WS \le 7$ $WS \ge 8$		$0.5 \times T_{C} \rightarrow 3.5$ $T_{C} - 3.5$ $2.5 \times T_{C} - 3.5$ $3.5 \times T_{C} - 3.5$	2.8 9.0 27.8 40.3		ns ns ns ns			
115	Address valid to RD assertion	7/2	$0.5 \times T_{C} - 4$	2.3		ns			
116	RD assertion pulse width	7	$(WS + 0.25) \times T_C - 3.8$	11.8		ns			
117	$\overline{RD} \text{ deassertion to address not valid}  \bullet 1 \le WS \le 3  \bullet 4 \le WS \le 7  \bullet WS \ge 8 $		$0.25 \times T_{C} - 3.0$ $1.25 \times T_{C} - 3.0$ $2.25 \times T_{C} - 3.0$	0.1 12.6 25.1		ns ns ns			
Note:	Note: 1. WS is the number of wait states specified in the BCR. 2. $V_{CC} = 3.3 V \pm 0.3 V$ ; $E_J = -40^{\circ}C$ to +100 °C, $C_L = 50 \text{ pF} + 2 \text{ TTL Loads}$								

 Table 2-8
 SRAM Read and Write Accesses (Continued)



NL	Characteristics	Symbol	Turn no si sun	80 N	Unit	
No.	Characteristics	Symbol	Expression	Min	Max	Unit
118	BCLK high to BCLK high (cycle time)	t _{KHKH}	$(WS + 1) \times T_C$	12.5	T	ns
119	BCLK high time	t _{KHKL}	$0.5 \times T_{C} - 4.2$	1.5		ns
120	BCLK low time	t _{KLKH}	$(WS + 0.5) \times T_C - 2.5$	3.8		ns
121	BCLK high to input data valid	t _{KHQV}	$(WS + 1) \times T_C - 3.5$	$\overline{}$	9.5	ns
122	RD assertion to input data valid	t _{GLQV}	$(WS + 1) \times T_C - 7.5$	2	5.0	ns
123	RD deassertion to input data invalid	t _{GHQX}		0.0	_	ns
124	Address and AA setup time to clock high	t _{AVKH}	$0.5 \times T_{\rm C} - 4.0$	2.8		ns
125	$\overline{\mathrm{WR}}$ setup time to clock high	t _{SWVKH}	$0.5 \times T_{C} - 4.0$	2.8		ns
126	Data out setup time to clock high	t _{DVKH}	$(WS + 0.5) \times T_C - 4.0$	2.8		ns
127	BCLK high to address and AA invalid (hold time)	t _{KHAX}	$(WS + 0.5) \times T_C - 1.0$	5.3		ns
128	BCLK high to $\overline{\mathrm{WR}}$ deassertion (hold time)	tKHSWX	$(WS + 0.5) \times T_C - 1.0$	5.3		ns
129	BCLK high to input data invalid (data hold time)	t _{KHQX2}		0.0		ns
130	BCLK high to output data invalid (data hold time) BCLK high to data high impedance	tKHDX	$0.5 \times T_{C} - 1.0$	5.3		ns
Note:	WS is the number of wait states specified in th	ne BCR.	•			

 Table 2-9
 SSRAM Read and Write Access



Figure 2-15 SSRAM Write Access



 Table 2-10
 DRAM Page Mode Timings, One Wait State (Low-Power Applications)^{1, 2, 3}

No.	Characteristics	Symbol Expression		20 MHz ⁶		30 M	Unit	
110.				Min	Max	Min	Max	Cint
131	Page mode cycle time	t _{PC}	$1.25 \times T_{C}$	62.5		41.7		ns
132	CAS assertion to data valid (read)	t _{CAC}	T _C – 7.5		42.5	_	25.8	ns
133	Column address valid to data valid (read)	t _{AA}	$1.5 \times T_{C} - 7.5$	_	67.5	_	42.5	ns
134	CAS deassertion to data not valid (read hold time)	t _{OFF}		0.0		0.0		ns
135	Last $\overline{CAS}$ assertion to $\overline{RAS}$ deassertion	t _{RSH}	$0.75 \times T_{C} - 4.0$	33.5		21.0		ns
136	$\frac{Previous \overline{CAS}}{RAS} deassertion to$	t _{RHCP}	$2 \times T_C - 4.0$	96.0		62.7		ns
137	CAS assertion pulse width	t _{CAS}	$0.75 \times T_{C} - 4.0$	33.5		21.0		ns

Na	Characteristics	Course la cal	Emproved	20 M	(Hz ⁶	30 M	Hz ⁶	T I a St
No.	Characteristics	Symbol	Expression	Min	Max	Min	Max	Unit
138	Last $\overline{CAS}$ deassertion to $\overline{RAS}$ deassertion ⁴ • BRW[1:0] = 00 • BRW[1:0] = 01 • BRW[1:0] = 10 • BRW[1:0] = 11	t _{CRP}	$\begin{array}{c} 1.75 \times T_{C}-6.0\\ 3.25 \times T_{C}-6.0\\ 4.25 \times T_{C}-6.0\\ 6.25 \times T_{C}-6.0 \end{array}$	81.5 156.5 206.5 306.5	 	52.3 102.2 135.5 202.1		ns ns ns ns
139	CAS deassertion pulse width	t _{CP}	$0.5 \times T_{C} - 4.0$	21.0	_~	12.7	$\rightarrow$	ns
140	Column address valid to CAS assertion	t _{ASC}	$0.5 \times T_{C} - 4.0$	21.0		12.7		ns
141	CAS assertion to column address not valid	t _{CAH}	$0.75 \times T_{C} - 4.0$	33.5		21.0		ns
142	Last column address valid to $\overline{\text{RAS}}$ deassertion	t _{RAL}	$2 \times T_{C} - 4.0$	96.0		62.7	—	ns
143	$\overline{\text{WR}}$ deassertion to $\overline{\text{CAS}}$ assertion	t _{RCS}	0.75 × T _C – 3.8	33.7		21.2	—	ns
144	$\overline{CAS}$ deassertion to $\overline{WR}$ assertion	t _{RCH}	$0.25 \times T_{C} - 3.7$	8.8		4.6	—	ns
145	CAS assertion to WR     deassertion	twCH	0.5 × T _C − 4.2	20.8		12.5		ns
146	WR assertion pulse width	twp	$1.5 \times T_C - 4.5$	70.5		45.5		ns
147	Last WR assertion to RAS deassertion	t _{RWL}	$1.75 \times T_{C} - 4.3$	83.2		54.0		ns
148	WR assertion to CAS deassertion	t _{CWL}	$1.75 \times T_{C} - 4.3$	83.2		54.0		ns
149	Data valid to CAS assertion (Write)	t _{DS}	$0.25 \times T_{C} - 4.0$	8.5		4.3		ns
150	CAS assertion to data not valid (write)	t _{DH}	$0.75 \times T_{C} - 4.0$	33.5		21.0		ns
151	WR assertion to CAS assertion	t _{WCS}	T _C – 4.3	45.7		29.0		ns
152	Last RD assertion to RAS deassertion	t _{ROH}	$1.5 \times T_{C} - 4.0$	71.0		46.0		ns
153	$\overline{\text{RD}}$ assertion to data valid	t _{GA}	T _C – 7.5		42.5		25.8	ns
154	$\overline{\text{RD}}$ deassertion to data not valid ⁵	t _{GZ}		0.0		0.0		ns

# Table 2-10 DRAM Page Mode Timings, One Wait State (Low-Power Applications)^{1, 2, 3}

#### Specifications

## External Memory Interface (Port A)

No.	Characteristics	Symbol	Expression	20 MHz ⁶		30 MHz ⁶		Unit		
110.	Characteristics	Symbol	LAPICSSION	Min	Max	Min	Max	Oint		
155	$\overline{WR}$ assertion to data act	ive	$0.75 \times T_{C} - 0.3$	37.2	—	24.7	1	ns		
156	$\overline{WR}$ deassertion to data l impedance	$\overline{R}$ deassertion to data high $0.25 \times T_C$ — 12.5 — 8.3 ns npedance								
Note:	<ol> <li>The number of wait s</li> <li>The refresh period is</li> <li>All the timings are ca t_{PC} equals 2 × T_C for</li> <li>BRW[1:0] (DRAM co each DRAM out-of-p</li> <li>RD deassertion will a t_{GZ}.</li> <li>Reduced DSP clock s</li> </ol>	specified in the DO Ilculated for the wo read-after-read or ntrol register bits) age access. Ilways occur after O	CR. prst case. Some of the write-after-write se defines the number CAS deassertion; the	he timing equences) r of wait s herefore, t	s are bet states tha he restric	t should l	oe inserte ng is t _{OFF}	ed in and not		

 Table 2-11
 DRAM Page Mode Timings, Two Wait States^{1, 2, 3}

Table 2-10	DRAM Page Mode	Timings, One Wait Stat	e (Low-Power Applications) ^{1, 2, 3}
------------	----------------	------------------------	-----------------------------------------------

NT				80 N	<b>í</b> Hz	<b>T</b> T •.
No.	Characteristics	Symbol	Expression	Min	Max	Unit
131	Page mode cycle time	t _{PC}	2.75 × T _C	34.4		ns
132	CAS assertion to data valid (read)	tCAC	$1.5 \times T_{C} - 6.5$	—	—	ns
133	Column address valid to data valid (read)	t _{AA}	$2.5 \times T_{C} - 6.5$	_	—	ns
134	CAS deassertion to data not valid (read hold time)	t _{OFF}		0.0		ns
135	Last $\overline{CAS}$ assertion to $\overline{RAS}$ deassertion	t _{RSH}	$1.75 \times T_{C} - 4.0$	17.9		ns
136	Previous CAS deassertion to RAS deassertion	t _{RHCP}	$3.25 \times T_{C} - 4.0$	36.6	_	ns
137	CAS assertion pulse width	t _{CAS}	$1.5 \times T_{C} - 4.0$	14.8		ns
138	Last $\overline{CAS}$ deassertion to $\overline{RAS}$ deassertion ⁵	t _{CRP}				
$\langle \rangle$	• BRW[1:0] = 00		$2.0 \times T_{\rm C} - 6.0$	19.0	—	ns
	<ul> <li>BRW[1:0] = 01</li> <li>BRW[1:0] = 10</li> </ul>		$3.5 \times T_{C} - 6.0$ $4.5 \times T_{C} - 6.0$	37.8 50.3		ns ns
	• BRW[1:0] = $10$ • BRW[1:0] = $11$		$4.5 \times T_{\rm C} = 0.0$ $6.5 \times T_{\rm C} = 6.0$	75.3	_	ns
139	CAS deassertion pulse width	t _{CP}	$1.25 \times T_{C} - 4.0$	11.6		ns
140	Column address valid to $\overline{CAS}$ assertion	t _{ASC}	T _C -4.0	8.5		ns

NT		C 1 1	<b>.</b> .	80 N	1Hz				
No.	Characteristics	Symbol	Expression	Min	Max	Unit			
141	CAS assertion to column address not valid	t _{CAH}	$1.75 \times T_{C} - 4.0$	17.9	$\overline{n}$	ns			
142	Last column address valid to $\overline{RAS}$ deassertion	t _{RAL}	$3 \times T_{C} - 4.0$	33.5	4	ns			
143	$\overline{\mathrm{WR}}$ deassertion to $\overline{\mathrm{CAS}}$ assertion	t _{RCS}	$1.25 \times T_{C} - 3.8$	11.8	_>	ns			
144	$\overline{CAS}$ deassertion to $\overline{WR}$ assertion	t _{RCH}	$0.5 \times T_{\rm C} - 3.7$	2.6	$\rightarrow$	ns			
145	$\overline{CAS}$ assertion to $\overline{WR}$ deassertion	t _{WCH}	$1.5 \times T_{C} - 4.2$	14.6	_	ns			
146	WR assertion pulse width	t _{WP}	$2.5 \times T_{\rm C} - 4.5$	26.8	—	ns			
147	Last $\overline{WR}$ assertion to $\overline{RAS}$ deassertion	t _{RWL}	$2.75 \times T_{C} - 4.3$	30.1	—	ns			
148	$\overline{\text{WR}}$ assertion to $\overline{\text{CAS}}$ deassertion	t _{CWL}	$2.5 \times T_{C} - 4.3$	27.0		ns			
149	Data valid to $\overline{CAS}$ assertion (write)	t _{DS}	$0.25 \times T_{C} - 3.0$	0.1		ns			
150	$\overline{CAS}$ assertion to data not valid (write)	t _{DH}	$1.75 \times T_{C} - 4.0$	17.9		ns			
151	$\overline{\mathrm{WR}}$ assertion to $\overline{\mathrm{CAS}}$ assertion	twcs	$T_{\rm C} - 4.3$	8.2		ns			
152	Last $\overline{\text{RD}}$ assertion to $\overline{\text{RAS}}$ deassertion	t _{ROH}	$2.5 \times T_{\rm C} - 4.0$	27.3		ns			
153	RD assertion to data valid	t _{GA}	1.75 × T _C – 6.5		15.4	ns			
154	RD deassertion to data not valid ⁶	t _{GZ}		0.0	—	ns			
155	WR assertion to data active	$\succ$	$0.75 \times T_{\rm C} - 0.3$	9.1	—	ns			
156	WR deassertion to data high impedance	•	$0.25 \times T_{C}$	—	3.1	ns			
Note:									

<b>Tuble 11</b> Divini 1 uge mode minigo, 1 wo wate blates (Continued	Table 2-11	DRAM Page Mode	Timings, Two Wai	t States ^{1, 2, 3}	(Continued)
-----------------------------------------------------------------------	------------	----------------	------------------	-----------------------------	-------------

BRW[1:0] (DRAM Control Register bits) defines the number of wait states that should be inserted in 5. each DRAM out-of-page access. RD deassertion will always occur after  $\overline{CAS}$  deassertion; therefore, the restricted timing is t_{OFF} and not 6.

t_{GZ}.

		C 1 1	<b>.</b> .	80 N	/IHz	
No.	Characteristics	Symbol	Expression	Min	Max	Unit
131	Page mode cycle time	t _{PC}	$3.5 \times T_C$	43.8	π	ns
132	CAS assertion to data valid (read)	t _{CAC}	$2 \times T_C - 6.5$	_	18.5	ns
133	Column address valid to data valid (read)	t _{AA}	$3 \times T_C - 6.5$		31.0	ns
134	CASdeassertion to data not valid (readhold time)	t _{OFF}		0.0	->	ns
135	Last $\overline{CAS}$ assertion to $\overline{RAS}$ deassertion	t _{RSH}	$2.5 \times T_{\rm C} - 4.0$	27.3	<u> </u>	ns
136	Previous $\overline{CAS}$ deassertion to $\overline{RAS}$ deassertion	t _{RHCP}	$4.5 \times T_{\rm C} - 4.0$	52.3	_	ns
137	CAS assertion pulse width	t _{CAS}	$2 \times T_{C} - 4.0$	21.0	_	ns
138	Last $\overline{CAS}$ deassertion to $\overline{RAS}$ deassertion ⁵ • BRW[1:0] = 00 • BRW[1:0] = 01 • BRW[1:0] = 10 • BRW[1:0] = 11	t _{CRP}	$2.25 \times T_{C} - 6.0$ 3.75 × T _C - 6.0 4.75 × T _C - 6.0 6.75 × T _C - 6.0	22.2 40.9 53.4 78.4		ns ns ns ns
139	CAS deassertion pulse width	tCP	$1.5 \times T_{\rm C} - 4.0$	14.8	—	ns
140	Column address valid to $\overline{CAS}$ assertion	t _{ASC}	$T_{C} - 4.0$	8.5	_	ns
141	CAS assertion to column address not valid	tCAH	$2.5 \times T_{C} - 4.0$	27.3	_	ns
142	Last column address valid to RAS deassertion	t _{RAL}	$4 \times T_{C} - 4.0$	46.0	_	ns
143	$\overline{\mathrm{WR}}$ deassertion to $\overline{\mathrm{CAS}}$ assertion	t _{RCS}	$1.25 \times T_{C} - 3.8$	11.8	—	ns
144	CAS deassertion to WR assertion	t _{RCH}	$0.75 \times T_{\rm C} - 3.7$	5.7	—	ns
145	CAS assertion to WR deassertion	t _{WCH}	$2.25 \times T_{C} - 4.2$	23.9	_	ns
146	WR assertion pulse width	t _{WP}	$3.5 \times T_{C} - 4.5$	39.3	_	ns
147	Last WR assertion to RAS deassertion	t _{RWL}	$3.75 \times T_{C} - 4.3$	42.6	_	ns
148	$\overline{WR}$ assertion to $\overline{CAS}$ deassertion	t _{CWL}	$3.25 \times T_{C} - 4.3$	36.3		ns
149	Data valid to $\overline{CAS}$ assertion (write)	t _{DS}	$0.5 \times T_{C} - 4.0$	2.3		ns
150	CAS assertion to data not valid (write)	t _{DH}	$2.5 \times T_{C} - 4.0$	27.3		ns
151	$\overline{\mathrm{WR}}$ assertion to $\overline{\mathrm{CAS}}$ assertion	t _{WCS}	$1.25 \times T_{C} - 4.3$	11.3		ns
152	Last $\overline{\text{RD}}$ assertion to $\overline{\text{RAS}}$ deassertion	t _{ROH}	$3.5 \times T_{C} - 4.0$	39.8		ns
153	RD assertion to data valid	t _{GA}	$2.5 \times T_{\rm C} - 6.5$		24.8	ns
154	$\overline{\text{RD}}$ deassertion to data not valid ⁶	t _{GZ}		0.0		ns

Table 2-12	DRAM Page Mode Timings, Three Wait States ^{1, 2, 3}

No		Characteristics	Symbol	Expression	80 MHz		Unit	
No.				Expression	Min	Max	Unit	
155	WR a	ssertion to data active		$0.75 \times T_{\rm C} - 0.3$	9.1	~	ns	
156	WR c	$\overline{\text{VR}}$ deassertion to data high impedance $0.25 \times T_{\text{C}}$ — 3.1 ns						
Note:	2. 3. 4. 5.	The number of wait states for Page mode The refresh period is specified in the DC The asynchronous delays specified in the All the timings are calculated for the wo $t_{PC}$ equals $4 \times T_C$ for read-after-read or w BRW[1:0] (DRAM control register bits) d each DRAM out-of page-access. $\overline{RD}$ deassertion will always occur after $\overline{C}$ $t_{GZ}$ .	R. e expression rst case. Son vrite-after-v lefines the r	ns are valid for DSP5630 ne of the timings are bette vrite sequences). number of wait states that	r for spec	inserted	in	

Table 2-12	DRAM Page Mode Timings, Three Wait States ^{1, 2, 3} (Continued)

Table 2-13         DRAM Page Mode Timings, Four Wait States ^{1, 2, 3}
--------------------------------------------------------------------------------

No.	Characteristics	Symbol	Expression	80 N	/IHz	Unit
INU.	Characteristics	Symbol	Expression	Min	Max	Unit
131	Page mode cycle time	t _{PC}	4.5×T _C	56.3		ns
132	CAS assertion to data valid (read)	t _{CAC}	2.75 × T _C – 6.5		27.9	ns
133	Column address valid to data valid (read)	t _{AA}	$3.75 \times T_{\rm C} - 6.5$		40.4	ns
134	CAS deassertion to data not valid (read hold time)	t _{OFF}		0.0	—	ns
135	Last CAS assertion to RAS deassertion	t _{RSH}	$3.5 \times T_{C} - 4.0$	39.8	—	ns
136	Previous CAS deassertion to RAS deassertion	t _{RHCP}	$6 \times T_{C} - 4.0$	71.0	_	ns
137	CAS assertion pulse width	t _{CAS}	$2.5 \times T_{C} - 4.0$	27.3	—	ns
138	Last CAS deassertion to RAS deassertion ⁵	t _{CRP}				
	• <b>BRW</b> [1:0] = 00		$2.75 \times T_{C} - 6.0$	28.4		ns
$\langle \rangle$	• $BRW[1:0] = 01$		$4.25 \times T_{C} - 6.0$	47.2	—	ns
	• BRW[1:0] = 10 • BRW[1:0] = 11		$5.25 \times T_{C} - 6.0$ $6.25 \times T_{C} - 6.0$	59.7 72.2	_	ns ns
139	$\overline{CAS}$ deassertion pulse width	t _{CP}	$2 \times T_{C} - 4.0$	21.0		ns
140	Column address valid to $\overline{CAS}$ assertion	t _{ASC}	T _C – 4.0	8.5	—	ns
141	$\overline{CAS}$ assertion to column address not valid	t _{CAH}	$3.5 \times T_{C} - 4.0$	39.8		ns

	Characteristics	Course la cal	Turn na stan	80 N	/IHz	TT
No.	Characteristics	Symbol	Expression	Min	Max	Unit
142	Last column address valid to $\overline{RAS}$ deassertion	t _{RAL}	$5 \times T_{\rm C} - 4.0$	58.5		ns
143	$\overline{\text{WR}}$ deassertion to $\overline{\text{CAS}}$ assertion	t _{RCS}	$1.25 \times T_{C} - 3.8$	11.8	4	ns
144	$\overline{\text{CAS}}$ deassertion to $\overline{\text{WR}}$ assertion	t _{RCH}	$1.25 \times T_{C} - 3.7$	11.9		ns
145	$\overline{\text{CAS}}$ assertion to $\overline{\text{WR}}$ deassertion	t _{WCH}	$3.25 \times T_{C} - 4.2$	36.4	~	ns
146	$\overline{\mathrm{WR}}$ assertion pulse width	t _{WP}	$4.5 \times T_{\rm C} - 4.5$	51.8		ns
147	Last $\overline{WR}$ assertion to $\overline{RAS}$ deassertion	t _{RWL}	$4.75 \times T_{\rm C} - 4.3$	55.1	—	ns
148	$\overline{\mathrm{WR}}$ assertion to $\overline{\mathrm{CAS}}$ deassertion	t _{CWL}	$3.75 \times T_{C} - 4.3$	42.6		ns
149	Data valid to $\overline{CAS}$ assertion (write)	t _{DS}	$0.5 \times T_{C} - 4.0$	2.3		ns
150	CAS assertion to data not valid (write)	t _{DH}	$3.5 \times T_{C} - 4.0$	39.8	—	ns
151	$\overline{\mathrm{WR}}$ assertion to $\overline{\mathrm{CAS}}$ assertion	twcs	$1.25 \times T_{C} - 4.3$	11.3		ns
152	Last $\overline{\text{RD}}$ assertion to $\overline{\text{RAS}}$ deassertion	t _{ROH}	$4.5 \times T_{\rm C} - 4.0$	52.3		ns
153	RD assertion to data valid	t _{GA}	3.25 × T _C – 6.5		34.1	ns
154	RD deassertion to data not valid ⁶	t _{GZ}		0.0		ns
155	WR assertion to data active		$0.75 \times T_{\rm C} - 0.3$	9.1		ns
156	WR deassertion to data high impedance		$0.25 \times T_{C}$		3.1	ns

Table 2-13	DRAM Page Mode	Timings, Four Wait State	$es^{1, 2, 3}$ (Continued)
------------	----------------	--------------------------	----------------------------

Note: 1. The number of wait states for Page mode access is specified in the DCR.

2. The refresh period is specified in the DCR.

3. The asynchronous delays specified in the expressions are valid for DSP56305.

4. All the timings are calculated for the worst case. Some of the timings are better for specific cases (e.g., t_{PC} equals 3× T_C for read-after-read or write-after-write sequences).

5. BRW[1:0] (DRAM control register bits) defines the number of wait states that should be inserted in each DRAM out-of-page access.

6. RD deassertion will always occur after  $\overline{CAS}$  deassertion; therefore, the restricted timing is  $t_{OFF}$  and not  $t_{GZ}$ .







Figure 2-19 DRAM Out-of-Page Wait States Selection Guide

Table 2-14	DRAM Out-	of-Page and Re	fresh Timings, Four V	<i>Vait States</i> ^{1, 2}
------------	-----------	----------------	-----------------------	------------------------------------

No.	Characteristics ³	Symbol Expression		Expression 20 MHz ⁴		30 MHz ⁴		Unit
110.	Characteristics	Symbol	Expression	Min	Max	Min	Max	
157	Random read or write cycle time	t _{RC}	$5 \times T_C$	250.0		166.7		ns
158	RAS assertion to data valid (read)	t _{RAC}	$2.75 \times T_{\rm C} - 7.5$		130.0	_	84.2	ns
159	CAS assertion to data valid (read)	t _{CAC}	$1.25 \times T_{C} - 7.5$		55.0		34.2	ns
160	Column address valid to data valid (read)	t _{AA}	$1.5 \times T_{C} - 7.5$		67.5		42.5	ns
161	CAS deassertion to data not valid (read hold time)	t _{OFF}		0.0		0.0		ns
162	$\overline{\text{RAS}}$ deassertion to $\overline{\text{RAS}}$ assertion	t _{RP}	$1.75 \times T_{C} - 4.0$	83.5		54.3		ns

No.	Characteristics ³	Symbol	Expression	20 N	1Hz ⁴	30 M	1Hz ⁴	Unit
110.	Characteristics ³	Symbol	Expression	Min	Max	Min	Max	Unit
163	RAS assertion pulse width	t _{RAS}	$3.25 \times T_{C} - 4.0$	158.5		104.3		ns
164	$\overline{CAS}$ assertion to $\overline{RAS}$ deassertion	t _{RSH}	$1.75 \times T_{C} - 4.0$	83.5		54.3 🏑	1	ns
165	$\overline{\text{RAS}}$ assertion to $\overline{\text{CAS}}$ deassertion	t _{CSH}	$2.75 \times T_{C} - 4.0$	133.5		87.7	1	ns
166	CAS assertion pulse width	t _{CAS}	$1.25 \times T_{C} - 4.0$	58.5	-	37.7		ns
167	$\overline{\text{RAS}}$ assertion to $\overline{\text{CAS}}$ assertion	t _{RCD}	$1.5 \times T_C \pm 2$	73.0	77.0	48.0	52.0	ns
168	$\overline{\text{RAS}}$ assertion to column address valid	t _{RAD}	$1.25 \times T_C \pm 2$	60.5	64,5	39.7	43.7	ns
169	$\overline{CAS}$ deassertion to $\overline{RAS}$ assertion	t _{CRP}	$2.25 \times T_{C} - 4.0$	108.5	_	71.0	_	ns
170	$\overline{CAS}$ deassertion pulse width	t _{CP}	1.75×T _C -4.0	83.5		54.3	_	ns
171	Row address valid to $\overline{RAS}$ assertion	t _{ASR}	$1.75 \times T_{C} - 4.0$	83.5		54.3	—	ns
172	$\overline{RAS}$ assertion to row address not valid	t _{RAH}	$1.25 \times T_{C} - 4.0$	58.5		37.7	—	ns
173	Column address valid to CAS assertion	t _{ASC}	$0.25 \times T_{C} - 4.0$	8.5	_	4.3	_	ns
174	CAS assertion to column address not valid	tCAH	$1.75 \times T_{C} - 4.0$	83.5		54.3		ns
175	RAS assertion to column address not valid	t _{AR}	$3.25 \times T_{C} - 4.0$	158.5		104.3		ns
176	Column address valid to RAS deassertion	t _{RAL}	$2 \times T_{C} - 4.0$	96.0		62.7		ns
177	WR deassertion to CAS assertion	t _{RCS}	$1.5 \times T_{C} - 3.8$	71.2		46.2		ns
178	$\overline{CAS}$ deassertion to $\overline{WR}$ assertion	t _{RCH}	$0.75 \times T_{C} - 3.7$	33.8	_	21.3	_	ns
179	$\overline{\text{RAS}}$ deassertion to $\overline{\text{WR}}$ assertion	t _{RRH}	$0.25 \times T_{C} - 3.7$	8.8	_	4.6		ns
180	$\overline{CAS}$ assertion to $\overline{WR}$ deassertion	t _{WCH}	$1.5 \times T_{C} - 4.2$	70.8	_	45.8		ns

<b>Table 2-14</b>	DRAM Out-of-Page	and Refresh Timings	, Four Wait States ^{1, 2} (Continued)
-------------------	------------------	---------------------	------------------------------------------------

No.	Characteristics ³	Symbol Expression	20 MHz ⁴		30 MHz ⁴		Unit	
110.	Characteristics	Symbol		Min	Max	Min	Max	Unit
181	$\overline{RAS}$ assertion to $\overline{WR}$ deassertion	t _{WCR}	$3 \times T_{C} - 4.2$	145.8	_	95.8		ns
182	$\overline{\text{WR}}$ assertion pulse width	t _{WP}	$4.5 \times T_{C} - 4.5$	220.5	_	145.5		ns
183	$\overline{\text{WR}}$ assertion to $\overline{\text{RAS}}$ deassertion	t _{RWL}	$4.75 \times T_{C} - 4.3$	233.2	- <	154,0	-	ns
184	$\overline{\text{WR}}$ assertion to $\overline{\text{CAS}}$ deassertion	t _{CWL}	$4.25 \times T_{C} - 4.3$	208.2	-	137.4	~	ns
185	Data valid to $\overline{CAS}$ assertion (write)	t _{DS}	$2.25 \times T_{C} - 4.0$	108.5		71.0		ns
186	$\overline{CAS}$ assertion to data not valid (write)	t _{DH}	$1.75 \times T_{C} - 4.0$	83.5		54.3		ns
187	RAS assertion to data not valid (write)	t _{DHR}	$3.25 \times T_{\rm C} - 4.0$	158.5	_	104.3		ns
188	$\overline{\text{WR}}$ assertion to $\overline{\text{CAS}}$ assertion	t _{WCS}	$3 \times T_{C} - 4.3$	145.7	_	95.7		ns
189	$\overline{CAS}$ assertion to $\overline{RAS}$ assertion (refresh)	t _{CSR}	$0.5 \times T_{C} - 4.0$	21.0	_	12.7		ns
190	$\overline{\text{RAS}}$ deassertion to $\overline{\text{CAS}}$ assertion (refresh)	t _{RPC}	$1.25 \times T_{C} - 4.0$	58.5	—	37.7	—	ns
191	RD assertion to RAS deassertion	t _{ROH}	$4.5 \times T_{C} - 4.0$	221.0	_	146.0		ns
192	RD assertion to data valid	t _{GA}	$4 \times T_C - 7.5$	_	192.5	—	125.8	ns
193	$\overline{\text{RD}}$ deassertion to data not valid ³	$t_{GZ}$		0.0	_	0.0		ns
194	WR assertion to data active		$0.75 \times T_{C} - 0.3$	37.2		24.7		ns
195	WR deassertion to data high impedance		$0.25 \times T_{C}$		12.5		8.3	ns

<b>Table 2-14</b>	DRAM Out-of-Page and Refresh	n Timings, Four Wait States ^{1,}	² (Continued)

3.  $\overline{\text{RD}}$  deassertion will always occur after  $\overline{\text{CAS}}$  deassertion; therefore, the restricted timing is t_{OFF} and not t_{GZ}.

t_{GZ}.
4. Reduced DSP clock speed allows use of DRAM out-of-page access with four Wait states (See **Figure 2-19**.).

				80 MHz		
No.	Characteristics ⁴	Symbol	Expression ³	Min	Max	Unit
157	Random read or write cycle time	t _{RC}	$9 \times T_C$	112.5	~	ns
158	RAS assertion to data valid (read)	t _{RAC}	$4.75 \times T_{C} - 6.5$		52 <mark>.</mark> 9	ns
159	CAS assertion to data valid (read)	t _{CAC}	$2.25 \times T_{C} - 6.5$		21.6	ns
160	Column address valid to data valid (read)	t _{AA}	$3 \times T_C - 6.5$		31.0	ns
161	CAS deassertion to data not valid (read hold time)	t _{OFF}	~	0.0		ns
162	$\overline{\text{RAS}}$ deassertion to $\overline{\text{RAS}}$ assertion	t _{RP}	$3.25 \times T_{C} - 4.0$	36,6		ns
163	RAS assertion pulse width	t _{RAS}	5.75 × T _C – 4.0	67.9		ns
164	$\overline{CAS}$ assertion to $\overline{RAS}$ deassertion	t _{RSH}	$3.25 \times T_{\rm C} - 4.0$	36.6		ns
165	$\overline{\text{RAS}}$ assertion to $\overline{\text{CAS}}$ deassertion	t _{CSH}	$4.75 \times T_{C} - 4.0$	55.4		ns
166	CAS assertion pulse width	tCAS	$2.25 \times T_{C} - 4.0$	24.1		ns
167	$\overline{RAS}$ assertion to $\overline{CAS}$ assertion	t _{RCD}	$2.5 \times T_{C} \pm 2$	29.3	33.3	ns
168	$\overline{\mathrm{RAS}}$ assertion to column address valid $\bigwedge$	t _{RAD}	$1.75 \times T_{C} \pm 2$	19.9	23.9	ns
169	CAS deassertion to RAS assertion	t _{CRP}	$4.25 \times T_{C} - 4.0$	49.1		ns
170	CAS deassertion pulse width	t _{CP}	$2.75 \times T_{C} - 4.0$	30.4	—	ns
171	Row address valid to RAS assertion	t _{ASR}	$3.25 \times T_{C} - 4.0$	36.6	—	ns
172	RAS assertion to row address not valid	t _{RAH}	$1.75 \times T_{C} - 4.0$	17.9	—	ns
173	Column address valid to CAS assertion	t _{ASC}	$0.75 \times T_{C} - 4.0$	5.4		ns
174	CAS assertion to column address not valid	t _{CAH}	$3.25 \times T_{C} - 4.0$	36.6	—	ns
175	RAS assertion to column address not valid	t _{AR}	$5.75 \times T_{C} - 4.0$	67.9	—	ns
176	Column address valid to RAS deassertion	t _{RAL}	$4 \times T_C - 4.0$	46.0		ns
177	$\overline{\mathrm{WR}}$ deassertion to $\overline{\mathrm{CAS}}$ assertion	t _{RCS}	$2 \times T_{C} - 3.8$	21.2	—	ns
178	CAS deassertion to WR assertion	t _{RCH}	$1.25 \times T_{C} - 3.7$	11.9	—	ns
179	RAS deassertion to WR assertion	t _{RRH}	$0.25 \times T_{C} - 3.0$	0.1	—	ns
180	$\overline{CAS}$ assertion to $\overline{WR}$ deassertion	t _{WCH}	$3 \times T_{C} - 4.2$	33.3	—	ns
181	$\overline{RAS}$ assertion to $\overline{WR}$ deassertion	t _{WCR}	$5.5 \times T_{C} - 4.2$	64.6	—	ns
182	WR assertion pulse width	t _{WP}	$8.5 \times T_{C} - 4.5$	101.8		ns
183	$\overline{\mathrm{WR}}$ assertion to $\overline{\mathrm{RAS}}$ deassertion	t _{RWL}	$8.75 \times T_{C} - 4.3$	105.1		ns
184	$\overline{\text{WR}}$ assertion to $\overline{\text{CAS}}$ deassertion	t _{CWL}	$7.75 \times T_{\rm C} - 4.3$	92.6		ns
185	Data valid to $\overline{CAS}$ assertion (write)	t _{DS}	$4.75 \times T_{\rm C} - 4.0$	55.4		ns

Table 2-15	DRAM Out-of-Page and Re	efresh Timings, Eight Wait States ^{1, 2}				
NT	~		3	80 MHz		
-------	------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	------------------	-------------------------------	---------------	------	------
No.	Characteristics ⁴	Symbol	Expression ³	Min	Max	Unit
186	CAS assertion to data not valid (write)	t _{DH}	$3.25 \times T_{C} - 4.0$	36.6	_	ns
187	RAS assertion to data not valid (write)	t _{DHR}	$5.75 \times T_{C} - 4.0$	67.9		ns
188	$\overline{\mathrm{WR}}$ assertion to $\overline{\mathrm{CAS}}$ assertion	t _{WCS}	$5.5 \times T_{C} - 4.3$	64.5	7	ns
189	$\overline{CAS}$ assertion to $\overline{RAS}$ assertion (refresh)	t _{CSR}	$1.5 \times T_{C} - 4.0$	14.8	->	ns
190	$\overline{RAS}$ deassertion to $\overline{CAS}$ assertion (refresh)	t _{RPC}	$1.75 \times T_{C} - 4.0$	17.9	`	ns
191	$\overline{\text{RD}}$ assertion to $\overline{\text{RAS}}$ deassertion	t _{ROH}	$8.5 \times T_{C} - 4.0$	102.3	~_	ns
192	RD assertion to data valid	t _{GA}	$7.5 \times T_{C} - 6.5$	$\rightarrow$	87.3	ns
193	$\overline{\mathrm{RD}}$ deassertion to data not valid ⁴	t _{GZ}	0.0	0.0		ns
194	$\overline{\mathrm{WR}}$ assertion to data active		$0.75 \times T_{\rm C} - 0.3$	9.1		ns
195	WR deassertion to data high impedance		$0.25 \times T_{C}$		3.1	ns
Note:	<ol> <li>The number of wait states for out-of-page access is specified in the DCR.</li> <li>The refresh period is specified in the DCR.</li> <li>The asynchronous delays specified in the expressions are valid for DSP56305.</li> </ol>					

 Table 2-15
 DRAM Out-of-Page and Refresh Timings, Eight Wait States^{1, 2} (Continued)

 $\sim 11$ 

 The asynchronous delays specified in the expressions are valid for Dor 50000.
 RD deassertion will always occur after CAS deassertion; therefore, the restricted timing is t_{OFF} and not t_{GZ}.  $\searrow$ 

<b>Table 2-16</b>	DRAM Out-of-	Page and Re	fresh Timings,	Eleven Wait States ^{1, 2}
			0	

Ne		Course heat	3	80 MHz		Theit
No.	Characteristics ⁴	Symbol	Expression ³	Min	Max	Unit
157	Random read or write cycle time	t _{RC}	$12 \times T_C$	150.0		ns
158	RAS assertion to data valid (read)	t _{RAC}	$6.25 \times T_{C} - 6.5$	_	71.6	ns
159	CAS assertion to data valid (read)	t _{CAC}	$3.75 \times T_{C} - 6.5$		40.4	ns
160	Column address valid to data valid (read)	t _{AA}	$4.5 \times T_{\rm C} - 6.5$		49.8	ns
161	CAS deassertion to data not valid (read hold time)	t _{OFF}		0.0	—	ns
162	RAS deassertion to RAS assertion	t _{RP}	$4.25 \times T_{C} - 4.0$	49.1	—	ns
163	RAS assertion pulse width	t _{RAS}	$7.75 \times T_{\rm C} - 4.0$	92.9	_	ns
164	CAS assertion to RAS deassertion	t _{RSH}	$5.25 \times T_{C} - 4.0$	61.6	_	ns
165	$\overline{RAS}$ assertion to $\overline{CAS}$ deassertion	t _{CSH}	$6.25 \times T_{C} - 4.0$	74.1	_	ns
166	$\overline{\text{CAS}}$ assertion pulse width	t _{CAS}	$3.75 \times T_{C} - 4.0$	42.9	_	ns
167	$\overline{\text{RAS}}$ assertion to $\overline{\text{CAS}}$ assertion	t _{RCD}	$2.5 \times T_C \pm 2$	29.3	33.3	ns
168	$\overline{\text{RAS}}$ assertion to column address valid	t _{RAD}	$1.75 \times T_C \pm 2$	19.9	23.9	ns
169	$\overline{\text{CAS}}$ deassertion to $\overline{\text{RAS}}$ assertion	t _{CRP}	$5.75 \times T_{C} - 4.0$	67.9		ns

MOTOROLA

NT				80 N	4Hz	<b>.</b>
No.	Characteristics ⁴	Symbol Expression ³		Min	Max	Unit
170	CAS deassertion pulse width	t _{CP}	$4.25 \times T_{C} - 4.0$	49.1		ns
171	Row address valid to $\overline{RAS}$ assertion	t _{ASR}	$4.25 \times T_{\rm C} - 4.0$	49.1		ns
172	$\overline{RAS}$ assertion to row address not valid	t _{RAH}	$1.75 \times T_{C} - 4.0$	17.9	1	ns
173	Column address valid to $\overline{CAS}$ assertion	t _{ASC}	$0.75 \times T_{C} - 4.0$	5.4	->	ns
174	CAS assertion to column address not valid	t _{CAH}	$5.25 \times T_{\rm C} - 4.0$	61.6		ns
175	RAS assertion to column address not valid	t _{AR}	$7.75 \times T_{\rm C} - 4.0$	92.9		ns
176	Column address valid to $\overline{RAS}$ deassertion	t _{RAL}	$6 \times T_{C} - 4.0$	71.0		ns
177	$\overline{\mathrm{WR}}$ deassertion to $\overline{\mathrm{CAS}}$ assertion	t _{RCS}	$3.0 \times T_{C} - 3.8$	33.7		ns
178	$\overline{\text{CAS}}$ deassertion to $\overline{\text{WR}}$ assertion	t _{RCH}	$1.75 \times T_{C} - 3.7$	18.2		ns
179	$\overline{\text{RAS}}$ deassertion to $\overline{\text{WR}}$ assertion	tRRH	$0.25 \times T_{\rm C} - 3.0$	0.1		ns
180	$\overline{CAS}$ assertion to $\overline{WR}$ deassertion	t _{WCH}	$5 \times T_{\rm C} - 4.2$	58.3		ns
181	$\overline{RAS}$ assertion to $\overline{WR}$ deassertion	t _{WCR}	7.5 × T _C – 4.2	89.6	_	ns
182	WR assertion pulse width	t _{WP}	$11.5 \times T_{C} - 4.5$	139.3	_	ns
183	WR assertion to RAS deassertion	t _{RWL}	$11.75 \times T_{C} - 4.3$	142.7	_	ns
184	$\overline{\mathrm{WR}}$ assertion to $\overline{\mathrm{CAS}}$ deassertion	t _{CWL}	$10.25 \times T_{C} - 4.3$	130.1		ns
185	Data valid to $\overline{CAS}$ assertion (write)	t _{DS}	$5.75 \times T_{C} - 4.0$	67.9		ns
186	CAS assertion to data not valid (write)	t _{DH}	$5.25 \times T_{C} - 4.0$	61.6		ns
187	RAS assertion to data not valid (write)	t _{DHR}	$7.75 \times T_{C} - 4.0$	92.9		ns
188	WR assertion to CAS assertion	t _{WCS}	$6.5 \times T_{\rm C} - 4.3$	77.0	—	ns
189	CAS assertion to RAS assertion (refresh)	t _{CSR}	$1.5 \times T_{C} - 4.0$	14.8	—	ns
190	RAS deassertion to CAS assertion (refresh)	t _{RPC}	$2.75 \times T_{C} - 4.0$	30.4	_	ns
191	$\overline{RD}$ assertion to $\overline{RAS}$ deassertion	t _{ROH}	$11.5 \times T_{C} - 4.0$	139.8	_	ns
192	RD assertion to data valid	t _{GA}	$10 \times T_{C} - 6.5$		118.5	ns
193	RD deassertion to data not valid ⁴	t _{GZ}		0.0		ns
194	WR assertion to data active		$0.75 \times T_{\rm C} - 0.3$	9.1		ns
195	WR deassertion to data high impedance		$0.25 \times T_{C}$	—	3.1	ns

Table 2-16	DRAM Out-of-Page and	nd Refresh Timings,	Eleven Wait States ^{1, 2}	(Continued)
	0	0,		```

Note: The number of wait states for out-of-page access is specified in the DCR. 1.

2.

3.

The refresh period is specified in the DCR. The asynchronous delays specified in the expressions are valid for DSP56305.  $\overline{\text{RD}}$  deassertion will always occur after  $\overline{\text{CAS}}$  deassertion; therefore, the restricted timing is t_{OFF} and not 4. t_{GZ}.

NT	2	0 1 1	<b>.</b> .	80 MHz		<b>T</b> T •.
No.	Characteristics ³	Symbol Expression		Min	Max	Unit
157	Random read or write cycle time	t _{RC}	$16 \times T_C$	200.0	-1	ns
158	RAS assertion to data valid (read)	t _{RAC}	$8.25 \times T_{C} - 6.5$	_	96.6	ns
159	$\overline{\text{CAS}}$ assertion to data valid (read)	t _{CAC}	$4.75 \times T_{\rm C} - 6.5$	⁄~	52.9	ns
160	Column address valid to data valid (read)	t _{AA}	$5.5 \times T_{C} - 6.5$		62.3	ns
161	$\overline{\text{CAS}}$ deassertion to data not valid (read hold time)	t _{OFF}	0.0	0.0	$\supset$	ns
162	$\overline{\text{RAS}}$ deassertion to $\overline{\text{RAS}}$ assertion	t _{RP}	$6.25 \times T_{C} - 4.0$	74.1	—	ns
163	RAS assertion pulse width	t _{RAS}	$9.75 \times T_{C} - 4.0$	117.9	—	ns
164	$\overline{\text{CAS}}$ assertion to $\overline{\text{RAS}}$ deassertion	t _{RSH}	$6.25 \times T_{\rm C} - 4.0$	74.1	—	ns
165	$\overline{\text{RAS}}$ assertion to $\overline{\text{CAS}}$ deassertion	t _{CSH}	$8.25 \times T_{C} - 4.0$	99.1	—	ns
166	$\overline{\text{CAS}}$ assertion pulse width	tCAS	$4.75 \times T_{C} - 4.0$	55.4	—	ns
167	$\overline{RAS}$ assertion to $\overline{CAS}$ assertion	t _{RCD}	$3.5 \times T_{\rm C} \pm 2$	41.8	45.8	ns
168	RAS assertion to column address valid	t _{RAD}	2.75 × $T_{C} \pm 2$	32.4	36.4	ns
169	CAS deassertion to RAS assertion	tCRP	$7.75 \times T_{\rm C} - 4.0$	92.9	—	ns
170	CAS deassertion pulse width	¢ _{CP}	$6.25 \times T_{C} - 4.0$	74.1		ns
171	Row address valid to RAS assertion	→ t _{ASR}	$6.25 \times T_{C} - 4.0$	74.1		ns
172	RAS assertion to row address not valid	t _{RAH}	$2.75 \times T_{\rm C} - 4.0$	30.4		ns
173	Column address valid to $\overline{CAS}$ assertion	t _{ASC}	$0.75 \times T_{C} - 4.0$	5.4	—	ns
174	CAS assertion to column address not valid	t _{CAH}	$6.25 \times T_{C} - 4.0$	74.1		ns
175	RAS assertion to column address not valid	t _{AR}	$9.75 \times T_{\rm C} - 4.0$	117.9		ns
176	Column address valid to RAS deassertion	t _{RAL}	$7 \times T_{C} - 4.0$	83.5	—	ns
177	$\overline{WR}$ deassertion to $\overline{CAS}$ assertion	t _{RCS}	$5 \times T_{C} - 3.8$	58.7	—	ns
178	$\overrightarrow{CAS}$ deassertion to $\overrightarrow{WR}$ assertion	t _{RCH}	$1.75 \times T_{\rm C} - 3.7$	18.2	—	ns
179	RAS deassertion to WR assertion	t _{RRH}	$0.25 \times T_{\rm C} - 3.0$	0.1		ns
180	$\overline{CAS}$ assertion to $\overline{WR}$ deassertion	t _{WCH}	$6 \times T_{C} - 4.2$	70.8		ns
181	RAS assertion to WR deassertion	t _{WCR}	$9.5 \times T_{\rm C} - 4.2$	114.6		ns
182	WR assertion pulse width	t _{WP}	$15.5 \times T_{C} - 4.5$	189.3		ns
183	$\overline{\mathrm{WR}}$ assertion to $\overline{\mathrm{RAS}}$ deassertion	t _{RWL}	$15.75 \times T_{C} - 4.3$	192.6		ns
184	$\overline{\mathrm{WR}}$ assertion to $\overline{\mathrm{CAS}}$ deassertion	t _{CWL}	$14.25 \times T_{C} - 4.3$	180.1		ns
185	Data valid to $\overline{CAS}$ assertion (write)	t _{DS}	$8.75 \times T_{C} - 4.0$	105.4		ns

Table 2-17	DRAM Out-of-Page and Refresh Timings, Fifteen Wait States ^{1, 2}
14010 2 17	Did not out of ruge and refresh rinnings, rincent wat blates

NI-		6 1 1	E	80 MHz		Their
No.	. Characteristics ³ Symbol		Expression	Min	Max	Unit
186	CAS assertion to data not valid (write)	t _{DH}	$6.25 \times T_{C} - 4.0$	74.1		ns
187	RAS assertion to data not valid (write)	t _{DHR}	$9.75 \times T_{C} - 4.0$	117.9	_//	ns
188	$\overline{\mathrm{WR}}$ assertion to $\overline{\mathrm{CAS}}$ assertion	t _{WCS}	$9.5 \times T_{\rm C} - 4.3$	114.5	1	ns
189	$\overline{CAS}$ assertion to $\overline{RAS}$ assertion (refresh)	t _{CSR}	$1.5 \times T_{C} - 4.0$	14.8	_	ns
190	$\overline{\text{RAS}}$ deassertion to $\overline{\text{CAS}}$ assertion (refresh)	t _{RPC}	$4.75 \times T_{\rm C} - 4.0$	55.4	ľ	ns
191	$\overline{\text{RD}}$ assertion to $\overline{\text{RAS}}$ deassertion	t _{ROH}	$15.5 \times T_{C} - 4.0$	189.8	$\geq$	ns
192	RD assertion to data valid	t _{GA}	$14 \times T_{C} - 6.5$	$\rightarrow$	168.5	ns
193	$\overline{\text{RD}}$ deassertion to data not valid ³	t _{GZ}		0.0		ns
194	$\overline{\mathrm{WR}}$ assertion to data active		$0.75 \times T_{\rm C} - 0.3$	9.1		ns
195	WR deassertion to data high impedance	6	$0.25 \times T_{C}$		3.1	ns
Note:	1. The number of wait states for out-of-page	access is spe	cified in the DCR			

Table 2-17	DRAM Out-of-Page	and Refresh 7	<b>Fimings</b> , Fifteen	Wait States ^{1, 2}	(Continued)

Note:

1. 2. 3.

The number of wait states for out-of-page access is specified in the DCR. The refresh period is specified in the DCR. RD deassertion will always occur after CAS deassertion; therefore, the restricted timing is t_{OFF} and not  $t_{GZ}$ .







Figure 2-22 DRAM Refresh Access

<b>Table 2-18</b>	External Bus Synchr	onous Timing	gs (SRAM Access) ⁴
-------------------	---------------------	--------------	-------------------------------

No.	Chamatariatian	12	80 MHz		Unit
INU.	Characteristics	Expression ^{1, 2}	Min	Max	Unit
196	CLKOUT high to BS assertion	$0.25 \times T_{C} + 4.5$	4.1	7.6	ns
197	CLKOUT high to $\overline{BS}$ deassertion	$0.75 \times T_{C} + 4.5$	10.4	13.9	ns
198	CLKOUT high to address and AA valid CLKOUT high to BL valid	$0.25 \times T_{C} + 4.5$		7.6 5.0	ns ns
199	CLKOUT high to address and AA invalid CLKOUT high to BE invalid	$0.25 \times T_{C}$	3.1 0.0		ns ns
200	TA valid to CLKOUT high (setup time)		5.0		ns
201	CLKQUT high to TA invalid (hold time)		0.0	—	ns
202	CLKOUT high to data out active	$0.25 \times T_{C}$	3.1		ns
203	CLKOUT high to data out valid	$0.25 \times T_{C} + 4.5$	4.1	7.6	ns
204	CLKOUT high to data out invalid	$0.25 \times T_{C}$	3.1	—	ns
205	CLKOUT high to data out high impedance	$0.25 \times T_{\rm C} + 0.5$	—	3.6	ns
206	Data in valid to CLKOUT high (setup)		5.0	—	ns
207	CLKOUT high to data in invalid (hold)		0.0	_	ns
208	CLKOUT high to $\overline{\text{RD}}$ assertion	$0.75 \times T_{C} + 4.5$	10.4	13.9	ns
209	CLKOUT high to $\overline{\text{RD}}$ deassertion		0.0	4.5	ns

### Specifications

No		Characteristics Expression ^{1, 2}	80 MHz		<b>.</b>
No.	Characteristics		Min	Max	Unit
210	CLKOUT high to $\overline{WR}$ assertion ³ • WS = 1 or WS $\ge 4$ • 2 $\le$ WS $\le 3$	$0.5 \times T_{C} + 4.8$	7.6 1.3	11.1 4.8	ns ns
211	CLKOUT high to $\overline{WR}$ deassertion		0.0 🤶	4.3	ns
	<ol> <li>If WS &gt; 1, WR assertion refers to the next rising ed</li> <li>External bus synchronous timings should be used timings.</li> </ol>		clock and a	ut for rela	ative

<b>Table 2-18</b>	External Bus	Synchronous	Timings (S	SRAM Access)	⁴ (Continued)
-------------------	--------------	-------------	------------	--------------	--------------------------





N		г ·	80 MHz		TL
No.	Characteristics	Expression	Min	Max	Unit
212	CLKOUT high to $\overline{BR}$ assertion/deassertion		1.0	4.5	ns
213	$\overline{\mathrm{BG}}$ valid to CLKOUT high (setup)		5.0		ns
214	$\overline{\mathrm{BG}}$ invalid to CLKOUT high (hold)		0.0	71	ns
215	$\overline{\text{BB}}$ Valid to CLKOUT high (input setup)		5.0	->	ns
216	$\overline{\text{BB}}$ invalid to CLKOUT high (input hold)	4	0,0	5	ns
217	CLKOUT high to $\overline{BB}$ assertion (output)		1.0	4.5	ns
218	CLKOUT high to $\overline{BB}$ deassertion (output)		1.0	4.5	ns
219	$\overline{\text{BB}}$ high to $\overline{\text{BB}}$ high impedance (output)		7–	5.6	ns
220	CLKOUT high to address and controls active	$0.25 \times T_C$	3.1		ns
221	CLKOUT high to address and controls high impedance	$0.25 \times T_{C} + 0.5$	—	3.6	ns
222	CLKOUT high to AA active	0.25 × T	3.1	_	ns
223	CLKOUT high to AA deassertion	$0.25 \times T_{\rm C} + 4.5$	4.1	7.6	ns
224	CLKOUT high to AA high impedance	$0.75 \times T_{C} + 0.5$		9.9	ns
Note:	The asynchronous delays specified in the expressions	are valid for DSP56305.			

 Table 2-19
 Arbitration Bus Timings







# HOST INTERFACE TIMING

		- ·	80 N	1Hz	
No.	Characteristic	Expression	Min	Max	Unit
300	Access Cycle Time	$3 \times T_C$	37.5		
301	HA[10:0], HAEN Setup to Data Strobe Assertion ¹		7.0	->	ns
302	HA[10:0], HAEN Valid Hold from Data Strobe Deassertion ¹	<u> </u>	0,0	$\overline{\mathbf{r}}$	ns
303	HRW Setup to $\overline{\text{HDS}}$ Assertion ²	$\sim$	7.0		ns
304	HRW Valid Hold from HDS Deassertion ²		0.0		ns
305	Data Strobe Deasserted Width ¹	$\langle \langle \langle \rangle \rangle$	5.0		ns
306	Data Strobe Asserted Pulse Width ¹	2.5×T _C +2.0	33.3		ns
307	HBS Asserted Pulse Width		3.0		
308	HBS Assertion to Data Strobe Assertion ¹	T _C – 6.0	_	6.5	ns
309	HBS Assertion to Data Strobe Deassertion ¹	$2.5 \times T_{C} + 3.5$	34.8		
310	HBS Deassertion to Data Strobe Deassertion ¹	$1.5 \times T_{C} + 4.0$	22.8		
311	Data Out Valid to TA Assertion $\overline{(HBS)}$ Not Used—Tied to $V_{CQ}^{2}$	$2 \times T_{C} - 14.0$	11.0	_	ns
312	Data Out Active from Read Data Strobe Assertion ³		2.0		ns
313	Data Out Valid from Read Data Strobe Assertion (No Wait States Inserted—HTA Asserted) ³		_	18.9	ns
314	Data Out Valid Hold from Read Data Strobe Deassertion ₃		2.0	_	ns
315	Data Out High Impedance from Read Data Strobe Deassertion ³		_	14.5	ns
316	Data In Valid Setup to Write Data Strobe Deassertion ⁴		10.0		ns
317	Data In Valid Hold from Write Data Strobe Deassertion ⁴		0.0	_	ns
318	HSAK Assertion from Data Strobe Assertion ¹			22.2	ns
319	HSAK Asserted Hold from Data Strobe Deassertion ¹		2.0	_	ns
320	HTA Active from Data Strobe Assertion ^{1,2,5}		3.8	_	ns
321	HTA Assertion from Data Strobe Assertion ( $\overline{\text{HBS}}$ Not Used—Tied to $V_{\text{CC}}$ ) ^{1,2,5}	$2.0 \times T_{\rm C} + 13.8$	38.0	_	
322	HTA Assertion from $\overline{\text{HBS}}$ Assertion ^{2,5}	$2.0 \times T_{\rm C} + 13.8$	38.0		ns

### Table 2-20 Universal Bus Mode Timing Parameters

### Specifications

		<b>.</b> .	80 N	T In it	
No.	Characteristic	Expression	Min	Max	Unit
323	HTA Deasserted from Data Strobe Assertion ^{1,2,5}			23.6	ns
324	HTA Assertion to Data Strobe Deassertion ^{1,2}		0.0		ns
325	HTA High Impedance from Data Strobe Deassertion ^{1,2}		-4	18.5	ns
326	$\overline{\text{HIRQ}}$ Asserted Pulse Width (HIRH = 0, HIRD = 1)	$(LT + 1) \times T_C - 6.0^7$	6.5	->	ns
327	Data Strobe Deasserted Hold from $\overline{\text{HIRQ}}$ Deassertion $(\text{HIRH} = 0)^1$		0.0	7	ns
328	$\overline{\text{HIRQ}}$ Asserted Hold from Data Strobe Assertion (HIRH = 1) ¹	1.5 × T _C	22.7	—	ns
329	$\overline{\text{HIRQ}}$ Deassertion from Data Strobe Assertion (HIRH = 1, HIRD = 1) ¹	$2.5 \times T_{\rm C} + 28.0$	—	55.9	ns
330	$\overline{\text{HIRQ}}$ High Impedance from Data Strobe Assertion (HIRH = 1, HIRD = 0) ^{1,6}	$2.5 \times T_{C} + 28.0$	—	55.9	ns
331	$\overline{\text{HIRQ}}$ Active from Data Strobe Deassertion (HIRH = 1, HIRD = 0) ¹	$2.5 \times T_{C}$	31.3	—	ns
332	HIRQ Deasserted Hold from Data Strobe Deassertion ¹	$2.5 \times T_{C}$	31.3		ns
333	HDRQ ² Asserted Hold from Data Strobe Assertion ¹	$1.5 \times T_{C}$	18.8		ns
334	HDRQ ² Deassertion from Data Strobe Assertion ¹	$2.5 \times T_{C} + 28.0$	_	55.9	ns
335	HDRQ ² Deasserted Hold from Data Strobe Deassertion ¹	$2.5 \times T_{C} + 4.5$	35.8	_	ns
336	HDAK Assertion to Data Strobe Assertion ¹		7.0	—	ns
337	HDAK Asserted Hold from Data Strobe Deassertion ¹		0.0	—	ns
338	HDBEN Deasserted Hold from Data Strobe Assertion ¹		3.0	—	ns
339	HDBEN Assertion from Data Strobe Assertion ¹		—	22.2	ns
340	HDBEN Asserted Hold from Data Strobe Deassertion ¹		3.0	—	ns
341	HDBEN Deassertion from Data Strobe Deassertion ¹		—	22.2	ns
342	HDBDR High Hold from Read Data Strobe Assertion ³		3.0	—	ns
343	HDBDR Low from Read Data Strobe Assertion ³		—	22.2	ns
344	HDBDR Low Hold from Read Data Strobe Deassertion ³		3.0	_	ns
345	HDBDR High from Read Data Strobe Deassertion ³			22.2	ns
346	HRST Assertion to Host Port Pins High Impedance ²		—	25.0	ns

N					80 MHz		
No.		Characteristic	Expression	MinMaxhe Single Data Stropen the example timinactive low.Single Data StropeSingle Data StropeSingle Data StropeTAP = 0); or an exploredShould be consistentCD = 0). The resistor	Unit		
Note:	1.	The Data Strobe is $\overline{\text{HRD}}$ or $\overline{\text{HWR}}$ in the Dual Data Strobe mode.	e mode and $\overline{\text{HDS}}$ in	the Single	Data Stro	be	
	2.	2. HTA, HDRQ, and HRST may be programmed as active-high or active-low. In the example timing diagrams, HDRQ and HRST are shown as active-high and HTA is shown as active low.					
	3.	The Read Data Strobe is $\overline{\text{HRD}}$ in the Dual Data Strobe m				mode.	
	4.	The Write Data Strobe is $\overline{HWR}$ in the Dual Data Strobe m					
	5.	HTA requires an external pull-down resistor if programming pull-up resistor if programmed as active low (HTAP = 1) the DC specifications.	med as active high <u>(</u>	HTAP = 0	); or an ex	ternal	
	6.	HIRQ requires an external pull-up resistor if programme should be consistent with the DC specifications.	d as open drain (HII	RD = 0). T	he resisto	value	
	7.	"LT" is the value of the latency timer register (CLAT) as configuration.	programmed by the	e user duri	ing self		
	8.	Values are valid for $V_{CC} = 3.3 \pm$					

 Table 2-20
 Universal Bus Mode Timing Parameters (Continued)

Table 2-21	Universal Bus Mode,	Synchronous Port	A Type Host Timing
------------	---------------------	------------------	--------------------

Ne	Characteristic	Furgrossian	80 MHz		TImit
No.	Characteristic	Expression	Min	Max	Unit
300	Access Cycle Time	$3 \times T_C$	37.5		ns
301	HA[10:0], HAEN Setup to Data Strobe Assertion ¹		7.0		ns
302	HA[10:0], HAEN Valid Hold from Data Strobe Deassertion		0.0		ns
305	Data Strobe Deasserted Width ¹		5.0		ns
307	HBS Asserted Pulse Width		3.0		ns
308	HBS Assertion to Data Strobe Assertion ¹	$1.25 \times T_{C} - 6.0$		9.6	ns
309	HBS Assertion to Data Strobe Deassertion ¹	$2.5 \times T_{C}$	31.3		ns
310	HBS Deassertion to Data Strobe Deassertion ¹	$1.5 \times T_{C} + 4.0$	22.8		ns
312	Data Out Active from Read Data Strobe Assertion ³		2.0		ns
313	Data Out Valid from Read Data Strobe Assertion (No Wait States Inserted—HTA Asserted) ³		_	18.9	ns
314	Data Out Valid Hold from Read Data Strobe Deassertion ³		2.0	_	ns
315	Data Out High Impedance from Read Data Strobe Deassertion ³			14.5	ns
316	Data In Valid Setup to Write Data Strobe Deassertion ⁴		10.0	_	ns
317	Data In Valid Hold from Write Data Strobe Deassertion ⁴		0.0		ns

### Specifications

### **Host Interface Timing**

<b>N</b> .T			80 MHz		<b>.</b>
No.	Characteristic	Expression	Min	AHz Max 18.5 	Unit
324	HTA Assertion to Data Strobe Deassertion ^{1,2}		0.0	~	ns
325	HTA High Impedance from Data Strobe Deassertion ^{1,2}			18 <mark>.</mark> 5	ns
326	HIRQ Asserted Pulse Width (HIRH = 0, HIRD = 1)	$(LT + 1) \times T_C - 6.0^7$	6.5	71/	ns
327	Data Strobe Deasserted Hold from $\overline{\text{HIRQ}}$ Deassertion (HIRH = 0) ¹		0.0	$\rightarrow$	ns
328	$\overline{\text{HIRQ}}$ Asserted Hold from Data Strobe Assertion (HIRH = 1) ¹	$2.5 \times T_{C}$	31.3	_	ns
329	$\overline{\text{HIRQ}}$ Deassertion from Data Strobe Assertion (HIRH = 1, HIRD = 1) ¹	$3.5 \times T_{C} + 28.0$	7–	68.4	ns
330	$\overline{\text{HIRQ}}$ High Impedance from Data Strobe Assertion (HIRH = 1, HIRD = 0) ^{1,6}	$3.5 \times T_{C} + 28.0$	—	68.4	ns
331	$\overline{\text{HIRQ}}$ Active from Data Strobe Deassertion (HIRH = 1, HIRD = 0) ¹	$2.5 \times T_{C}$	31.3	—	ns
332	HIRQ Deasserted Hold from Data Strobe Deassertion ¹	$2.5 \times T_{C}$	31.3		ns
346	HRST Assertion to Host Port Pins High Impedance ²			25.0	ns
347	HBS Assertion to CLKOUT Rising Edge		5.2		ns
348	Data Strobe Deassertion to CLKOUT Rising Edge ¹		9.0		ns

Table 2-21	Universal Bus Mode,	Synchronous Port A	Type Host Timing	(Continued)
------------	---------------------	--------------------	------------------	-------------

Note: 1. The Data Strobe is HRD or HWR in the Dual Data Strobe mode; and HDS in the Single Data Strobe mode.

2. The Read Data Strobe is HRD in the Dual Data Strobe mode and HDS in the Single Data Strobe mode.

3. The Write Data Strobe is HWR in the Dual Data Strobe mode and HDS in the Single Data Strobe mode.

4. HTA, HDRQ, and HRST may be programmed as active-high or active-low. In the following timing diagrams, HDRQ and HRST are shown as active-high and HTA is shown as active low.

5. HTA requires an external pull-up resistor if programmed as active high (HTAP = 0); or an external pull-down resistor if programmed as active low (HTAP = 1). The resistor value should be consistent with the DC specifications.

6. HIRQ requires an external pull-up resistor if programmed as open drain (HIRD = 0). The resistor value should be consistent with the DC specifications.

"LT" is the value of the latency timer register (CLAT) as programmed by the user during self configuration.

7.



Figure 2-29 Universal Bus Mode DMA Access Timing









### Figure 2-36 Data Strobe Synchronous Timing

 Table 2-22
 PCI Mode Timing Parameters¹

No.		Symbol	80 MHz		Unit
INU.	Characteristic ¹⁰	Symbol	Min	Max	Unit
349	HCLK to Signal Valid Delay—Bussed Signals	t _{VAL}	2.0	11.0	ns
350	HCLK to Signal Valid Delay—Point to Point 🧹	t _{VAL(ptp)}	2.0	12.0	ns
351	Float to Active Delay	ton	2.0	—	ns
352	Active to Float Delay	t _{OFF}		28.0	ns
353	Input Set Up Time to HCLK—Bussed Signals	> t _{SU}	7.0	_	ns
354	Input Set Up Time to HCLK—Point to Point	t _{SU(ptp)}	10.0, 12.0		ns
355	Input Hold Time from HCLK	t _H	0.0	_	ns
356	Reset Active Time After Power Stable	t _{RST}	1.0	_	ms
357	Reset Active Time After HCLK Stable	t _{RST-CLK}	100.0	_	μs
358	Reset Active to Output Float Delay	t _{RST-OFF}		40.0	ns
359	HCLK Cycle Time	t _{CYC}	30.0	_	ns
360	HCLK High Time	t _{HIGH}	11.0	—	ns
361	HCLK Low Time	t _{LOW}	11.0	—	ns
Note:	<ol> <li>See PCI Local Bus Specification, Rev. 2.0.</li> <li>The HI32 supports these timings for a PCI bus operating a MHz and above. The DSP core operating frequency shoul frequency to maintain proper PCI operation.</li> <li>HGNT has a setup time of 10 ns. HREQ has a setup time of 10 ns.</li> </ol>	d be greater th			of 56
	3. HGNT has a setup time of 10 ns. HREQ has a setup time of	of 12 ns.			



Figure 2-38 PCI Reset Timing

# SCI Timing

# **SCI TIMING**

			- ·	80 MHz		
No.	Characteristics ¹	Symbol	Expression	Min	Max	Unit
400	Synchronous clock cycle	t _{SCC} ²	$8 \times T_C$	100.0		ns
401	Clock low period		t _{SCC} /2-10.0	40.0	->	ns
402	Clock high period		t _{SCC} /2-10.0	40.0	<u> </u>	ns
403	Output data setup to clock falling edge (internal clock)		$t_{SCC}/4 + 0.5 \times T_{C} - 17.0$	14.3		ns
404	Output data hold after clock rising edge (internal clock)		$t_{SCC}/4 - 0.5 \times T_C$	18.8	—	ns
405	Input data setup time before clock rising edge (internal clock)		$t_{SCC}/4 + 0.5 \times T_{C} + 25.0$	56.3	—	ns
406	Input data not valid before clock rising edge (internal clock)	6	$t_{SCC}/4 + 0.5 \times T_{C} - 5.5$	_	25.8	ns
407	Clock falling edge to output data valid (external clock)			_	32.0	ns
408	Output data hold after clock rising edge (external clock)		$T_{C} + 8.0$	20.5	—	ns
409	Input data setup time before clock rising edge (external clock)	$\searrow$		0.0	—	ns
410	Input data hold time after clock rising edge (external clock)	>		9.0	_	ns
411	Asynchronous clock cycle	t _{ACC} ³	$64 \times T_C$	800.0		ns
412	Clock low period		$t_{ACC}/2 - 10.0$	390.0		ns
413	Clock high period		$t_{ACC}/2 - 10.0$	390.0		ns
414	Output data setup to clock rising edge (internal clock)		$t_{ACC}/2 - 30.0$	370.0	—	ns
415	Output data hold after clock rising edge (internal clock)		$t_{ACC}/2 - 30.0$	370.0	_	ns

### Table 2-23 SCI Timing

t_{SCC} = synchronous clock cycle time (For internal clock, t_{SCC} is determined by the SCI clock control register and T_C.)

3.  $t_{ACC}$  = asynchronous clock cycle time; value given for 1X Clock mode (For internal clock,  $t_{ACC}$  is determined by the SCI clock control register and  $T_{C}$ .)

# SCI Timing



Figure 2-40 SCI Asynchronous Mode Timing

# ESSI0/ESSI1 TIMING

No.	<b>CI 1 1 1 1 1 1 1 1 1 1</b>	Symbol Expression	Farmanian	80 MHz		Cond-	Unit
N0.	Characteristics ^{4, 6, 7}		Expression	Min	Max	ition ⁵	Unit
430	Clock cycle ¹	t _{SSICC}	$4 \times T_C \\ 3 \times T_C$	50.0 37.5		i ck x ck	ns
431	Clock high period • For internal clock • For external clock		$\begin{array}{c} 2 \times \mathrm{T_{C}} - 10.0 \\ 1.5 \times \mathrm{T_{C}} \end{array}$	15.018 .8			ns ns
432	Clock low period • For internal clock • For external clock		$2 \times T_{C} - 10.0$ $1.5 \times T_{C}$	15.0 18.8			ns ns
433	RXC rising edge to FSR out (bl) high				37.0 22.0	x ck i ck a	ns
434	RXC rising edge to FSR out (bl) low				37.0 22.0	x ck i ck a	ns
435	RXC rising edge to FSR out (wr) high ²		$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$		39.0 24.0	x ck i ck a	ns
436	RXC rising edge to FSR out (wr) low ²		2		39.0 24.0	x ck i ck a	ns
437	RXC rising edge to FSR out (wl) high	>			36.0 21.0	x ck i ck a	ns
438	RXC rising edge to FSR out (wl) low				37.0 22.0	x ck i ck a	ns
439	Data in setup time before RXC (SCK in Synchronous mode) falling edge			0.0 19.0		x ck i ck	ns
440	Data in hold time after RXC falling edge			5.0 3.0		x ck i ck	ns
441	FSR input (bl, wr) high before RXC falling edge ²			23.0 1.0		x ck i ck a	ns
442	FSR input (wl) high before RXC falling edge			23.0 1.0		x ck i ck a	ns
443	FSR input hold time after RXC falling edge			3.0 0.0		x ck i ck a	ns
444	Flags input setup before RXC falling edge			0.0 19.0		x ck i ck s	ns
445	Flags input hold time after RXC falling edge			6.0 0.0		x ck i ck s	ns

### Table 2-24 ESSI Timings

### Specifications

## ESSI0/ESSI1 Timing

No	Characteristics ^{4, 6, 7}	Symbol	Expression	80 MHz		Cond-	<b>T</b> T. <b>*</b>
No.				Min	Max	ition ⁵	Unit
446	TXC rising edge to FST out (bl) high				29.0 15.0	x ck i ck	ns
447	TXC rising edge to FST out (bl) low				31.0 17.0	x-ck i-ck	ns
448	TXC rising edge to FST out (wr) high ²				31.0 17.0	x ck i ck	ns
449	TXC rising edge to FST out (wr) low ²		C		33.0 19.0	x ck i ck	ns
450	TXC rising edge to FST out (wl) high				<b>3</b> 0.0 16.0	x ck i ck	ns
451	TXC rising edge to FST out (wl) low				31.0 17.0	x ck i ck	ns
452	TXC rising edge to data out enable from high impedance	$\sim$		_	31.0 17.0	x ck i ck	ns
453	TXC rising edge to Transmitter #0 drive enable assertion		$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$		34.0 20.0	x ck i ck	ns
454	TXC rising edge to data out valid		<mark>3</mark> 5 + 0.5 × T _C 21.0	_	41.3 21.0	x ck i ck	ns
455	TXC rising edge to data out high impedance ³	>			31.0 16.0	x ck i ck	ns
456	TXC rising edge to Transmitter #0 drive enable deassertion ³			_	34.0 20.0	x ck i ck	ns
457	FST input (bl, wr) setup time before TXC falling edge ²			2.0 21.0		x ck i ck	ns
458	FST input (wl) to data out enable from high impedance			_	27.0	_	ns
459	FST input (wl) to Transmitter #0 drive enable assertion				31.0	_	ns
460	FST input (wl) setup time before TXC falling edge			2.0 21.0		x ck i ck	ns
461	FST input hold time after TXC falling edge			4.0 0.0		x ck i ck	ns
462	Flag output valid after TXC rising edge				32.0 18.0	x ck i ck	ns

**Table 2-24**ESSI Timings (Continued)

No.		Characteristics ^{4, 6, 7}	<u> </u>	- ·	80 MHz		Cond-	
			Symbol	Symbol Expression	Min	Max	ition ⁵	Unit
Note:	1.	For the internal clock, the external clo	ock cycle is o	defined by I _{cvc} and	the ESSI	control r	egister.	
	2.	2. The word-relative frame sync signal waveform relative to the clock operates in the same manner as						
		bit-length frame sync signal wavefor	m, but sprea	ads from one serial o	clock bef	ore first l	bit clock (s	same as
		Bit Length Frame Sync signal), until	the one befo	re last bit clock of t	he first w	vord in <b>f</b> i	ame.	
	3.	Periodically sampled and not 100% t	ested					
	4.	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ ; $T_{I} = -40^{\circ}\text{C}$ to +10	$00 ^{\circ}C,  C_{\rm L} = 5$	0 pF + 2 TTL Loads	;			
	5.	TXC (SCK Pin) = Transmit Clock		-				
		RXC (SC0 or SCK Pin) = Receive Clo	ck					
		FST (SC2 Pin) = Transmit Frame Syn	с					
		FSR (SC1 or SC2 Pin) Receive Frame	Sync					
	6.	i ck = Internal Clock	-					
		x ck = External Clock						
		i ck a = Internal Clock, Asynchronou	s Mode					
		(Asynchronous implies that TXC	and RXC a	re two different clo	cks)			
		i ck s = Internal Clock, Synchronous	Mode					
		(Synchronous implies that TXC	and RXC are	e the same clock)				
	7.	bl = bit length						
		wl = word length						
		wr = word length relative						
				× ·				

 Table 2-24
 ESSI Timings (Continued)





Timer Timing

# TIMER TIMING

N	Characteristics	Turn and it a	80 MHz		TT-11		
No.	Characteristics	Expression	Min	Max	Unit		
480	TIO Low	$2 \times T_{C} + 2.0$	27.0		ns		
481	TIO High	$2 \times T_{C} + 2.0$	27.0	->	ns		
482	Timer setup time from TIO (Input) assertion to CLKOUT rising edge	<u> </u>	9.0		ns		
483	Synchronous timer delay time from CLKOUT rising edge to the external memory access address out valid caused by first interrupt instruction execution	$10.25 \times T_{C} + 1.0$	129,1	>	ns		
484	CLKOUT rising edge to TIO (Output) assertion <ul> <li>Minimum</li> <li>Maximum</li> </ul>	$0.5 \times T_{C} + 3.5$ $0.5 \times T_{C} + 19.8$	9.8 —	 26.1	ns ns		
485	CLKOUT rising edge to TIO (Output) deassertion • Minimum • Maximum	$0.5 \times T_{C} + 3.5$ $0.5 \times T_{C} + 19.8$	9.8 9.8	26.1 26.1	ns ns		
Note:	Note: $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ ; $T_J = -40^{\circ}\text{C}$ to $\pm 100^{\circ}\text{C}$ , $C_L = 50 \text{ pF} + 2 \text{ TTL Loads}$						

### Table 2-25 Timer Timing

TIO



Figure 2-43 TIO Timer Event Input Restrictions

### Specifications

**Timer Timing** 



# **GPIO** Timing

# **GPIO TIMING**

No.	Characteristics	Europeier	80 MHz		Unit
INO.	Characteristics	Expression	Min	Max	Unit
490	CLKOUT edge to GPIO out valid (GPIO out delay time)		- (	31.0	ns
491	CLKOUT edge to GPIO out not valid (GPIO out hold time)	6	3.0		ns
492	GPIO In valid to CLKOUT edge (GPIO in set-up time)		12.0	>-	ns
493	CLKOUT edge to GPIO in not valid (GPIO in hold time)		0.0	_	ns
494	Fetch to CLKOUT edge before GPIO change	6.75 × T _C	84.4		ns
Note:	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}; T_{J} = -40^{\circ}\text{C} \text{ to } +100^{\circ}\text{C}, C_{L} = 50 \text{ p}$	F + 2 TTL Loads			

### Table 2-26 GPIO Timing



Figure 2-46 GPIO Timing

# JTAG TIMING

N		80 N	1Hz	<b></b>	
No.	Characteristics Expression		Min	Max	Unit
500	TCK frequency of operation	1/(3×T _C ), max 22.0 MHz	0.0	22.0	MHz
501	TCK cycle time in Crystal mode		45.0	<	ns
502	TCK clock pulse width measured at 1.5 V		20.0	$\rightarrow$	ns
503	TCK rise and fall times	$\sim$	0.0	3.0	ns
504	Boundary scan input data setup time		5.0		ns
505	Boundary scan input data hold time		24.0		ns
506	TCK low to output data valid		0.0	40.0	ns
507	TCK low to output high impedance		0.0	40.0	ns
508	TMS, TDI data setup time		5.0	_	ns
509	TMS, TDI data hold time		25.0		ns
510	TCK low to TDO data valid	$\mathbf{\tilde{\mathbf{x}}}$	0.0	44.0	ns
511	TCK low to TDO high impedance		0.0	44.0	ns
512	TRST assert time		100.0		ns
513	TRST setup time to TCK low		40.0	_	ns
Note:	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}; T_{1} = -40^{\circ}\text{C to} +100^{\circ}\text{C}, C_{L} = 50 \text{ pF}$	F + 2 TTL Loads			

# Table 2-27 JTAG Timing



### Specifications

JTAG Timing



DSP56305/D
### OnCE Module TimIng



# OnCE MODULE TIMING

No.	Characteristics	Expression	80 N	Unit	
		LAPICSSION	Min	Max	Unit
500	TCK frequency of operation	1/(T _C ×3), max 22.0 MHz	0.0	22.0	0.0
514	$\overline{\text{DE}}$ assertion time in order to enter Debug mode	$1.5 \times T_{C} + 10.0$	28.8		ns
515	Response time when DSP56305 is executing NOP instructions from internal memory	$5.5 \times T_{C} + 30.0$		98.8	ns
516	Debug acknowledge assertion time	$3 \times T_{C} + 10.0$	47.5		ns
Note:	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}; T_{f} = -40^{\circ} \text{C}$ to $+100^{\circ} \text{C}, C_{L} = 50 \text{ pF} + 100^{\circ} \text{C}; C_{L} = 50^{\circ} \text{ pF} + 100^{\circ} \text{ pF} + 100^{\circ} \text{ c}; C_{L} = 50^{\circ} \text{ pF} + 100^{\circ} \text{ c}; C_{L} = 50^{\circ} \text{ pF} + 100^{\circ} \text{ c}; C_{L} = 50^{\circ} \text{ pF} + 100^{\circ} \text{ c}; C_{L} = 50^{\circ} \text{ pF} + 100^{\circ} \text{ c}; C_{L} = 50^{\circ} \text{ pF} + 100^{\circ} \text{ c}; C_{L} = 10^{\circ} \text{ c}; $	- 2 TTL Loads			

**Table 2-28**OnCE Module Timing



OnCE Module TimIng

# SECTION 3

# PACKAGING

# PIN-OUT AND PACKAGE INFORMATION

This sections provides information about the available packages for this product, including diagrams of the package pinouts and tables describing how the signals described in **Section 1** are allocated for each package.

The DSP56305 is available in a 252-pin Plastic Ball Grid Array (PBGA) package.

## **PBGA Package Description**

Top and bottom views of the PBGA package are shown in **Figure 3-1** and **Figure 3-2** with their pin-outs.



Figure 3-1 DSP56305 Plastic Ball Grid Array (PBGA), Top View



Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name
A2	NC	B12	HAD25 or HD17	D5	V _{CC}
A3	HAD15, HD7, or PB15	B13	HAD29 or HD21	D6	PVCL
A4	HCLK	B14	HAD31 or HD23	D7	HSTOP or HWR/HRW
A5	HPAR or HDAK	B15	NC	D8	HTRDY, HDBEN, or PB20
A6	HPERR or HDRQ	B16	NC	D9	V _{CC}
A7	HIRDY, HDBDR, or PB21	C1	HAD8, HD0, or PB8	D10	V _{CC}
A8	HAD16 or HD8	C2	HAD11, HD3, or PB11	D11	Yec
A9	HAD17 or HD9	C3	HAD12, HD4, or PB12	D12	HAD28 or HD20
A10	HAD20 or HD12	C4	HAD13, HD5, or PB13	D13	MODC/IRQC
A11	HAD23 or HD15	C5	HC1/HBE1,HA1, or PB17	D14	NC
A12	HAD24 or HD16	C6	HREQ or HTA	D15	MODB/IRQB
A13	HAD27 or HD19	C7	HLOCK, HBS, or PB23	D16	D23
A14	HAD30 or HD22	C8	HFRAME	E1	HAD2, HA5, or PB2
A15	NC	C9	HAD18 or HD10	E2	HAD4, HA7, or PB4
B1	NC	C10	HAD21 or HD13	E3	HAD6, HA9, or PB6
B2	NC	C11	HC3/ <del>HBE3</del> , HA2, or PB19	E4	HC0/ <del>HBE0</del> , HA0, or PB16
B3	HAD14, HD6, or PB14	C12	HAD26 or HD18	E5	V _{CC}
B4	HGNT or HAEN	C13	MODD/IRQD	E6	V _{CC}
B5	HRST/HRST	C14	NC	E7	V _{CC}
B6	HSERR or HIRQ	C15	NC	E8	V _{CC}
B7	HDEVSEL, HSAK, or PB22	C16	NC	E9	V _{CC}
B8	HIDSEL or HRD/HDS	D1	HAD5, HA8, or PB5	E10	V _{CC}
B9 <	HC2/HBE2, HA2, or PB18	D2	HAD7, HA10, or PB7	E11	V _{CC}
B10	HAD19 or HD11	D3	HAD9, HD1, or PB9	E12	V _{CC}
B11	HAD22 or HD14	D4	HAD10, HD2, or PB10	E13	V _{CC}

Table 3-1	DSP56305 PBGA Signal Identification by Pin Number
I doite o I	Der bebeer bighar rachanden by Thirt ander

Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name
E14	MODA/IRQA	G7	GND	H16	D8
E15	D22	G8	GND	J1	SC11 or PD1
E16	D21	G9	GND	J2	SC12 or PD2
F1	HAD1, HA4, or PB1	G10	GND	J3	TXD or PE1
F2	HAD0, HA3, or PB0	G11	GND	J4	SC10 or PD0
F3	HAD3, HA6, or PB3	G12	V _{CC}	J5	V _{CC}
F4	V _{CC}	G13	D12	J6	GND
F5	V _{CC}	G14	D15	J7	GND
F6	GND	G15	D16	J8	GND
F7	GND	G16	D14	J9	GND
F8	GND	H1	SCLK or PE2	J10	GND
F9	GND	H2	HINTA	J11	GND
F10	GND	H3	TIO0	J12	V _{CC}
F11	GND	H4	VEC	J13	V _{CC}
F12	V _{CC}	H5	Vcc	J14	D5
F13	D18	H6	GND	J15	D10
F14	D19	H7	GND	J16	D7
F15	D20	H8	GND	K1	STD1 or PD5
F16	D17	H9	GND	K2	SCK1 or PD3
G1	TIO1	H10	GND	К3	SCK0 or PC3
G2	RXD or PE0	H11	GND	K4	SRD0 or PC4
G3	TIQ2	H12	V _{CC}	K5	V _{CC}
G4	Vcc	H13	D11	K6	GND
G5	V _{CC}	H14	D9	K7	GND
G6	GND	H15	D13	K8	GND

 Table 3-1
 DSP56305 PBGA Signal Identification by Pin Number (Continued)

Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name
K9	GND	M2	DE	N11	V _{CC}
K10	GND	M3	TDO	N12	V _{CC}
K11	GND	M4	TMS	N13	A16
K12	V _{CC}	M5	V _{CC}	N14	A17
K13	V _{CC}	M6	V _{CC}	N15	A20
K14	D3	M7	V _{CC}	N16	NC
K15	D6	M8	V _{CC}	P1	TRST
K16	D4	M9	V _{CC}	P2	BS
L1	SRD1 or PD4	M10	V _{CC}	P3	AA0/RAS0
L2	STD0 or PC5	M11	V _{CC}	P4	CLKOUT
L3	SC02 or PC2	M12	V _{CC}	P5	PINIT/NMI
L4	SC01 or PC1	M13	A19	P6	GND _P
L5	V _{CC}	M14	A21	P7	BG
L6	GND	M15	A22	P8	AA3/RAS3
L7	GND	M16	A23	Р9	EXTAL
L8	GND	N1	TCK	P10	A5
L9	GND	N2	TDI	P11	A8
L10	GND	NB	NC	P12	A12
L11	GND	N4	BL	P13	NC
L12	V _{CC}	N5	TA	P14	A15
L13	V _{CC}	N6	V _{CC}	P15	NC
L14	D0	N7	V _{CC}	P16	A18
L15	D2	N8	V _{CC}	R1	NC
L16	D1	N9	A1	R2	NC
M1	SC00 or PC0	N10	A2	R3	AA1/RAS1

Table 3-1	DSP56305 PBGA Signal Identification by Pin Number	(Continued)
-----------	---------------------------------------------------	-------------

Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name
R4	CAS	R13	A11	T7	BR
R5	V _{CCP}	R14	A14	T8	WR
R6	BB	R15	NC	Т9	RD
R7	AA2/RAS2	R16	NC	T10	A0
R8	XTAL	T2	NC	T11	A4
R9	BCLK	Т3	BCLK	T12	A7
R10	A3	T4	RESET	T13	A10
R11	A6	T5	PCAP	T14	A13
R12	A9	T6	GND _{1P}	T15	NC

**Table 3-1** DSP56305 PBGA Signal Identification by Pin Number (Continued)

Note: 1. Signal names are based on configured functionality. Most connections supply a single signal. Some connections provide a signal with dual functionality, such as the MODx/IRQx pins that select an operating mode after RESET is deasserted, but act as interrupt lines during operation. Some signals have configurable polarity; these names are shown with and without overbars, such as HAS/HAS. Some connections have two or more configurable functions; names assigned to these connections indicate the function for a specific configuration. For example, connection N2 is data line H7 in non-multiplexed bus mode, data/address line HAD7 in multiplexed bus mode, or GPIO line PB7 when the GPIØ function is enabled for this pin. Unlike the TQFP package, most of the GND pins are connected internally in the center of the connection array and act as heat sink for the chip. Therefore, except for GND_P and GND_{P1} that support the PLL, other GND signals do not support individual subsystems in the chip.

2. NC stands for Not Connected. These pins are reserved for future development. Do not connect and line, component, trace, or via to these pins.

				-	
Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.
A0	T10	AA2	R7	D22	E15
A1	N9	AA3	P8	D23	D16
A10	T13	BB	R6	D3	K14
A11	R13	BCLK	Т3	D4	K16
A12	P12	BCLK	R9	D5	J14
A13	T14	BG	P7	D6	K15
A14	R14	BL	N4	D7	J16
A15	P14	BR	T7	D8	H16
A16	N13	BS	P2	D9	H14
A17	N14	CAS	R4	DE	M2
A18	P16	CLKOUT	P4	EXTAL	P9
A19	M13	D0	<b>L</b> 4	GND	F10
A2	N10	D1	L16	GND	F11
A20	N15	D10	J15	GND	F6
A21	M14	D11	H13	GND	F7
A22	M15	D12	G13	GND	F8
A23	M16	D13	H15	GND	F9
A3	R10	D14	G16	GND	G10
A4	T11	D15	G14	GND	G11
A5	<b>P</b> 10	D16	G15	GND	G6
A6	R11	D17	F16	GND	G7
A7	T12	D18	F13	GND	G8
A8	P11	D19	F14	GND	G9
A9	R12	D2	L15	GND	H10
AA0	P3	D20	F15	GND	H11
AA1	R3	D21	E16		

 Table 3-2
 DSP56305 PBGA Signal Identification by Name

Signal NamePin No.Signal NamePin No.Signal NameGNDH6HA0E4HAD21GNDH7HA1C5HAD22	Pin           No.           C10           B11
	B11
GND H7 HA1 C5 HAD22	<u>}</u>
	4.1.1
GND H8 HA10 D2 HAD23	A11
GND H9 HA2 B9 HAD24	A12
GND J10 HA3 F2 HAD25	B12
GND J11 HA4 F1 HAD26	C12
GND J6 HA5 E1 HAD27	A13
GND J7 HA6 F3 HAD28	D12
GND J8 HA7 E2 HAD29	B13
GND J9 HA8 D1 HAD3	F3
GND K10 HA9 E3 HAD30	A14
GND K11 HAD0 F2 HAD31	B14
GND K6 HAD1 F1 HAD4	E2
GND K7 HAD10 D4 HAD5	D1
GND K8 HAD11 C2 HAD6	E3
GND K9 HAD12 C3 HAD7	D2
GND L10 HAD13 C4 HAD8	C1
GND D11 HAD14 B3 HAD9	D3
GND L6 HAD15 A3 HAEN	B4
GND L7 HAD16 A8 HBE0	E4
GND L8 HAD17 A9 HBE1	C5
GND L9 HAD18 C9 HBE2	B9
GND _{1P} T6 HAD19 B10 HBE3	C11
GND _P P6 HAD2 E1 HBS	C7
HAD20 A10 HC0	E4

 Table 3-2
 DSP56305 PBGA Signal Identification by Name (Continued)

		0		5	
Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.
HC1	C5	HD7	A3	HTA	C6
HC2	B9	HD8	A8	HTRDY	D8
HC3	C11	HD9	A9	HWR	D7
HCLK	A4	HDAK	A5	ĪRQA	E14
HD0	C1	HDBDR	A7	TRQB	D15
HD1	D3	HDBEN	D8	IRQC	D13
HD10	C9	HDEVSEL	B7	IRQD	C13
HD11	B10	HDRQ	A6	MODA	E14
HD12	A10	HDS	B8	MODB	D15
HD13	C10	HFRAME	C8	MODC	D13
HD14	B11	HGNT	B4	MODD	C13
HD15	A11	HIDSEL	<b>B</b> 8	NC	A15
HD16	A12	HINTA	H2	NC	A2
HD17	B12	HIRDY	A7	NC	B1
HD18	C12	HIRQ	B6	NC	B15
HD19	A13	HLØCK	C7	NC	B16
HD2	2 D4	HPAR	A5	NC	B2
HD20	D12	HPERR	A6	NC	C14
HD21	B13	HRD	B8	NC	C15
HD22	A14	HREQ	C6	NC	C16
HD23	B14	HRST/HRST	B5	NC	D14
HD3	C2	HRW	D7	NC	N16
HD4	C3	HSAK	B7	NC	N3
HD5	C4	HSERR	B6	NC	P13
HD6	B3	HSTOP	D7	NC	P15
			-		

Table 3-2	DSP56305 PBGA Signal Identification by Name	(Continued)
-----------	---------------------------------------------	-------------

Signal NamePin No.Signal NamePin No.Signal NameNCR1PB3F3RAS0NCR2PB4E2RAS1NCR15PB5D1RAS2NCR16PB6E3RAS3	Pin           No.           P3           R3           R7           P8           T9
NCR2PB4E2RASINCR15PB5D1RAS2	R3 R7 P8
NC R15 PB5 D1 RAS2	R7 P8
	P8
NC R16 PB6 E3 RAS3	$\mathcal{V}$
	бта
NC T2 PB7 D2 RD	17
NC T15 PB8 C1 RESET	T4
NMIP5PB9D3RXD	G2
PB0 F2 PC0 M1 SC00	M1
PB1 F1 PC1 L4 SC01	L4
PB10 D4 PC2 L3 SC02	L3
PB11 C2 PC3 K3 SC10	J4
PB12 C3 PC4 K4 SC11	J1
PB13 C4 PC5 L2 SC12	J2
PB14 B3 PCAP T5 SCK0	K3
PB15 A3 PD0 J4 SCK1	K2
PB16 E4 PD1 J1 SCLK	H1
PB17 C5 PD2 J2 SRD0	K4
PB18 B9 PD3 K2 SRD1	L1
PB19 C11 PD4 L1 STD0	L2
PB2 E1 PD5 K1 STD1	K1
PB20         D8         PE0         G2         TA	N5
PB21         A7         PE1         J3         TCK	N1
PB22         B7         PE2         H1         TDI	N2
PB23 C7 PINIT P5 TDO	M3
PVCL D6 TIO0	H3

 Table 3-2
 DSP56305 PBGA Signal Identification by Name (Continued)

### Pin-out and Package Information

Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.
TIO1	G1	V _{CC}	F12	V _{CC}	M10
TIO2	G3	V _{CC}	F4	V _{CC}	M11
TMS	M4	V _{CC}	F5	V _{CC}	M12
TRST	P1	V _{CC}	G12	V _{CE}	M5
TXD	J3	V _{CC}	G4	Vcc	M6
V _{CC}	D10	V _{CC}	G5	V _{CC}	M7
V _{CC}	D11	V _{CC}	H12	V _{CC}	M8
V _{CC}	D5	V _{CC}	H4	Vcc	M9
V _{CC}	D9	V _{CC}	H5	V _{CC}	N11
V _{CC}	E10	V _{CC}	J12	V _{CC}	N12
V _{CC}	E11	V _{CC}	J13	V _{CC}	N6
V _{CC}	E12	Vec	]5	V _{CC}	N7
V _{CC}	E13	Vcc	K12	V _{CC}	N8
V _{CC}	E5	V _{CC}	K13	V _{CCP}	R5
V _{CC}	E6	Vec	K5	WR	T8
V _{CC}	E7	Усс	L12	XTAL	R8
V _{CC}	E8	V _{CC}	L13		
V _{CC}	E9	V _{CC}	L5		
Note: NC stands for Not Connected. These pins are reserved for future development. Do not connect and					

Table 3-2	DSP56305 PBGA	Signal Identificat	ion by Name	(Continued)
-----------	---------------	--------------------	-------------	-------------

Note: NC stands for Not Connected. These pins are reserved for future development. Do not connect and line, component, trace, or via to these pins.





### **PBGA Package Mechanical Drawing**

## **ORDERING DRAWINGS**

Complete mechanical information regarding DSP56305 packaging is available by facsimile through Motorola's Mfax[™] system. Call the following number to obtain information by facsimile:



The Mfax automated system requests the following information:

- The receiving facsimile telephone number including area code or country code
- The caller's Personal Identification Number (PIN)
- **Note:** For first time callers, the system provides instructions for setting up a PIN, which requires entry of a name and telephone number.
  - The type of information requested:
    - Instructions for using the system
    - A literature order form
    - Specific part technical information or data sheets
    - Other information described by the system messages

A total of three documents may be ordered per call.

The reference number for the 252-pin PBGA package is 1205-01.

<del>dsp</del>

# SECTION 4

# **DESIGN CONSIDERATIONS**

#### THERMAL DESIGN CONSIDERATIONS

An estimation of the chip junction temperature, T_J, in °C can be obtained from the equation:

**Equation 1:**  $T_J = T_A + (P_D \times R_{\theta JA})$ 

Where:

 $T_A$  = ambient temperature °C  $R_{\theta JA}$  = package junction-to-ambient thermal resistance °C/W  $P_D$  = power dissipation in package

Historically, thermal resistance has been expressed as the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance:

#### **Equation 2:** $R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$

Where:

 $R_{\theta JA} = package junction-to-ambient thermal resistance °C/W R_{\theta JC} = package junction-to-case thermal resistance °C/W R_{\theta CA} = package case-to-ambient thermal resistance °C/W$ 

 $R_{\theta fC}$  is device-related and cannot be influenced by the user. The user controls the thermal environment to change the case-to-ambient thermal resistance,  $R_{\theta CA}$ . For example, the user can change the air flow around the device, add a heat sink, change the mounting arrangement on the printed circuit board, or otherwise change the thermal dissipation capability of the area surrounding the device on a printed circuit board. This model is most useful for ceramic packages with heat sinks; some 90% of the heat flow is dissipated through the case to the heat sink and out to the ambient environment. For ceramic packages, in situations where the heat flow is split between a path to the case and an alternate path through the printed circuit board, analysis of the device thermal performance may need the additional modeling capability of a system level thermal simulation tool.

#### **Thermal Design Considerations**

The thermal performance of plastic packages is more dependent on the temperature of the printed circuit board to which the package is mounted. Again, if the estimations obtained from  $R_{\theta JA}$  do not satisfactorily answer whether the thermal performance is adequate, a system level model may be appropriate.

A complicating factor is the existence of three common ways for determining the junction-to-case thermal resistance in plastic packages:

- To minimize temperature variation across the surface, the thermal resistance is measured from the junction to the outside surface of the package (case) closest to the chip mounting area when that surface has a proper heat sink.
- To define a value approximately equal to a junction-to-board thermal resistance, the thermal resistance is measured from the junction to where the leads are attached to the case.
- If the temperature of the package case  $(T_T)$  is determined by a thermocouple, the thermal resistance is computed using the value obtained by the equation  $(T_I T_T)/P_D$ .

As noted above, the junction-to-case thermal resistances quoted in this data sheet are determined using the first definition. From a practical standpoint, that value is also suitable for determining the junction temperature from a case thermocouple reading in forced convection environments. In natural convection, using the junction-to-case thermal resistance to estimate junction temperature from a thermocouple reading on the case of the package will estimate a junction temperature slightly hotter than actual temperature. Hence, the new thermal metric, Thermal Characterization Parameter or  $\Psi_{\rm IT}$ , has been defined to be

 $(T_J - T_T)/P_D$ . This value gives a better estimate of the junction temperature in natural convection when using the surface temperature of the package. Remember that surface temperature readings of packages are subject to significant errors caused by inadequate attachment of the sensor to the surface and to errors caused by heat loss to the sensor. The recommended technique is to attach a 40-gauge thermocouple wire and bead to the top center of the package with thermally conductive epoxy.

**Electrical Design Considerations** 

## **ELECTRICAL DESIGN CONSIDERATIONS**

#### CAUTION

This device contains protective circuitry to guard against damage due to high static voltage or electrical fields. However, normal precautions are advised to avoid application of any voltages higher than maximum rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g., either GND or  $V_{CC}$ ).

Use the following list of recommendations to assure correct DSP operation:

- Provide a low-impedance path from the board power supply to each V_{CC} pin on the DSP, and from the board ground to each GND pin.
- Use at least six 0.01–0.1  $\mu$ F bypass capacitors positioned as close as possible to the four sides of the package to connect the V_{CC} power source to GND.
- Ensure that capacitor leads and associated printed circuit traces that connect to the chip V_{CC} and GND pins are less than 0.5 in per capacitor lead.
- Use at least a four-layer Printed Circuit Board (PCB) with two inner layers for V_{CC} and GND.
- Because the DSP output signals have fast rise and fall times, PCB trace lengths should be minimal. This recommendation particularly applies to the address and data buses as well as the IRQA, IRQB, IRQC, IRQD, TA, and BG pins.
   Maximum PCB trace lengths on the order of 6 inches are recommended.

Consider all device loads as well as parasitic capacitance due to PCB traces when calculating capacitance. This is especially critical in systems with higher capacitive loads that could create higher transient currents in the V_{CC} and GND circuits.

• Every input pin (except TRST, TMS, and DE—these three pins have internal pull-up resistors) should be driven to a valid value after deassertion of RESET (i.e., each pin should be connected to a pull-up or pull-down resistor if not used). However, if HRST is kept asserted, only HFRAME and HCLK require a pull-up resistor or connection to VCC; the remaining HI32 pins do not require external pull-up or pull-down connections. Unused outputs may be left

#### **Power Consumption Considerations**

unconnected. Unused GPIO pins may either be connected to pull-up or pulldown resistors, or, defined as outputs and left unconnected.

- Take special care to minimize noise levels on the  $V_{CCP}$ ,  $GND_P$ , and  $GND_{P1}$  pins.
- The following pins must be asserted after power-up: RESET and TRST (see **Note 4** in **Table 2-7**).
- If multiple DSP56305 devices are on the same board, check for cross-talk or excessive spikes on the supplies due to synchronous operation of the devices.

## POWER CONSUMPTION CONSIDERATIONS

Power dissipation is a key issue in portable DSP applications. Some of the factors which affect current consumption are described in this section. Most of the current consumed by CMOS devices is Alternating Current (AC), which is charging and discharging the capacitances of the pins and internal nodes.

Current consumption is described by the formula:

**Equation 3:**  $I = C \times V \times f$ 

where: C = node/pin capacitance V = voltage swing f = frequency of node/pin toggle

**Example 4-1** Current Consumption

For a Port A address pin loaded with 50 pF capacitance, operating at 3.3 V, and with a 66 MHz clock, toggling at its maximum possible rate (33 MHz), the current consumption is:

**Equation 4:**  $I = 50 \times 10^{-12} \times 3.3 \times 33 \times 10^{6} = 5.48 \text{ mA}$ 

The Maximum Internal Current (I_{CCI}max) value reflects the typical possible switching of the internal buses on worst-case operation conditions, which is not necessarily a real application case. The Typical Internal Current (I_{CCItyp}) value reflects the average switching of the internal buses on typical operating conditions.

For applications that require very low current consumption:

- Set the EBD bit when not accessing external memory.
- Minimize external memory accesses, and use internal memory accesses.
- Minimize the number of pins that are switching.

- Minimize the capacitive load on the pins.
- Connect the unused inputs to pull-up or pull-down resistors. Unused outputs may be left unconnected. Unused GPIO pins may either be connected to pull-up or pull-down resistors, or defined as outputs and left unconnected.
- Disable unused peripherals.
- Disable unused pin activity (e.g., CLKOUT, XTAL).

One way to evaluate power consumption is to use a current per MIPS measurement methodology to minimize specific board effects (i.e., to compensate for measured board current not caused by the DSP). A benchmark power consumption test algorithm is listed in **Appendix A**. Use the test algorithm, specific test current measurements, and the following equation to derive the current per MIPS value:

Equation 5:  $I/MIPS = I/MHz = (I_{typF2} - I_{typF1})/(F2 - F1)$ 

where:

- $I_{typF2}$  = current at F2  $I_{typF1}$  = current at F1
- F2 = high frequency (any specified operating frequency)

F1 = low frequency (any specified operating frequency lower than F2)

**Note:** F1 should be significantly less than F2. For example, F2 could be 66 MHz and F1 could be 33 MHz. The degree of difference between F1 and F2 determines the amount of precision with which the current rating can be determined for an application.

## PLL PERFORMANCE ISSUES

The following explanations should be considered as general observations on expected PLL behavior. There is no testing that verifies these exact numbers. These observations were measured on a limited number of parts and were not verified over the entire temperature and voltage ranges.

# Phase Skew Performance

The phase skew of the PLL is defined as the time difference between the falling edges of EXTAL and CLKOUT for a given capacitive load on CLKOUT, over the entire process, temperature and voltage ranges. As defined in **Figure 2-2** on page 2-6, for input frequencies greater than 15 MHz and the Multiplication Factor (MF)  $\leq$  4, this skew is greater than or equal to 0.0 ns and less than 1.8 ns; otherwise, this skew is not guaranteed. However, for MF < 10 and input frequencies greater than 10 MHz, this skew is between -1.4 ns and +3.2 ns.

#### **PLL Performance Issues**

### **Phase Jitter Performance**

The phase jitter of the PLL is defined as the variations in the skew between the falling edges of EXTAL and CLKOUT for a given device in specific temperature, voltage, input frequency, MF, and capacitive load on CLKOUT. These variations are a result of the PLL locking mechanism. For input frequencies greater than 15 MHz and MF  $\leq$  4, this jitter is less than ±0.6 ns; otherwise, this jitter is not guaranteed. However, for MF < 10 and input frequencies greater than 10 MHz, this jitter is less than ±2 ns.

### **Frequency Jitter Performance**

The frequency jitter of the PLL is defined as the variation of the frequency of CLKOUT. For small MF (MF < 10) this jitter is smaller than 0.5%. For mid-range MF (10 < MF < 500) this jitter is between 0.5% and ~2%. For large MF (MF > 500), the frequency jitter is 2–3%.

### Input (EXTAL) Jitter Requirements

The allowed jitter on the frequency of EXTAL is 0.5%. If the rate of change of the frequency of EXTAL is slow (i.e., it does not jump between the minimum and maximum values in one cycle) or the frequency of the jitter is fast (i.e., it does not stay at an extreme value for a long time), then the allowed jitter can be 2%. The phase and frequency jitter performance results are only valid if the input jitter is less than the prescribed values.

<del>dsp</del>

# SECTION 5

# **ORDERING INFORMATION**

# **ORDERING PRODUCT**

Consult a Motorola Semiconductor sales office or authorized distributor to determine product availability and to place an order.

Part	Supply Voltage	Package Type	Pin Count	Frequency (MHz)	Order Number
DSP56305	3 V	Plastic Ball Grid Array (PBGA)	252	80	DSP56305GC80

<del>dsp</del>

Ordering Product

# APPENDIX A

# **POWER CONSUMPTION BENCHMARK**

The following benchmark program permits evaluation of DSP power usage in a test situation. It enables the PLL, disables the external clock, and uses repeated Multiply-Accumulate (MAC) instructions with a set of synthetic DSP application data to emulate intensive sustained DSP operation.

```
*******
;*
;* CHECKS
           Typical Power Consumption
;*
****
                   200,55,0,0,0
         page
         nolist
I_VEC EQU $000000 ; Interrupt vectors for program debug only
START EQU $8000 ; MAIN (external) program starting address
INT_PROG EQU$100
                  ; INTERNAL program memory starting address
INT_XDAT EQU$0
                  ; INTERNAL X-data memory starting address
INT_YDAT EQU$0
                   ; INTERNAL X-data memory starting address
         INCLUDE "idequ.asm"
         INCLUDE Vintequ.asm
         list
                   P)START
         org
         movep #$0123FF,x:M_BCR; BCR: Area 3 : 1 w.s (SRAM)
; Area 2 : 0 w.s (SSRAM)
; Default: 1 w.s (SRAM)
         movep
                   #$0d0000,x:M_PCTL; XTAL disable
 PLL enable
; CLKOUT disable
;Load the program
                   #INT_PROG,r0
         move
                   #PROG_START,r1
         move
         do
                   #(PROG_END-PROG_START), PLOAD_LOOP
         move
                   p:(r1)+,x0
                   x0,p:(r0)+
         move
         nop
PLOAD LOOP
;
```



<u>עראת מתאה</u>	m	
XDAT_STAR		
;	org dc	x:0 \$262EB9
	dc	\$202EB9 \$86F2FE
		\$66FZFE \$E56A5F
	dc dc	
		\$616CAC
	dc	\$8FFD75
	dc	\$9210A
	dc	\$A06D7B
	dc	\$CEA798
	dc	\$8DFBF1
	dc	\$A063D6
	dc	\$6C6657
	dc	\$C2A544
	dc	\$A3662D
	dc	\$A4E762
	dc	\$84F0F3
	dc	\$E6F1B0
	dc	\$B3829
	dc	\$8BF7AE
	dc	\$63A94F
	dc	\$EF78DC
	dc	\$242DE5
	dc	\$A3E0BA
	dc	\$EBAB6B
	dc	\$8726C8
	dc	\$CA361
	dc	\$2F6E86
	dc	\$457347
	dc 🧹	\$4BE774
	dc	\$8F349D
	dc	\$Aled12
	dc	\$4BFCE3
	dc	\$ <b>E</b> A26E0
	dc	\$CD7D99
	da	\$4BA85E
	de S	\$27A43F
	dc	\$A8B10C
	dc	\$D3A55
		\$25EC6A
	dc	\$2A255B \$A5F1F8
	dc dc	
	dc	\$2426D1 \$AE6536
	dc	\$CBBC37
	dc	\$6235A4
	dc	\$0255A4 \$37F0D
	dc dc	\$63BEC2
	dc dc	\$63BEC2 \$A5E4D3
	dc	\$8CE810
	dc dc	\$3FF09
	dc	\$60E50E
	dc	\$CFFB2F
	uc	YUL DAL

dc	\$40753C
dc	\$8262C5
dc	\$CA641A
dc	\$EB3B4B
dc	\$2DA928
dc	\$AB6641
dc	\$28A7E6
dc	\$4E2127
dc	\$482FD4
dc	\$7257D
dc	\$E53C72
dc	\$1A8C3
dc	\$E27540

XDAT_END

YDAT_START
------------

YDAT_START		
;	org	y:0
	dc	\$5B6DA
	dc	\$C3F70B
	dc	\$6A39E8
	dc	\$81E801
	dc	\$C666A6
	dc	\$46F8E7
	dc	\$AAEC94
	dc	\$24233D
	dc	\$802732
	dc	\$2E3C83
	dc	\$A43E00
	dc	\$C2B639
	dc 🧹	\$85A47E
	dc	\$ABFDDF
	dc	\$F3A2C
	dc	\$2D7CF5
	dc	\$ <b>E1</b> 6Ă8A
	dc	\$ECB8FB
	de	\$4BED18
	de 🔨 🏑 🎽	\$43F371
	dc	\$83A556
	dç	\$E1E9D7
)	dc	\$ACA2C4
	dc	\$8135AD
	dc	\$2CE0E2
	dc	\$8F2C73
	dc	\$432730
•	dc	\$A87FA9
	dc	\$4A292E
	dc	\$A63CCF
	dc	\$6BA65C
	dc	\$E06D65
	dc	\$1AA3A
	dc	\$A1B6EB
	dc	\$48AC48
	dc	\$EF7AE1

```
dc
                    $6E3006
          dc
                    $62F6C7
          dc
                    $6064F4
          dc
                    $87E41D
          dc
                    $CB2692
          dc
                    $2C3863
          dc
                    $C6BC60
          dc
                    $43A519
          dc
                    $6139DE
          dc
                    $ADF7BF
          dc
                    $4B3E8C
          dc
                    $6079D5
          dc
                    $E0F5EA
          dc
                    $8230DB
          dc
                    $A3B778
          dc
                    $2BFE51
          dc
                    $E0A6B6
                    $68FFB7
          dc
          dc
                    $28F324
          dc
                    $8F2E8D
          dc
                    $667842
          dc
                    $83E053
          dc
                    $A1FD90
                    $6B2689
          dc
          dc
                    $85B68E
          dc
                    $622EAF
          dc
                    $6162BC
          dc
                    $E4A245
YDAT_END
;******
                                                  *******************
;
          EQUATES for DSP56301 I/O registers and ports
;
          Reference: DSP56301 Specifications Revision 3.00
;
;
                              November 15 1993
          Last update;
;
          Changes:
                              GPIO for ports C,D and E,
;
                              HI32
;
                              DMA status reg
;
                              PLL control reg
                              AAR
                              SCI registers address
                              SSI registers addr. + split TSR from SSISR
          December 19 1993 (cosmetic - page and opt directives)
                   9 1994 ESSI and SCI control registers bit update
          August
                    132,55,0,0,0
          page
          opt
                    mex
ioequ
       ident
               1,0
```

```
_____
       EQUATES for I/O Port Programming
;
;
;-----
; Register Addresses
M_DATH EQU $FFFFCF ; Host port GPIO data Register
M_DIRH EQU $FFFFCE ; Host port GPIO direction Register
M PCRC EQU $FFFFBF ; Port C Control Register
M_PRRC EQU $FFFFBE ; Port C Direction Register
M_PDRC EQU $FFFFBD ; Port C GPIO Data Register
M_PCRD EQU $FFFFAF ; Port D Control register
M_PRRD EQU $FFFFAE ; Port D Direction Data Register
M_PDRD EQU $FFFFAD ; Port D GPIO Data Register
M PCRE EQU $FFFF9F ; Port E Control register
M_PRRE EQU $FFFF9E ; Port E Direction Register
M_PDRE EQU $FFFF9D ; Port E Data Register 🎸
M_OGDB EQU $FFFFFC ; OnCE GDB Register
;-----
:
     EQUATES for Host Interface
;
;
;_____
                                                   _____
; Register Addresses
M_DTXS EQU $FFFFCD ; DSP SLAVE TRANSMIT DATA FIFO (DTXS)
M_DTXM EQU $FFFFCC ; DSP MASTER TRANSMIT DATA FIFO (DTXM)
M_DRXR EQU $FFFFCB ; DSP RECEIVE DATA FIFO (DRXR)
M_DPSR EQU $FFFFCA ; DSB_PCI STATUS REGISTER (DPSR)
M_DSR EQU $FFFFC9 ; DSP STATUS REGISTER (DSR)
M_DPAR EQU $FFFFC8 / DSP PCI ADDRESS REGISTER (DPAR)
M_DPMC EQU $FFFFC7 ; DSP PCI MASTER CONTROL REGISTER (DPMC)
M_DPCR EQU $FFFFC6 ; DSP PCI CONTROL REGISTER (DPCR)
M DCTR EQU $FFFFC5 ; DSP CONTROL REGISTER (DCTR)
    Host Control Register Bit Flags
                ; Host Command Interrupt Enable
M HCIE EOU 0
M_STIE EQU 1
                   ; Slave Transmit Interrupt Enable
M SRIE EQU 2
                   ; Slave Receive Interrupt Enable
M_HF35 EQU $38
                   ; Host Flags 5-3 Mask
                   ; Host Flag 3
M_HF3 EQU 3
M_HF4 EQU 4
                   ; Host Flag 4
M_HF5 EQU 5 ; Host Flag 5

M_HINT EQU 6 ; Host Interrupt A

M_HDSM EQU 13 ; Host Data Strobe Mode

M_HRWP EQU 14 ; Host RD/WR Polarity

M_HTAP EQU 15 ; Host Transfer Acknowledge Polarity

M_HDRP EQU 16 ; Host Dma Request Polarity
```

```
M_HRSP EQU 17
                  ; Host Reset Polarity
M HIRP EQU 18
                   ; Host Interrupt Request Polarity
M HIRC EQU 19
                  ; Host Interupt Request Control
M_HMO EQU 20
                  ; Host Interface Mode
M HM1 EQU 21
                  ; Host Interface Mode
M HM2 EQU 22
                  ; Host Interface Mode
M_HM EQU $700000
                  ; Host Interface Mode Mask
;
       Host PCI Control Register Bit Flags
M PMTIE EQU 1
                  ; PCI Master Transmit Interrupt Enable
M_PMRIE EQU 2
                  ; PCI Master Receive Interrupt Enable
                  ; PCI Master Address Interrupt Enable
M_PMAIE EQU 4
                  ; PCI Parity Error Interrupt Enable
M PPEIE EQU 5
                  ; PCI Transaction Abort Interrupt Enable
M PTAIE EQU 7
M PTTIE EOU 9
                  ; PCI Transaction Termination (Interrupt Enable
                  ; PCI Transfer Complete Interrupt Enable
M PTCIE EQU 12
                  ; Clear Transmitter
M_CLRT EQU 14
                  ; Master Transfer Terminate
M_MTT EQU 15
M_SERF EQU 16
                  ; HSERR~ Force
M_MACE EQU 18
                  ; Master Access Counter Enable
M_MWSD EQU 19
                  ; Master Wait States Disable
M RBLE EQU 20
                  ; Receive Buffer Lock Enable
M_IAE EQU 21
                  ; Insert Address Enable
       Host PCI Master Control Register Bit Flags
;
M ARH EOU $00ffff
                 ; DSP PCI Transaction Address (High)
M BL EQU $3£0000
                   ; PCI Data Burst Length
M FC EQU $c00000
                   Data Transfer Format Control
       Host PCI Address Register Bit Flags
;
M ARL EOU $00ffff
                   ; DSP PCI Transaction Address (Low)
M_C EQU $0£0000
                   PCI Bus Command
                 /; PCI Byte Enables
M_BE EQU $f00000
       DSP Status Register Bit Flags
                ; Host Command pending
M HCP EOU 0
                  ; Slave Transmit Data Request
M STRO EQU 1
M_SRRQ EQU 2
                  ; Slave Receive Data Request
                  ; Host Flag 0-2 Mask
M_HF02 EQU $38
M_HFO EQU 3
                  ; Host Flag 0
M_HF1 EQU 4
                  ; Host Flag 1
M_HF2 EQU 5
                  ; Host Flag 2
     DSP PCI Status Register Bit Flags
;
M MWS EQU 0
                  ; PCI Master Wait States
M_MTRQ EQU 1
                  ; PCI Master Transmit Data Request
                  ; PCI Master Receive Data Request
M_MRRQ EQU 2
M MARQ EQU 4
                  ; PCI Master Address Request
```

```
M_APER EQU 5
                      ; PCI Address Parity Error
M DPER EQU 6
                       ; PCI Data Parity Error
                      ; PCI Master Abort
M MAB EQU 7
M_TAB EQU 8
                      ; PCI Target Abort
M_IAB EQU 8, PCI Target AbortM_TDIS EQU 9; PCI Target DisconnectM_TRTY EQU 10; PCI Target RetryM_TO EQU 11; PCI Time Out Termination
M_RDC EQU $3F0000 ; Remaining Data Count Mask (RDC5-RDC0)
M_RDC0 EQU 16 ; Remaining Data Count 0
                      ; Remaining Data Count 1
M_RDC1 EQU 17
M RDC2 EQU 18
                      ; Remaining Data Count 2
M_RDC3 EQU 19
                      ; Remaining Data Count 3
M_RDC4 EQU 20 ; Remaining Data Count 4
M_RDC5 EQU 21 ; Remaining Data Count 5
M_HACT EQU 23 ; Hi32 Active
;-----
;
       EQUATES for Serial Communications Interface (SCI)
;
:
 ;------
                                                                     _____
;
        Register Addresses
M_STXH EQU $FFFF97 ; SCI Transmit Data Register (high)
M_STXM EQU $FFFF96 ; SCI Transmit Data Register (middle)
M_STXL EQU $FFFF95 ; SCI Transmit Data Register (low)
M_SRXH EQU $FFFF9A ; SCI Receive Data Register (high)
M_SRXM EQU $FFFF99 ; SCI Receive Data Register (middle)
M_SRXL EQU $FFFF98 ; SCI Receive Data Register (low)
M_STXA EQU $FFFF94 ; SCI Transmit Address Register
M_SCR EQU $FFFF9C ; SCL Control Register
M_SSR EQU $FFFF93 ; SCI Status Register
M_SCCR EQU $FFFF9B ; SCI Clock Control Register
         SCI Control Register Bit Flags
M-WDS EOU $7
                      ; Word Select Mask (WDS0-WDS3)
M_WDSO_EQU 0
                       ; Word Select 0
M WDS1 EQU 1
                       ; Word Select 1
                       ; Word Select 2
M_WDS2_EQU 2
M_SSFTD EQU 3
                      ; SCI Shift Direction
M_SBK EQU 4
                      ; Send Break
M_WAKE EQU 5
                      ; Wakeup Mode Select
                     ; Receiver Wakeup Enable
; Wired-OR Mode Select
M_RWU EQU 6
M_WOMS EQU 7
                      ; SCI Receiver Enable
M SCRE EOU 8
M_SCRE EQU 8; SCI Receiver EnableM_SCTE EQU 9; SCI Transmitter EnableM_ILIE EQU 10; Idle Line Interrupt EnableM_SCRIE EQU 11; SCI Receive Interrupt EnableM_SCTIE EQU 12; SCI Transmit Interrupt EnableM_TMIE EQU 13; Timer Interrupt Enable
```

```
M_TIR EQU 14
                    ; Timer Interrupt Rate
M_SCKP EQU 15 ; SCI Clock Polarity
M_REIE EQU 16 ; SCI Error Interrupt Enable (REIE)
; SCI Status Register Bit Flags
M_TRNE EQU 0 ; Transmitter Empty
M_TDRE EQU 1 ; Transmit Data Register Empty
                   ; Receive Data Register Full
M_RDRF EQU 2
M_IDLE EQU 3
                    ; Idle Line Flag
M OR EQU 4
                    ; Overrun Error Flag
M_PE EQU 5
                    ; Parity Error
                 ; Framing Error Flag
; Received Bit 8 (R8) Address
M_FE EQU 6
M_R8 EQU 7
; SCI Clock Control Register
M_CD EQU $FFF; Clock Divider Mask (CD0-CD11)M_COD EQU 12; Clock Out DividerM_SCP EQU 13; Clock PrescalerM_RCM EQU 14; Receive Clock Mode Source BitM_TCM EQU 15; Transmit Clock Source Bit
   _____
                                                        _____
      EQUATES for Synchronous Serial Interface (SSI)
;
;
;-----
                                         /_____
;
; Register Addresses Of SSI0
M_TX00 EQU $FFFFBC ; SSI0 Transmit Data Register 0
M_TX01 EQU $FFFFBB ; SSIO Transmit Data Register 1
M_TX02 EQU $FFFFBA ;\SSIO Transmit Data Register 2
M_TSR0 EQU $FFFF89 / SSI0 Time Slot Register
M_RX0 EQU $FFFFB8 ; SSI0 Receive Data Register
M_SSISR0 EQU $FFFFB7 ; SSI0 Status Register
M CRBO EQU $FFFFB6 ; SSIO Control Register B
M_CRA0 EQU $FFFFB5 ; SSI0 Control Register A
M_TSMAQ_EQU $FFFFB4 ; SSI0 Transmit Slot Mask Register A
M_TSMB0_EQU $FFFFB3 ; SSI0 Transmit Slot Mask Register B
M_RSMA0 EQU $FFFFB2 ; SSI0 Receive Slot Mask Register A
M_RSMB0 EQU $FFFFB1 ; SSI0 Receive Slot Mask Register B
       Register Addresses Of SSI1
M_TX10 EQU $FFFFAC ; SSI1 Transmit Data Register 0
M_TX11 EQU $FFFFAB ; SSI1 Transmit Data Register 1
M_TX12 EQU $FFFFAA ; SSI1 Transmit Data Register 2
M_TSR1 EQU $FFFFA9 ; SSI1 Time Slot Register
M RX1 EQU $FFFFA8 ; SSI1 Receive Data Register
M_SSISR1 EQU $FFFFA7; SSI1 Status Register
M_CRB1 EQU $FFFFA6 ; SSI1 Control Register B
M_CRA1 EQU $FFFFA5 ; SSI1 Control Register A
```

M_TSMA1 EQU \$FFFFA4 ; SSI1 Transmit Slot Mask Register A M_TSMB1 EQU \$FFFFA3 ; SSI1 Transmit Slot Mask Register B M_RSMA1 EQU \$FFFFA2 ; SSI1 Receive Slot Mask Register A M_RSMB1 EQU \$FFFFA1 ; SSI1 Receive Slot Mask Register B SSI Control Register A Bit Flags ; M PM EQU \$FF ; Prescale Modulus Select Mask (PM0-PM7) M PSR EQU 11 ; Prescaler Range M_DC EQU \$1F000 ; Frame Rate Divider Control Mask (DC0-DC7) ; Alignment Control (ALC) M ALC EQU 18 M_WL EQU \$380000 ; Word Length Control Mask (WL0-WL7) M_SSC1 EQU 22 ; Select SC1 as TR #0 drive enable (SSC1) ; SSI Control Register B Bit Flags ; Serial Output Flag Mask M OF EOU \$3 ; Serial Output Flag 0 M_OF0 EQU 0 M_OF1 EQU 1 ; Serial Output Flag 1 🎸 ; Serial Control Direction Mask M SCD EQU \$1C M_SCD0 EQU 2 ; Serial Control 0 Direction M_SCD1 EQU 3 ; Serial Control 1 Direction M_SCD2 EQU 4 ; Serial Control 2 Direction ; Clock Source Direction) M_SCKD EQU 5 ; Shift Direction M_SHFD EQU 6 _ M_FSL EQU \$180 ; Frame Sync Length Mask (FSL0-FSL1) M FSLO EQU 7 ; Frame Sync Length 0 M FSL1 EOU 8 ; Frame Sync Length 1 M FSR EQU 9 ; Frame Sync Relative Timing M_FSP EQU 10 ; Frame Sync Polarity Clock Polarity M_CKP EQU 11 ; Sync/Async Control ; SSL Mode Select M_SYN EQU 12 M_MOD EQU 13 M_SSTE EQU \$10000 ; SSI Transmit enable Mask SSI Transmit #2 Enable M_SSTE2 EQU 14 /; SSI Transmit #1 Enable M_SSTE1 (EQU(15 M_SSTEO EQU 16 < ; SSI Transmit #0 Enable M_SSTIE EQU 18 M_SSTIE EQU 18 M_SSTIE EQU 19 M_STLIE EQU 20 M_STLIE EQU 20 M_STLIE EQU 21 M_STLIE EQU 22 M_STEIE EQU 23 M_STEIE EQU 23 M_STEIE EQU 24 M_STEIE EQU 25 M_STEIE EQU 26 M_STEIE EQU 26 M_STEIE EQU 27 M_STEIE EQU 26 M_STEIE EQU 27 M_STEIE EQU 26 M_STEIE EQU 27 M M_SREIE EQU 23 ; SSI Receive Error Interrupt Enable SSI Status Register Bit Flags M_IF EQU \$3 ; Serial Input Flag Mask M IFO EQU O ; Serial Input Flag 0 ; Serial Input Flag 1 M_IF1 EQU 1 M_TFS EQU 2 ; Transmit Frame Sync Flag m rfs equ 3 ; Receive Frame Sync Flag

```
M_TUE EQU 4
                    ; Transmitter Underrun Error FLag
               ; Receiver Overrun Error Flag
; Transmit Data Register Empty
M ROE EQU 5
M_TDE_EQU_6
M_RDF EQU 7
                    ; Receive Data Register Full
; SSI Transmit Slot Mask Register A
M_SSTSA EQU $FFFF ; SSI Transmit Slot Bits Mask A (TS0-TS15)
; SSI Transmit Slot Mask Register B
M_SSTSB EQU $FFFF ; SSI Transmit Slot Bits Mask B (TS16-TS31)
;
      SSI Receive Slot Mask Register A
M_SSRSA EQU $FFFF ; SSI Receive Slot Bits Mask A (RS0-RS15)
; SSI Receive Slot Mask Register B
M_SSRSB EQU $FFFF ; SSI Receive Slot Bits Mask B (RS16-RS31)
        EQUATES for Exception Processing
;
;
                                                 _____
;-----
; Register Addresses
M_IPRC EQU $FFFFFFF ; Interrupt Priority Register Core
M_IPRP EQU $FFFFFE ; Interrupt Priority Register Peripheral
        (Interrupt Priority Register Core (IPRC)
M IAL EQU $7
                     ; IRQA Mode Mask
M_IALO EQU 0 )
                     ; IRQA Mode Interrupt Priority Level (low)
M_IAL1 EQU 1
                    ; IRQA Mode Interrupt Priority Level (high)
M_IAL2 EQU 2
                     ; IRQA Mode Trigger Mode
M IBL EQU $38
                     ; IRQB Mode Mask
M_IBLO EQU 3
                     ; IRQB Mode Interrupt Priority Level (low)
M_IBL1 EQU 4
                    ; IRQB Mode Interrupt Priority Level (high)
M_IBL2 EQU 5
                     ; IRQB Mode Trigger Mode
M_ICL EQU $1C0
                     ; IRQC Mode Mask
M_ICL0 EQU 6
                     ; IRQC Mode Interrupt Priority Level (low)
M_ICL1 EQU 7; IRQC Mode Interrupt Priority Level (high)M_ICL2 EQU 8; IRQC Mode Trigger ModeM_IDL EQU $E00; IRQD Mode MaskM_IDL0 EQU 9; IRQD Mode Interrupt Priority Level (low)M_IDL1 EQU 10; IRQD Mode Interrupt Priority Level (high)M_IDL2 EQU 11; IRQD Mode Trigger Mode
                    ; IRQC Mode Interrupt Priority Level (high)
M ICL1 EQU 7
```

```
M_DOL EQU $3000
                        ; DMA0 Interrupt priority Level Mask
M DOLO EQU 12
                          ; DMA0 Interrupt Priority Level (low)
                         ; DMA0 Interrupt Priority Level (high)
M DOL1 EQU 13
M_DOLI EQU 13 ; DMAO Interrupt Priority Level (High)

M_D1L EQU $C000 ; DMA1 Interrupt Priority Level Mask

M_D1L0 EQU 14 ; DMA1 Interrupt Priority Level (low)

M_D1L1 EQU 15 ; DMA1 Interrupt Priority Level (high)

M_D2L EQU $30000 ; DMA2 Interrupt Priority Level Mask

M_D2L0 EQU 16 ; DMA2 Interrupt Priority Level (low)

M_D2L1 EQU 17 ; DMA2 Interrupt Priority Level (high)

M_D3L EQU $C0000 ; DMA3 Interrupt Priority Level Mask

M_D3L0 FOUL 18 ; DMA3 Interrupt Priority Level Mask
M_D3L0 EQU 18 ; DMA3 Interrupt Priority Level (low)
M_D3L1 EQU 19 ; DMA3 Interrupt Priority Level (high)
M_D4L EQU $300000 ; DMA4 Interrupt priority Level Mask
M_D4L0 EQU 20; DMA4 Interrupt Priority Level (low)M_D4L1 EQU 21; DMA4 Interrupt Priority Level (high)
M_D5L EQU $C00000 ; DMA5 Interrupt priority Level Mask
M D5L0 EQU 22 ; DMA5 Interrupt Priority Level (low)
M_D5L1 EQU 23
                        ; DMA5 Interrupt Priority Level (high)
          Interrupt Priority Register Peripheral (IPRP)
;
M_HPL EQU $3
                        ; Host Interrupt Priority Level Mask
                         ; Host Interrupt Priority Level (low)
M_HPL0 EQU 0
M_HPL1 EQU 1
                         ; Host Interrupt Priority Level (high)
                        ; SSIO Interrupt Priority Level Mask
M SOL EQU $C
M SOLO EQU 2
                        ; SSI0 Interrupt Priority Level (low)
M SOL1 EOU 3
                        ; SSIO Interrupt Priority Level (high)
M_S1L EQU $30
                         ; SSI1 Interrupt Priority Level Mask
M S1LO EQU 4
                         SSI1 Interrupt Priority Level (low)
                       SSI1 Interrupt Priority Level (high)
M_S1L1 EQU 5
                      ; SCI Interrupt Priority Level (low)
; SCI Interrupt Priority Level (low)
M_SCL EQU $C0
M_SCL0 EQU 6/
                        ; SCI Interrupt Priority Level (high)
M_SCL1 EQU 7
                          TIMER Interrupt Priority Level Mask
M_TOL EQU $300
                        /; TIMER Interrupt Priority Level (low)
M_TOLO EQU 8
M_TOLI EQU 9
                          ; TIMER Interrupt Priority Level (high)
          EQUATES for TIMER
                                            _____
          Register Addresses Of TIMER0
M_TCSR0 EQU $FFFF8F ; TIMER0 Control/Status Register
M_TLR0 EQU $FFFF8E ; TIMER0 Load Reg
M_TCPR0 EQU $FFFF8D ; TIMER0 Compare Register
M_TCR0 EQU $FFFF8C ; TIMER0 Count Register
          Register Addresses Of TIMER1
 ;
```
```
M_TCSR1 EQU $FFFF8B ; TIMER1 Control/Status Register
M_TLR1 EQU $FFFF8A ; TIMER1 Load Reg
M_TCPR1 EQU $FFFF89 ; TIMER1 Compare Register
M_TCR1 EQU $FFFF88 ; TIMER1 Count Register
;
       Register Addresses Of TIMER2
M_TCSR2 EQU $FFFF87 ; TIMER2 Control/Status Register
M_TLR2 EQU $FFFF8 ; TIMER2 Load Reg
M_TCPR2 EQU $FFFF85 ; TIMER2 Compare Register
M_TCR2 EQU $FFFF84 ; TIMER2 Count Register
M_TPLR EQU $FFFF83 ; TIMER Prescaler Load Register
M_TPCR EQU $FFFF82 ; TIMER Prescalar Count Register
      Timer Control/Status Register Bit Flags
;
                 ; Timer Enable
m te equ 0
M_TOIE EQU 1
                 ; Timer Overflow Interrupt Enable
M_TCIE EQU 2
                 ; Timer Compare Interrupt Enable
M_TC EQU $F0
                 ; Timer Control Mask (TCO-TC3)
                 ; Inverter Bit
M_INV EQU 8
                 ; Timer Restart Mode
M_TRM EQU 9
                 ; Direction Bit
M DIR EQU 11
M DI EQU 12
                 ; Data Input
M DO EOU 13
                 ; Data Output
M_PCE EQU 15
                  ; Prescaled Clock Enable
M_TOF EQU 20
                  ; Timer Overflow Flag
M_TCF EQU 21
                  🔀 Timer Compare Flag
      Timer Prescaler Register Bit Flags
;
M_PS EQU $600000
                  / Prescaler Source Mask
M_PS0 EQU 21
M_PS1 EQU 22
         Timer Control Bits
M_TCO_EQU 4
              ; Timer Control 0
                 ; Timer Control 1
M TC1 EQU 5
                 ; Timer Control 2
M TC2 EQU 6
M_TC3 EQU 7
                 ; Timer Control 3
            _____
       EQUATES for Direct Memory Access (DMA)
;
                                   _____
;
       Register Addresses Of DMA
M DSTR EQU $FFFFF4 ; DMA Status Register
```

```
M_DOR0 EQU $FFFFF3 ; DMA Offset Register 0
M_DOR1 EQU $FFFFF2 ; DMA Offset Register 1
M_DOR2 EQU $FFFFF1 ; DMA Offset Register 2
M_DOR3 EQU $FFFFF0 ; DMA Offset Register 3
        Register Addresses Of DMA0
;
M_DSR0 EQU $FFFFEF ; DMA0 Source Address Register
M_DDR0 EQU $FFFFEE ; DMA0 Destination Address Register
M_DCO0 EQU $FFFFED ; DMA0 Counter
M_DCR0 EQU $FFFFEC ; DMA0 Control Register
;
        Register Addresses Of DMA1
M_DSR1 EQU $FFFFEB ; DMA1 Source Address Register
M DDR1 EQU $FFFFEA ; DMA1 Destination Address Register
M_DCO1 EQU $FFFFE9 ; DMA1 Counter
M_DCR1 EQU $FFFFE8 ; DMA1 Control Register
        Register Addresses Of DMA2
;
M_DSR2 EQU $FFFFE7 ; DMA2 Source Address Register
M_DDR2 EQU $FFFFE6 ; DMA2 Destination Address Register
M_DCO2 EQU $FFFFE5 ; DMA2 Counter
M_DCR2 EQU $FFFFE4 ; DMA2 Control Register
;
        Register Addresses Of DMA4
M_DSR3 EQU $FFFFE3 ; DMA3 Source Address Register
M_DDR3 EQU $FFFFE2 ; DMA3 Destination Address Register
M_DCO3 EQU $FFFFE1 ; DMA3 Counter
M_DCR3 EQU $FFFFE0 ; DMA3 Control Register
        Register Addresses Of DMA4
;
M DSR4 EQU $FFFFDF ; DMA4 Source Address Register
M_DDR4 EQU $FFFFDE ; DMA4 Destination Address Register
M_DCO4_EQU $FFFFDD ; DMA4 Counter
M_DCR4 EQU $FFFFDC ; DMA4 Control Register
        Register Addresses Of DMA5
M_DSR5 EQU $FFFFDB ; DMA5 Source Address Register
M_DDR5 EQU $FFFFDA ; DMA5 Destination Address Register
M_DCO5 EQU $FFFFD9 ; DMA5 Counter
M_DCR5 EQU $FFFFD8 ; DMA5 Control Register
          DMA Control Register
;
M_DSS EQU $3
                     ; DMA Source Space Mask (DSS0-Dss1)
M DSSO EQU O
                    ; DMA Source Memory space 0
```

```
M_DSS1 EQU 1
                 ; DMA Source Memory space 1
M_DDS EQU $C
                  ; DMA Destination Space Mask (DDS-DDS1)
                 ; DMA Destination Memory Space 0
M DDS0 EQU 2
                 ; DMA Destination Memory Space 1
M_DDS1 EQU 3
M DAM EQU $3F0
                 ; DMA Address Mode Mask (DAM5-DAM0)
                 ; DMA Address Mode 0
m dam0 equ 4
                 ; DMA Address Mode 1
M_DAM1 EQU 5
                 ; DMA Address Mode 2
M DAM2 EQU 6
                 ; DMA Address Mode 3
M DAM3 EQU 7
M_DAM4 EQU 8
                 ; DMA Address Mode 4
m dam5 equ 9
                 ; DMA Address Mode 5
M_D3D EQU 10
                 ; DMA Three Dimensional Mode
                 ; DMA Request Source Mask (DRS0-DRS4)
M_DRS EQU $F800
                 ; DMA Continuous Mode
M DCON EQU 16
M_DPR EQU $60000 ; DMA Channel Priority
M_DPR0 EQU 17
                 ; DMA Channel Priority Level (low)
M DPR1 EQU 18
                 ; DMA Channel Priority Level (high)
M_DTM EQU $380000 ; DMA Transfer Mode Mask (DTM2-DTM0)
                 ; DMA Transfer Mode 0 🎸
M_DTMO EQU 19
                 ; DMA Transfer Mode 1
M_DTM1 EQU 20
                 ; DMA Transfer Mode 2
M_DTM2 EQU 21
M_DIE EQU 22
                 ; DMA Interrupt Enable bit
M_DE EQU 23
                 ; DMA Channel Enable bit
       DMA Status Register
;
                 ; Channel Transfer Done Status MASK (DTD0-DTD5)
M DTD EQU $3F
M DTDO EOU O
                 ; DMA Channel Transfer Done Status 0
                   ; DMA Channel Transfer Done Status 1
M DTD1 EQU 1
M DTD2 EQU 2
                  DMA Channel Transfer Done Status 2
                Channel Transfer Done Status 3
M_DTD3 EQU 3
M_DTD4 EQU 4
                ; DMA Channel Transfer Done Status 4
; DMA Channel Transfer Done Status 5
M_DTD5 EQU 5/
M_DACT EQU 8
                 ; DMA Active State
                  /DMA Active Channel Mask (DCH0-DCH2)
M_DCH EQU $E00
                 ; DMA Active Channel 0
M_DCH0 EQU 9
M_DCH1 EQU 10
                  ; DMA Active Channel 1
M DCH2 EQU 11
                  ; DMA Active Channel 2
            _____
       EQUATES for Phase Lock Loop (PLL)
                                _____
       Register Addresses Of PLL
M_PCTL EQU $FFFFFD ; PLL Control Register
;
       PLL Control Register
M MF EQU $FFF ; Multiplication Factor Bits Mask (MF0-MF11)
```

```
M_DF EQU $7000
                    ; Division Factor Bits Mask (DF0-DF2)
M_XTLR EQU 15
                     ; XTAL Range select bit
M XTLD EQU 16
                    ; XTAL Disable Bit
M_PSTP EQU 17
                   ; STOP Processing State Bit
M_PEN EQU 18; PLL Enable BitM_PCOD EQU 19; PLL Clock Output Disable BitM_PD EQU $F00000; PreDivider Factor Bits Mask (PD0-PD3)
;______
       EQUATES for BIU
;
; -
     Register Addresses Of BIU
;
M_BCR EQU $FFFFFB ; Bus Control Register <
M_DCR EQU $FFFFFA ; DRAM Control Register
M_AAR0 EQU $FFFFF9 ; Address Attribute Register 0
M_AAR1 EQU $FFFFF8 ; Address Attribute Register 1
M_AAR2 EQU $FFFFF7 ; Address Attribute Register 2
M_AAR3 EQU $FFFFF6 ; Address Attribute Register 3
M_IDR EQU $FFFFF5 ; ID Register
;
      Bus Control Register
M_BA0W EQU $1F
M_BA1W EQU $3E0
; Area 0 Wait Control Mask (BA0W0-BA0W4)
; Area 1 Wait Control Mask (BA1W0-BA14)
                  Area 1 Wait Control Mask (BA1W0-BA14)
Area 2 Wait Control Mask (BA2W0-BA2W2)
M_BA2W EQU $1C00
M_BA3W EQU $E000 ; Area 3 Wait Control Mask (BA3W0-BA3W3)
M_BDFW EQU $1F0000 ; Default Area Wait Control Mask (BDFW0-BDFW4)
M_BBS EQU 21
                  ; Bus State
                     ; Bus Lock Hold
M_BLH EQU 22
                   ; Bus Request Hold
M_BRH EQU 23
       DRAM Control Register
                ; In Page Wait States Bits Mask (BCW0-BCW1)
M_BCW_EQU $3
M BRW EQU $C
                    ; Out Of Page Wait States Bits Mask (BRW0-BRW1)
M_BPS_EQU $300
                   ; DRAM Page Size Bits Mask (BPS0-BPS1)
M_BPLÉ EQU 11
                    ; Page Logic Enable
M_BME EQU 12
                    ; Mastership Enable
                   ; Refresh Enable
; Software Triggered Refresh
M_BRE EQU 13
M_BSTR EQU 14
M_BRF EQU $7F8000 ; Refresh Rate Bits Mask (BRF0-BRF7)
M_BRP EQU 23 ; Refresh prescaler
       Address Attribute Registers
;
M_BAT EQU $3 ; External Access Type and Pin Definition Bits Mask (BATO-
BAT1)
```

```
M_BAAP EQU 2
                  ; Address Attribute Pin Polarity
M BPEN EQU 3
                   ; Program Space Enable
                  ; X Data Space Enable
M BXEN EQU 4
M_BYEN EQU 5
                  ; Y Data Space Enable
M BAM EQU 6
                  ; Address Muxing
M BPAC EQU 7
                  ; Packing Enable
M_BNC EQU $F00
                  ; Number of Address Bits to Compare Mask (BNC0-BNC3)
M BAC EQU $FFF000 ; Address to Compare Bits Mask (BAC0-BAC11)
       control and status bits in SR
;
M_CP EQU $c00000
                   ; mask for CORE-DMA priority bits in SR
M_CA EQU 0
                   ; Carry
M V EQU 1
                   ; Overflow
MZEQU2
                  ; Zero
M_N EQU 3
                  ; Negative
m u equ 4
                  ; Unnormalized
M_E EQU 5
                  ; Extension
M_L EQU 6
                   ; Limit
M S EQU 7
                  ; Scaling Bit
M_IO EQU 8
                  ; Interupt Mask Bit O
M_I1 EQU 9
                  ; Interupt Mask Bit 1
M_S0 EQU 10
                  ; Scaling Mode Bit 0
M_S1 EQU 11
                  ; Scaling Mode Bit 1
                  ; Sixteen_Bit Compatibility
M_SC EQU 13
                  ; Double Precision Multiply
M DM EQU 14
M LF EQU 15
                  ; DO-Loop Flag
M FV EOU 16
                  ; DO-Forever Flag
M_SA EQU 17
                   ; Sixteen-Bit Arithmetic
M_CE EQU 19
                   Instruction Cache Enable
M_SM EQU 20
                   X Arithmetic Saturation
M_RM EQU 21
                   ; Rounding Mode
M_CPO EQU 22/
                   ; bit 0 of priority bits in SR
M_CP1 EQU 23
                   ; bit 1 of priority bits in SR
       control and status bits in OMR
;
M_CDP EQU $300
                   ; mask for CORE-DMA priority bits in OMR
M MA EQU 0
                   ; Operating Mode A
M-MB EOU 1
                  ; Operating Mode B
                  ; Operating Mode C
M_MC EQU 2
M MD EQU 3
                   ; Operating Mode D
M_EBD_EQU 4
                   ; External Bus Disable bit in OMR
M_SD EQU 6
                  ; Stop Delay
M_CDP0 EQU 8
                  ; bit 0 of priority bits in OMR
M_CDP1 EQU 9
                  ; bit 1 of priority bits in OMR
M_BEN EQU 10
                  ; Burst Enable
M_TAS EQU 11
                  ; TA Synchronize Select
                  ; Bus Release Timing
M BRT EOU 12
M_XYS EQU 16
                  ; Stack Extension space select bit in OMR.
M EUN EQU 17
                  ; Extensed stack UNderflow flag in OMR.
M_EOV EQU 18
                  ; Extended stack OVerflow flag in OMR.
                  ; Extended WRaP flag in OMR.
M_WRP EQU 19
M SEN EQU 20
                  ; Stack Extension Enable bit in OMR.
```

```
;
    EQUATES for DSP56301 interrupts
;
    Reference: DSP56301 Specifications Revision 3.00
;
;
    Last update: November 15 1993 (Debug request & HI32 interrupts)
;
               December 19 1993 (cosmetic - page and opt directives)
;
               August 16 1994 (change interrupt addresses to be
;
                      relative to I_VEC)
;
;
132,55,0,0,0
       page
       opt
               mex
intequ ident 1,0
       if
               @DEF(I_VEC)
       ;leave user definition as is.
       else
               $0
I_VEC
       equ
       endif
;------
; Non-Maskable interrupts
;-----
I_RESET EQU I_VEC+$00
                   ; Hardware RESET
I_STACK EQU I_VEC+$02/
                   ; Stack Error
      EQU I_VEC+$04
                  X Illegal Instruction
I\_ILL
I_DBG
      EQU I_VEC+$06
                   ; Debug Request
I_TRAP
      EQU I_VEC+$08
                   ; Trap
I_NMI
      EQU I_VEC+$0A
                   V.Non Maskable Interrupt
;-----
                           _____
; Interrupt Request Pins
;------
      EQU I_VEC+$10 ; IRQA
I_IRQA
I_IRQB
     EQU I_VEC+$12 ; IRQB
1_IRQC
      EQU I_VEC+$14 ; IRQC
      EQU I_VEC+$16 ; IRQD
I_IRQD
;-----
             _____
; DMA Interrupts
EQU I_VEC+$18 ; DMA Channel 0
I_DMA0
      EQU I_VEC+$1A
                  ; DMA Channel 1
I_DMA1
I_DMA2
     EQU I_VEC+$1C
                  ; DMA Channel 2
                  ; DMA Channel 3
I DMA3
     EQU I_VEC+$1E
I_DMA4 EQU I_VEC+$20 ; DMA Channel 4
I_DMA5 EQU I_VEC+$22 ; DMA Channel 5
```

```
;-----
; Timer Interrupts
I_TIMOC EQU I_VEC+$24 ; TIMER 0 compare
I TIMOOF EQU I VEC+$26 ; TIMER 0 overflow
I_TIM1C EQU I_VEC+$28 ; TIMER 1 compare
I_TIM1OF EQU I_VEC+$2A ; TIMER 1 overflow
I_TIM2C EQU I_VEC+$2C ; TIMER 2 compare
I_TIM2OF EQU I_VEC+$2E ; TIMER 2 overflow
;-----
; ESSI Interrupts
;-----
I_SIORD EQU I_VEC+$30 ; ESSIO Receive Data
I_SIORDE EQU I_VEC+$32 ; ESSIO Receive Data With Exception Status
I_SIORLS EQU I_VEC+$34 ; ESSIO Receive last slot
I_SIOTD EQU I_VEC+$36 ; ESSIO Transmit data
I_SIOTD EQU I_VEC+$38 ; ESSIO Transmit Data With Exception Status
I_SIOTLS EQU I_VEC+$3A ; ESSIO Transmit last slot
I_SIIRD EQU I_VEC+$40 ; ESSII Receive Data
I_SIIRDE EQU I_VEC+$42 ; ESSII Receive Data With Exception Status
I_SI1RLS EQU I_VEC+$44 ; ESSI1 Receive last slot
I_SI1TD EQU I_VEC+$46 ; ESSI1 Transmit data
I_SIITDE EQU I_VEC+$48 ; ESSII Transmit Data With Exception Status
I_SIITLS EQU I_VEC+$4A ; ESSII Transmit last slot
;------
; SCI Interrupts
;-----
I_SCIRD EQU I_VEC+$50 ; SCI Receive Data
I_SCIRDE EQU I_VEC+$52 ; SCI Receive Data With Exception Status
I_SCITD EQU I_VEC+$54
                    SCI Transmit Data
I_SCIIL EQU I_VEC+$56 / SCI Idle Line
I_SCITM EQU I_VEC+$58
                     ; SCI Timer
;-----
                 _____
; HOST Interrupts
;_____
1-HPTT EOU /I VEC+$60 ; Host PCI Transaction Termination
I HPTA EQU I_VEC+$62 ; Host PCI Transaction Abort
I_HPPE EQU I_VEC+$64 ; Host PCI Parity Error
I_HPTC EQU I_VEC+$66 ; Host PCI Transfer Complete
I_HPMR EQU I_VEC+$68 ; Host PCI Master Receive
I_HSR EQU I_VEC+$6A ; Host Slave Receive
I_HPMT EQU I_VEC+$6C ; Host PCI Master Transmit
      EQU I_VEC+$6E ; Host Slave Transmit
I_HST
I_HPMA EQU I_VEC+$70
                    ; Host PCI Master Address
I_HCNMI EQU I_VEC+$72 ; Host Command/Host NMI (Default)
;-----
; INTERRUPT ENDING ADDRESS
I INTEND EQU I VEC+$FF ; last address of interrupt vector space
```

## Α

AC electrical characteristics 2-4 address, electronic mail ii arbitration bus timings 2-40

### В

block diagram 1 bootstrap ROM iv boundary scan (JTAG) timing diagram 2-65 bus external address 1-7 external data 1-7 bus acquisition timings 2-41 bus release timings 2-42, 2-43

## С

CCOP v Clock 1-6 clock operation 2-6 clocks internal 2-4 contents ii co-processors iv core features iii crystal oscillator circuits 2-5 Cyclic-code Co-Processor (CCOP)

# D

DC electrical characteristics 2-3 description 1 design considerations electrical 4-3, 4-4 PLL 4-5, 4-6 power consumption 4-4 thermal 4-1, 4-2 document conventions ii documentation vi DRAM out of page read access 2-34 Wait states selection guide 2-28

write access 2-35 out of page and refresh timings 11 Wait states 2-30 15 Wait states 2-31 8 Wait states 2-28 Page mode read accesses 2-27 Wait states selection guide 2-21 write accesses 2-26 Page mode timings 2 Wait states 2-21 3 Wait states 2-23 4 Wait states 2-24 refresh access 2-36 drawing mechanical 3-14 mechanical information 3-13 pins top view 3-2 drawings ordering 3-14 DSP56300 core features iii Family Manual vi DSP56305 block diagram 1 description 1 specifications 2-1 Technical Data vi User's Manual vi

# Ε

electrical design considerations 4-3, 4-4 Enhanced Synchronous Serial Interface 1-1, 1-21, 1-24 ESSI 1-1, 1-2, 1-21, 1-24 receiver timing 2-60 timings 2-56 transmitter timing 2-59 external address bus 1-7 external bus control 1-7, 1-8, 1-9 external bus synchronous timings (SRAM access) 2-37 external data bus 1-7 external interrupt timing (negative edge-triggered) 2-13 external level-sensitive fast interrupt timing 2-13 external memory access (DMA Source) timing 2-15 external memory expansion port 1-7 External Memory Interface (Port A) 2-16

### F

FCOP iv Filter Co-Processor (FCOP) iv functional groups 1-2 functional signal groups 1-1

### G

general description 1 GPIO 1-28 Timers 1-2 GPIO timing 2-63 Ground 1-5 PLL 1-5

### Н

helpline electronic mail (email) address ii HI08 1-1 HI32 1-2, 1-3, 1-13, 1-14 Host Inteface 1-1 Host Interface 1-2, 1-13, 1-14, 2-44 PCI 1-2 PCI bus 1-3 universal bus 1-3 Host Interface timing universal bus mode 2-44 synchronous Port A 2-46 Host Interface timings PCI mode  $2_{1}52$ , 2-53 Reset 2-53 universal bus mode data strobe synchronous 2-52 DMA access 2-49 Host Bus Strobe synchronous 2-51 Host Interrupt Request pulse width 2-49 HRS to  $\overline{\text{HDS}}$  2-49 HRST 2-49 I/O access timing 2-48 read 2-50 write 2-51

Host Interrupt Request 2-49 host port configuration 1-14 usage considerations 1-13

#### I

instruction cache iv internal clocks 2-4 internal RAM iv internal ROM iv internet address ii interrupt and mode control 1-11, 1-12 interrupt control 1-11, 1-12 interrupt timing 2-8 external level-sensitive fast 2-13 external negative edge-triggered 2-13 synchronous from Wait state 2-14

## J

JTAG 1-29 JTAG reset timing diagram 2-66 JTAG timing 2-64

### Μ

maximum ratings 2-1, 2-2 mechanical drawing 3-14 mechanical information drawing 3-13 memory configuration iv Mfax 3-14 mode control 1-11, 1-12 Mode select timing 2-8

# 0

OnCE Debug request 2-66 module timing 2-66 OnCE module 1-29 OnCE/JTAG 1-2 OnCE/JTAG port 1-1 operating mode select timing 2-14 ordering drawings 3-14 product 5-1

#### Ρ

Phase Lock Loop 2-7 pins

drawing top view 3-2 PLL 1-6, 2-7 Characteristics 2-7 performance issues 4-5 PLL design considerations 4-5, 4-6 PLL performance issues 4-6 Port A 1-7, 2-16 Port B GPIO 1-3 Port C 1-2, 1-21 Port D 1-2, 1-24 Port E 1-27 Power 1-4 power consumption design considerations 4-4 product ordering 5-1

# R

recovery from Stop state using IRQA 2-14, 2-15 RESET 1-11 Reset timing 2-8, 2-12 synchronous 2-12

# S

SCI 1-2, 1-27 Asynchronous mode timing 2-55Synchronous mode timing 2-55timing 2-54 Serial Communications Interface 1-27 Serial Communications Interface (SCI) 1-1 signal groupings 1-1 signals 1-1 functional grouping 1-2 SRAM 2-38 Access 2-37 read access 2-18 read and write accesses 2-16 write access 2-18 SSRAM read access 2-20 read and write access 2-19 write access 2-20 Stop state recovery from 2-14, 2-15 Stop timing 2-8 supply voltage 2-2 switch mode iv synchronous bus timings SRAM

2 WS 2-39 SRAM 1 WS (BCR controlled) 2-38 synchronous interrupt from Wait state timing 2-14 synchronous Reset timing 2-12

# Т

table of contents ii technical assistance ii Test Access Port timing diagram 2-65 Test Clock (TCLK) input timing diagram 2-64 thermal characteristics 2-2 thermal design considerations 4-1, 4-2Timer event input restrictions 2-61 external pulse generation 2-62 interrupt generation 2-62timing 2-61 Timers 1-1, 1-2, 1-28 timing interrupt 2-8 mode select 2-8 Reset 2-8 Stop 2-8 V

VCOP v Viterbi Co-Processor (VCOP) v



OnCE and Mfax are trademarks of Motorola, Inc.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application. Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (A) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

#### How to reach us:

#### USA/Europe/Locations Not Listed:

Motorola Literature Distribution P.O. Box 5405 Denver, Colorado 80217 303-675-2140 1 (800) 441-2447

Mfax™: RMFAX0@email.sps.mot.com TOUCHTONE (602) 244-6609

MOTOROLA

#### Asia/Pacific:

Motorola Semiconductors H.K. Ltd. 8B Tai Ping Industrial Park 51 Ting Kok Road Tai Po, N.T., Hong Kong 852-2662928

**Technical Resource Center:** 1 (800) 521-6274

DSP Helpline dsphelp@dsp.sps.mot.com

#### Japan:

Nippon Motorola Ltd. Tatsumi-SPD-JLDC 6F Seibu-Butsuryu-Center 3-14-2 Tatsumi Koto-Ku Tokyo 135, Japan 81-3-3521-8315

Internet:

http://www.motorola-dsp.com

