DSP56304

Advance Information 24-BIT DIGITAL SIGNAL PROCESSOR

Motorola designed the ROM-based DSP56304 to support multifunction wireless and embedded DSP applications. In addition to the large on-chip ROM spaces, the DSP56304 also has a ROM patch feature that facilitates updates to the on-chip mask Program ROM-based on-chip software. The DSP56304 includes a triple timer module, Host Interface (HI08), an Enhanced Synchronous Serial Interface (ESSI), and a Serial Communications Interface (SCI). The DSP56300 core family includes a Phase Lock Loop (PLL), External Memory Interface (EMI), Data Arithmetic Logic Unit (Data ALU), 24-bit addressing, instruction cache, and DMA. The DSP56304 offers 66/80 MIPS using an internal 66/80 MHz clock at 3.0–3.6 volts.

Figure 1 DSP56304 Block Diagram

This document contains information on a new product. Specifications and information herein are subject to change without notice.

TABLE OF CONTENTS

SECTION 1	SIGNAL/CONNECTION DESCRIPTIONS1-1
SECTION 2	SPECIFICATIONS
SECTION 3	PACKAGING
SECTION 4	DESIGN CONSIDERATIONS 4-1
SECTION 5	ORDERING INFORMATION
APPENDIX A	POWER CONSUMPTION BENCHMARKA-1
	INDEXIndex-1

FOR TECHNICAL ASSISTANCE:

Telephone:	1-800-521-6274
Email:	dsphelp@dsp.sps.mot.com
Internet:	http://www.motorola-dsp.com

Data Sheet Conventions

This data sheet uses the following conventions:

OVERBAR	Used to indicate a signal that is active when pulled low (For example, the $\overline{\text{RESET}}$ pin is active when low.)			
"asserted"	Means that a high true (active high) signal is high or that a low true (active low) signal is low			
"deasserted"	Means that a high true (active high) signal is low or that a low true (active low) signal is high			
Examples:	Signal/Symbol	Logic State	Signal State	Voltage
	PIN	True	Asserted	V_{IL}/V_{OL}
	PIN	False	Deasserted	V_{IH}/V_{OH}
	PIN	True	Asserted	V_{IH}/V_{OH}
	PIN	False	Deasserted	V_{IL}/V_{OL}

Note: Values for $V_{IL\prime}\,V_{OL\prime}\,V_{IH\prime}$ and V_{OH} are defined by individual product specifications.

FEATURES

DSP56304 FEATURES

High Performance DSP56300 Core

- 66/80 Million Instructions Per Second (MIPS) with a 66/80 MHz clock
- Object code compatible with the DSP56000 core
- Highly parallel instruction set
- Fully pipelined 24 × 24-bit parallel Multiplier-Accumulator (MAC)
- 56-bit parallel barrel shifter
- 24-bit or 16-bit arithmetic support under software control
- Position independent code support
- Addressing modes optimized for DSP applications
- On-chip instruction cache controller
- On-chip memory-expandable hardware stack
- Nested hardware DO loops
- Fast auto-return interrupts
- On-chip concurrent six-channel DMA controller
- On-chip Phase Lock Loop (PLL) and clock generator
- On-Chip Emulation (OnCE™) module
- JTAG Test Access Port (TAP)
- Address Tracing mode reflects internal accesses at the external port

On-chip Memories

• Program RAM, Instruction Cache, X data RAM, and Y data RAM size is programmable:

Instruction Cache	Switch Mode	Program RAM Size	Instruction Cache Size	X Data RAM Size	Y Data RAM Size
disabled	disabled	1024×24 -bit	0	3328×24 -bit	1792 × 24-bit
enabled	disabled	0	1024×24 -bit	3328×24 -bit	1792×24 -bit
disabled	enabled	3584×24 -bit	0	2048×24 -bit	512×24 -bit
enabled	enabled	2560×24 -bit	1024×24 -bit	2048×24 -bit	512×24 -bit

- 33, 792 × 24-bit Program ROM with Patch mode update capability using instruction cache memory space
- $9,216 \times 24$ -bit X data ROM and $9,216 \times 24$ -bit Y data ROM
- 192 × 24-bit bootstrap ROM

Off-chip Memory Expansion

- Data memory expansion to two 256 K \times 24-bit word memory spaces (the usage of address attribute pins and/or DRAM interface may further extend the data memory expansion up to two 16 M \times 24-bit words memory space)
- Program memory expansion to one 256 K \times 24-bit word memory space (the usage of address attribute pins and/or DRAM interface may further extend the program memory expansion up to two 16 M \times 24-bit words memory space)
- External memory expansion port
- Chip select logic requires no additional circuitry to interface to SRAMs and SSRAMs
- On-chip DRAM controller requires no additional circuitry to interface to DRAMs

On-chip Peripherals

- 8-bit parallel Host Interface (HI08), ISA-compatible bus interface, providing a cost-effective solution for applications not requiring the PCI bus
- Two Enhanced Synchronous Serial Interfaces (ESSI0 and ESSI1)
- Serial Communications Interface (SCI) with baud rate generator
- Triple timer module
- Up to thirty-four programmable General Purpose I/O pins (GPIO), depending on which peripherals are enabled

Reduced Power Dissipation

- Very low power CMOS design
- Wait and Stop low power standby modes
- Fully-static logic, operation frequency down to DC
- Optimized power management circuitry

TARGET APPLICATIONS

The DSP56304 is intended for use in embedded multifunction DSP applications requiring large on-board ROM spaces, such as wireless products that combine standard cellular phone operation with options such as two-way digital paging and fax capability in one unit.

PRODUCT DOCUMENTATION

The three manuals listed in **Table 1** are required for a complete description of the DSP56304 and are necessary to design with the part properly. Documentation is available from a local Motorola distributor, a Motorola semiconductor sales office, a Motorola Literature Distribution Center, or the World Wide Web.

Document Name	Description of Contents	Order Number
DSP56300 Family Manual	Detailed description of the DSP56300 family architecture and the 24-bit core processor and instruction set	DSP56300FM/AD
DSP56304 User's Manual	Detailed description of DSP56304 memory, peripherals, and interfaces	DSP56304UM/AD
DSP56304 Technical Data	DSP56304 pin and package descriptions, and electrical and timing specifications	DSP56304/D

Table 1	DSP56304 Documentation
I able I	Doi Jobbe Documentation

dsp

SECTION 1

SIGNAL/CONNECTION DESCRIPTIONS

SIGNAL GROUPINGS

The input and output signals of the DSP56304 are organized into functional groups, as shown in **Table 1-1** and as illustrated in **Figure 1-1**.

The DSP56304 is operated from a 3 V supply; however, some of the inputs can tolerate 5 V. A special notice for this feature is added to the signal descriptions of those inputs.

Functional Group	Number of Signals	Detailed Description		
Power (V _{CC})		18	Table 1-2	
Ground (GND)		19	Table 1-3	
Clock		2	Table 1-4	
PLL	3	Table 1-5		
Address Bus	1	18	Table 1-6	
Data Bus	Port A ¹	24	Table 1-7	
Bus Control	13	Table 1-8		
Interrupt and Mode Control		5	Table 1-9	
Host Interface (HI08)	16	Table 1-11		
Enhanced Synchronous Serial Interface (ESSI) Ports C and D ³		12	Table 1-12 and Table 1-13	
Serial Communication Interface (SCI)	3	Table 1-14		
Timer	3	Table 1-15		
OnCE/JTAG Port	6	Table 1-16		
Note: 1. Port A signals define the External Memory Interface port, including the external address bus, data bus, and control signals. Port B signals are the HI08 port signals multiplexed with the CPIO signals.				

 Table 1-1
 DSP56304 Functional Signal Groupings

2. Port B signals are the HI08 port signals multiplexed with the GPIO signals.

3. Port C and D signals are the two ESSI port signals multiplexed with the GPIO signals.

4. Port E signals are the SCI port signals multiplexed with the GPIO signals.

Figure 1-1 is a diagram of DSP56304 signals by functional group.

Signal Groupings

	Г			1			
		DSP	56304	←	MODA/IRQA		
		Power Inputs:	Interrupt/	◄	MODB/IRQB		
V _{CCP}		PLL	Mode	◄	MODC/IRQC		
V _{CCQ}	4	Internal Logic	Control	-	MODD/IRQD		
V _{CCA}	$\frac{4}{}$	Address Bus			RESET		
V _{CCD}	$\frac{4}{2}$	Data Bus			Non-	Multiplexed	Port B
V _{CCC}	>	Bus Control			Multiplexed Bus	•	GPIO
V _{CCH}	2	HI08		$\overset{\circ}{\longleftarrow}$	H0–H7	HAD0-HAD7	PB0-PB7
V _{CCS}		ESSI/SCI/Timer		◄	HA0	HAS/HAS	PB8
			Host	◄	HA1	HA8	PB9
		Grounds:		◄	HA2	HA9	PB10
GND _P		PLL	(HI08) Port ¹	◄	HCS/HCS	HA10	PB13
GND _{P1}		PLL			Single DS HRW	Double DS HRD/HRD	PB11
GNDQ	$\frac{1}{4}$	Internal Logic			HDS/HDS	HWR/HWR	PB11 PB12
GNDA	4	Address Bus			Single HR	Double HR	1012
GND _D GND _C	2	Data Bus Bus Control			HREQ/HREQ	HTRQ/HTRQ	PB14
GND _H		HI08		$ \rightarrow $	HACK/HACK	HRRQ/HRRQ	PB15
GNDS	$\xrightarrow{2}$	ESSI/SCI/Timer					
Ū			Enhanced	.3.	0000 0000	Port C GPIO	
			Synchronous Serial		SC00–SC02 SCK0	PC0–PC2 PC3	
EXTAL	_		Interface Port 0		SRD0	PC4	
XTAL		Clock	(ESSI0) ²	\leftarrow	STD0	PC5	
CLKOUT	-					Port D GPIO	
PCAP	►	PLL	Enhanced	<->>	SC10-SC12	PD0-PD2	
PINIT/NMI			Synchronous Serial	<>	SCK1	PD3	
			Interface Port 1		SRD1	PD4	
		Port A	(ESSI1) ²	$ \rightarrow $	STD1	PD5	
	18	External					
A0–A17	≺	Address Bus	Serial		DVD	Port E GPIO	
	24	External	Communications	-	RXD TXD	PE0 PE1	
D0-D23	\checkmark	Data Bus	Interface (SCI) Port ²		SCLK	PE2	
		Dulu Duo			OOLIN		
AA0–AA3/ RAS0–RAS3	4	Eutomol				Timer GPIO	
RD		External Bus			TIO0	TIO0	
WR	-	Control	Timers ³	\rightarrow	TIO1	TIO1	
TA	►	Control		<>	TIO2	TIO2	
BR	◄ ┤				тск		
BG			OnCE/		TDI		
BB CAS			JTAG Port	→	TDO		
BCLK	-			◄	TMS		
BCLK	←				TRST		
	L				DE		AA0601

The HI08 port supports a non-multiplexed or a multiplexed bus, single or double Data Strobe (DS), and single or double Host Request (HR) configurations. Since each these modes is configured independently, any combination of these modes is possible. These HI08 signals can also be configured alternately as GPIO signals (PB0–PB15). Signals with dual designations (e.g., HAS/HAS) have configurable polarity.

- 2. The ESSI0, ESSI1, and SCI signals are multiplexed with the Port C GPIO signals (PC0–PC5), Port D GPIO signals (PD0–PD5), and Port E GPIO signals (PE0–PE2), respectively.
- 3. TIO0–TIO2 can be configured as GPIO signals.

Figure 1-1 Signals Identified by Functional Group

Power

POWER

Power Name	Description
V _{CCP}	PLL Power — V_{CCP} is V_{CC} dedicated for Phase Lock Loop (PLL) use. The voltage should be well-regulated and the input should be provided with an extremely low impedance path to the V_{CC} power rail. There is one V_{CCP} input.
V _{CCQ} (4)	Quiet Power — V_{CCQ} is an isolated power for the internal processing logic. This input must be tied externally to all other chip power inputs. The user must provide adequate external decoupling capacitors. There are four V_{CCQ} inputs.
V _{CCA} (4)	Address Bus Power— V_{CCA} is an isolated power for sections of the address bus I/O drivers. This input must be tied externally to all other chip power inputs. The user must provide adequate external decoupling capacitors. There are four V_{CCA} inputs.
V _{CCD} (4)	Data Bus Power — V_{CCD} is an isolated power for sections of the data bus I/O drivers. This input must be tied externally to all other chip power inputs. The user must provide adequate external decoupling capacitors. There are four V_{CCD} inputs.
V _{CCC} (2)	Bus Control Power — V_{CCC} is an isolated power for the bus control I/O drivers. This input must be tied externally to all other chip power inputs. The user must provide adequate external decoupling capacitors. There are two V_{CCC} inputs.
V _{CCH}	Host Power — V_{CCH} is an isolated power for the HI08 I/O drivers. This input must be tied externally to all other chip power inputs. The user must provide adequate external decoupling capacitors. There is one V_{CCH} input.
V _{CCS} (2)	ESSI, SCI, and Timer Power — V_{CCS} is an isolated power for the ESSI, SCI, and timer I/O drivers. This input must be tied externally to all other chip power inputs. The user must provide adequate external decoupling capacitors. There are two V_{CCS} inputs.
each other	gnations are package-dependent. Some packages connect all V_{CC} inputs except V_{CCP} to internally. On those packages, all power input, except V_{CCP} , are labeled V_{CC} . The f connections indicated in this table are minimum values; the total V_{CC} connections are ependent.

Ground

GROUND

Ground Name	Description	
GND _P	PLL Ground —GND _P is ground dedicated for PLL use. The connection should be provided with an extremely low-impedance path to ground. V_{CCP} should be bypassed to GND _P by a 0.47 μ F capacitor located as close as possible to the chip package. There is one GND _P connection.	
GND _{P1}	PLL Ground 1 —GND _{P1} is ground dedicated for PLL use. The connection should be provided with an extremely low-impedance path to ground. There is one GND_{P1} connection.	
GND _Q (4)	Quiet Ground — GND_Q is an isolated ground for the internal processing logic. This connection must be tied externally to all other chip ground connections. The user must provide adequate external decoupling capacitors. There are four GND_Q connections.	
GND _A (4)	Address Bus Ground— GND_A is an isolated ground for sections of the address Bus I/O drivers. This connection must be tied externally to all other chip ground connections. The user must provide adequate external decoupling capacitors. There are four GND_A connections.	
GND _D (4)	Data Bus Ground —GND _D is an isolated ground for sections of the data bus I/O drivers. This connection must be tied externally to all other chip ground connections. The user must provide adequate external decoupling capacitors. There are four GND_D connections.	
GND _C (2)	Bus Control Ground —GND _C is an isolated ground for the bus control I/O drivers. This connection must be tied externally to all other chip ground connections. The user must provide adequate external decoupling capacitors. There are two GND_{C} connections.	
GND _H	Host Ground —GND _H is an isolated ground for the HI08 I/O drivers. This connection must be tied externally to all other chip ground connections. The user must provide adequate external decoupling capacitors. There is one GND_H connection.	
GND _S (2)	ESSI, SCI, and Timer Ground —GND _S is an isolated ground for the ESSI, SCI, and timer I/O drivers. This connection must be tied externally to all other chip ground connections. The user must provide adequate external decoupling capacitors. There are two GND _S connections.	
Note: These designations are package-dependent. Some packages connect all GND inputs, except GND _P and GND _{P1} , to each other internally. On those packages, all ground connections, except GND _P and GND _{P1} , are labeled GND. The numbers of connections indicated in this table are minimum values; the total GND connections are package-dependent.		

Table 1-3	Grounds

CLOCK

Signal Name	Туре	State During Reset	Signal Description
EXTAL	Input	Input	External Clock/Crystal Input —EXTAL interfaces the internal crystal oscillator input to an external crystal or an external clock.
XTAL	Output	Chip Driven	Crystal Output —XTAL connects the internal crystal oscillator output to an external crystal. If an external clock is used, leave XTAL unconnected.

 Table 1-4
 Clock Signals

PHASE LOCK LOOP (PLL)

Signal Name	Туре	State During Reset	Signal Description
РСАР	Input	Input	PLL Capacitor —PCAP is an input connecting an off- chip capacitor to the PLL filter. Connect one capacitor terminal to PCAP and the other terminal to V _{CCP} .
			If the PLL is not used, PCAP may be tied to V_{CC} , GND, or left floating.
CLKOUT	Output	Chip-driven	Clock Output —CLKOUT provides an output clock synchronized to the internal core clock phase.
			If the PLL is enabled and both the multiplication and division factors equal one, then CLKOUT is also synchronized to EXTAL.
			If the PLL is disabled, the CLKOUT frequency is half the frequency of EXTAL.

Table 1-5Phase Lock Loop Signals

Signal Name	Туре	State During Reset	Signal Description
PINIT/ NMI	Input	Input	PLL Initial/Non-Maskable Interrupt—During assertion of RESET, the value of PINIT/NMI is written into the PLL Enable (PEN) bit of the PLL control register, determining whether the PLL is enabled or disabled. After RESET deassertion and during normal instruction processing, the PINIT/NMI Schmitt-trigger input is a negative-edge-triggered Non-Maskable Interrupt (NMI) request internally synchronized to CLKOUT. PINIT/NMI can tolerate 5 V.

EXTERNAL MEMORY EXPANSION PORT (PORT A)

- **Note:** When the DSP56304 enters a low-power standby mode (Stop or Wait), it releases bus mastership and tri-states the relevant Port A signals: A0–A17, D0–D23, AA0/RAS0–AA3/RAS3, RD, WR, BB, CAS, BCLK, BCLK.
- **Note:** If the hardware refresh of external DRAM is enabled, the Port A pins exit Wait state to perform the refresh, and then return to the Wait state again.

EXTERNAL ADDRESS BUS

Table 1-6External Address Bus Signals

Signal Name	Туре	State During Reset, Stop, or Wait	Signal Description
A0–A17	Output	Tri-stated	Address Bus—When the DSP is the bus master, A0– A17 are active-high outputs that specify the address for external program and data memory accesses. Otherwise, the signals are tri-stated. To minimize power dissipation, A0–A17 do not change state when external memory spaces are not being accessed.

EXTERNAL DATA BUS

Table 1-7	External Data Bus Signals
-----------	---------------------------

Signal Name	Туре	State During Reset, Stop, or Wait	Signal Description
D0-D23	Input/ Output	Tri-stated	Data Bus —When the DSP is the bus master, D0–D23 are active-high, bidirectional input/outputs that provide the bidirectional data bus for external program and data memory accesses. Otherwise, D0–D23 are tri-stated.

EXTERNAL BUS CONTROL

 Table 1-8
 External Bus Control Signals

Signal Name	Туре	State During Reset, Stop, or Wait	Signal Description
AA0- AA3/ RAS0- RAS3	Output	Tri-stated	Address Attribute or Row Address Strobe—When defined as AA, these signals can be used as chip selects or additional address lines. When defined as RAS, these signals can be used as RAS for Dynamic Random Access Memory (DRAM) interface. These signals are tri-statable outputs with programmable polarity.
RD	Output	Tri-stated	Read Enable —When the DSP is the bus master, $\overline{\text{RD}}$ is an active-low output that is asserted to read external memory on the data bus (D0–D23). Otherwise, $\overline{\text{RD}}$ is tri-stated.
WR	Output	Tri-stated	Write Enable —When the DSP is the bus master, WR is an active-low output that is asserted to write external memory on the data bus (D0–D23). Otherwise, the signals are tri-stated.

Signal Name	Туре	State During Reset, Stop, or Wait	Signal Description
TA	Input	Ignored Input	 Transfer Acknowledge—If the DSP56304 is the bus master and there is no external bus activity, or the DSP56304 is not the bus master, the TA input is ignored. The TA input is a Data Transfer Acknowledge (DTACK) function that can extend an external bus cycle indefinitely. Any number of wait states (1, 2,, infinity) may be added to the wait states inserted by the BCR by keeping TA deasserted. In typical operation, TA is deasserted at the start of a bus cycle, is asserted to enable completion of the bus cycle, and is deasserted before the next bus cycle. The current bus cycle completes one clock period after TA is asserted synchronous to CLKOUT. The number of wait states is determined by the TA input or by the Bus Control Register (BCR), whichever is longer. The BCR can be used to set the minimum number of wait states in external bus cycles. In order to use the TA functionality, the BCR must be programmed to at least one wait state. A zero wait state access can not be extended by TA deassertion, otherwise improper operation may result. TA can operate synchronously or asynchronously depending on the setting of the TAS bit in the Operating Mode Register (OMR). TA functionality may not be used while performing DRAM type accesses, otherwise improper operation may
BR	Output	Output (driven high/ deasserted)	Bus Request — \overline{BR} is an active-low output, never tristated. \overline{BR} is asserted when the DSP requests bus mastership. \overline{BR} is deasserted when the DSP no longer needs the bus. \overline{BR} may be asserted or deasserted independent of whether the DSP56304 is a bus master or a bus slave. Bus "parking" allows \overline{BR} to be deasserted even though the DSP56304 is the bus master (see the description of bus "parking" in the \overline{BB} signal description). The Bus Request Hole (BRH) bit in the BCR allows \overline{BR} to be asserted under software control even though the DSP does not need the bus. \overline{BR} is typically sent to an external bus arbitrator that controls the priority, parking and tenure of each master on the same external bus. \overline{BR} is only affected by DSP requests for the external bus, never for the internal bus. During hardware reset, \overline{BR} is deasserted and the arbitration is reset to the bus slave state.

Table 1-8 External Bus Control Signals (Continued)

Signal Name	Туре	State During Reset, Stop, or Wait	Signal Description
BG	Input	Ignored Input	Bus Grant — \overline{BG} is an active-low input. \overline{BG} must be asserted/deasserted synchronous to CLKOUT for proper operation. \overline{BG} is asserted by an external bus arbitration circuit when the DSP56304 becomes the next bus master. When \overline{BG} is asserted, the DSP56304 must wait until \overline{BB} is deasserted before taking bus mastership. When \overline{BG} is deasserted, bus mastership is typically given up at the end of the current bus cycle. This may occur in the middle of an instruction that requires more than one external bus cycle for execution.
BB	Input/ Output	Input	Bus Busy — \overline{BB} is a bidirectional active-low input/output and must be asserted and deasserted synchronous to CLKOUT. \overline{BB} indicates that the bus is active. Only after \overline{BB} is deasserted can the pending bus master become the bus master (and then assert the signal again). The bus master may keep \overline{BB} asserted after ceasing bus activity regardless of whether \overline{BR} is asserted or deasserted. This is called "bus parking" and allows the current bus master to reuse the bus without re-arbitration until another device requires the bus. The deassertion of \overline{BB} is done by an "active pull- up" method (i.e., \overline{BB} is driven high and then released and held high by an external pull-up resistor).
CAS	Output	Tri-stated	BB requires an external pull-up resistor. Column Address Strobe —When the DSP is the bus master, CAS is an active-low output used by DRAM to strobe the column address. Otherwise, if the Bus Mastership Enable (BME) bit in the DRAM Control Register is cleared, the signal is tri-stated.
BCLK	Output	Tri-stated	Bus Clock —When the DSP is the bus master, BCLK is an active-high output used by Synchronous Static Random Access Memory (SSRAM) to sample address, data, and control signals. BCLK is active either during SSRAM accesses or as a sampling signal when the program Address Tracing mode is enabled (by setting the ATE bit in the OMR). When BCLK is active and synchronized to CLKOUT by the internal PLL, BCLK precedes CLKOUT by one-fourth of a clock cycle. The BCLK rising edge may be used to sample the internal program memory access on the A0–A23 address lines.
BCLK	Output	Tri-stated	Bus Clock Not —When the DSP is the bus master, BCLK is an active-low output and is the inverse of the BCLK signal. Otherwise, the signal is tri-stated.

 Table 1-8
 External Bus Control Signals (Continued)

Interrupt and Mode Control

INTERRUPT AND MODE CONTROL

The interrupt and mode control signals select the chip's operating mode as it comes out of hardware reset. After **RESET** is deasserted, these inputs are hardware interrupt request lines.

Signal Name	Туре	State During Reset	Signal Description
RESET	Input	Input	Reset —RESET is an active-low, Schmitt-trigger input. Deassertion of RESET is internally synchronized to the clock out (CLKOUT). When asserted, the chip is placed in the Reset state and the internal phase generator is reset. The Schmitt-trigger input allows a slowly rising input (such as a capacitor charging) to reset the chip reliably. If RESET is deasserted synchronous to CLKOUT, exact start-up timing is guaranteed, allowing multiple processors to start synchronously and operate together in "lock-step". When the RESET signal is deasserted, the initial chip operating mode is latched from the MODA, MODB, MODC, and MODD inputs. The RESET signal must be asserted after power up.
MODA/IRQA	Input	Input	Mode Select A/External Interrupt Request A—MODA/ IRQA is an active-low Schmitt-trigger input, internally synchronized to CLKOUT. MODA/IRQA selects the initial chip operating mode during hardware reset and becomes a level-sensitive or negative-edge-triggered, maskable interrupt request input during normal instruction processing. MODA, MODB, MODC, and MODD select one of sixteen initial chip operating modes, latched into the OMR when the RESET signal is deasserted. If IRQA is asserted synchronous to CLKOUT, multiple processors can be re-synchronized using the WAIT instruction and asserting IRQA to exit the Wait state. If the processor is in the Stop standby state and IRQA is asserted, the processor will exit the Stop state. MODA/IRQA can tolerate 5 V.

Table 1-9	Interrupt and Mode Control
Table 1-9	interrupt and mode Control

Signal Name	Туре	State During Reset	Signal Description
MODB/IRQB	Input	Input	Mode Select B/External Interrupt Request B—MODB/ IRQB is an active-low Schmitt-trigger input, internally synchronized to CLKOUT. MODB/IRQB selects the initial chip operating mode during hardware reset and becomes a level-sensitive or negative-edge-triggered, maskable interrupt request input during normal instruction processing. MODA, MODB, MODC, and MODD select one of sixteen initial chip operating modes, latched into OMR when the RESET signal is deasserted. If IRQB is asserted synchronous to CLKOUT, multiple processors can be re-synchronized using the WAIT instruction and asserting IRQB to exit the Wait state. MODB/IRQB can tolerate 5 V.
MODC/IRQC	Input	Input	Mode Select C/External Interrupt Request C—MODC/ IRQC is an active-low Schmitt-trigger input, internally synchronized to CLKOUT. MODC/IRQC selects the initial chip operating mode during hardware reset and becomes a level-sensitive or negative-edge-triggered, maskable interrupt request input during normal instruction processing. MODA, MODB, MODC, and MODD select one of sixteen initial chip operating modes, latched into OMR when the RESET signal is deasserted. If IRQC is asserted synchronous to CLKOUT, multiple processors can be re-synchronized using the WAIT instruction and asserting IRQC to exit the Wait state. MODC/IRQC can tolerate 5 V.
MODD/IRQD	Input	Input	Mode Select D/External Interrupt Request D— MODD/IRQD is an active-low Schmitt-trigger input, internally synchronized to CLKOUT. MODD/IRQD selects the initial chip operating mode during hardware reset and becomes a level-sensitive or negative-edge- triggered, maskable interrupt request input during normal instruction processing. MODA, MODB, MODC, and MODD select one of sixteen initial chip operating modes, latched into OMR when the RESET signal is deasserted. If IRQD is asserted synchronous to CLKOUT, multiple processors can be re-synchronized using the WAIT instruction and asserting IRQD to exit the Wait state. MODD/IRQD can tolerate 5 V.

 Table 1-9
 Interrupt and Mode Control (Continued)

Host Interface (HI08)

HOST INTERFACE (HI08)

The HI08 provides a fast parallel data to 8-bit port, which may be connected directly to the host bus.

The HI08 supports a variety of standard buses, and can be directly connected to a number of industry standard microcomputers, microprocessors, DSPs, and DMA hardware.

Host Port Usage Considerations

Careful synchronization is required when reading multiple-bit registers that are written by another asynchronous system. This is a common problem when two asynchronous systems are connected (as they are in the Host port). The considerations for proper operation are discussed in the following table:

Action	Description		
Asynchronous read of receive byte registers	When reading the receive byte registers, Receive register High (RXH), Receive register Middle (RXM), or Receive register Low (RXL), the host interface programmer should use interrupts or poll the Receive register Data Full (RXDF) flag which indicates that data is available. This assures that the data in the receive byte registers will be valid.		
Asynchronous write to transmit byte registers	The host interface programmer should not write to the transmit byte registers, Transmit register High (TXH), Transmit register Middle (TXM), or Transmit register Low (TXL), unless the Transmit register Data Empty (TXDE) bit is set indicating that the transmit byte registers are empty. This guarantees that the transmit byte registers will transfer valid data to the Host Receive (HRX) register.		
Asynchronous write to host vector	The host interface programmer should change the Host Vector (HV) register only when the Host Command bit (HC) is clear. This will guarantee that the DSP interrupt control logic will receive a stable vector.		

Table 1-10 Host Port Usage Considerations

Host Port Configuration

The functions of the signals associated with the HI08 vary according to the programmed configuration of the interface as determined by the 16 bits in the HI08 Port Control Register (HPCR). Refer to the DSP56304 User's Manual for detailed descriptions of this and the other configuration registers used with the HI08.

Signal Name	Туре	State During Reset or Stop ¹	Signal Description
H0-H7	Input/ Output	Disconnected	Host Data —When the HI08 is programmed to interface a non-multiplexed host bus and the HI function is selected, these signals are lines 0–7 of the Data bidirectional, tri-state bus.
HAD0– HAD7	Input/ Output		Host Address—When HI08 is programmed to interface a multiplexed host bus and the HI function is selected, these signals are lines 0–7 of the Address/ Data bidirectional, multiplexed, tri-state bus.
PB0–PB7	Input or Output		Port B 0–7 —When the HI08 is configured as GPIO through the HPCR, these signals are individually programmed as inputs or outputs through the HI08 Data Direction Register (HDDR).
			This input is 5 V tolerant.
HA0	Input	Disconnected	Host Address Input 0 —When the HI08 is programmed to interface a non-multiplexed host bus and the HI function is selected, this signal is line 0 of the Host Address input bus.
HAS/HAS	Input		Host Address Strobe—When HI08 is programmed to interface a multiplexed host bus and the HI function is selected, this signal is the Host Address Strobe (HAS) Schmitt-trigger input. The polarity of the address strobe is programmable but is configured active-low (HAS) following reset.
PB8	Input or Output		Port B 8 —When the HI08 is configured as GPIO through the HPCR, this signal is individually programmed as an input or output through the HDDR.
			This input is 5 V tolerant.

Host Interface (HI08)

Signal Name	Туре	State During Reset or Stop ¹	Signal Description
HA1	Input	Disconnected	Host Address Input 1 —When the HI08 is programmed to interface a non-multiplexed host bus and the HI function is selected, this signal is line 1 of the Host Address (HA1) input bus.
HA8	Input		Host Address 8—When HI08 is programmed to interface a multiplexed host bus and the HI function is selected, this signal is line 8 of the Host Address (HA8) input bus.
PB9	Input or Output		Port B 9 —When the HI08 is configured as GPIO through the HPCR, this signal is individually programmed as an input or output through the HDDR.
			This input is 5 V tolerant.
HA2	Input	Disconnected	Host Address Input 2—When the HI08 is programmed to interface a non-multiplexed host bus and the HI function is selected, this signal is line 2 of the Host Address (HA2) input bus.
HA9	Input		Host Address 9 —When HI08 is programmed to interface a multiplexed host bus and the HI function is selected, this signal is line 9 of the Host Address (HA9) input bus.
PB10	Input or Output		Port B 10 —When the HI08 is configured as GPIO through the HPCR, this signal is individually programmed as an input or output through the HDDR.
			This input is 5 V tolerant.

Table 1-11Host Interface (Continued)

Signal Name	Туре	State During Reset or Stop ¹	Signal Description
HRW	Input	Disconnected	Host Read/Write—When HI08 is programmed to interface a single-data-strobe host bus and the HI function is selected, this signal is the Host Read/Write (HRW) input.
HRD/HRD	Input		Host Read Data—When HI08 is programmed to interface a double-data-strobe host bus and the HI function is selected, this signal is the Host Read Data strobe (HRD) Schmitt-trigger input. The polarity of the data strobe is programmable, but is configured as active-low (HRD) after reset.
PB11	Input or Output		Port B 11 —When the HI08 is configured as GPIO through the HPCR, this signal is individually programmed as an input or output through the HDDR.
			This input is 5 V tolerant.
HDS/HDS	Input	Disconnected	Host Data Strobe—When HI08 is programmed to interface a single-data-strobe host bus and the HI function is selected, this signal is the Host Data Strobe (HDS) Schmitt-trigger input. The polarity of the data strobe is programmable, but is configured as active- low (HDS) following reset.
HWR/HWR	Input		Host Write Data—When HI08 is programmed to interface a double-data-strobe host bus and the HI function is selected, this signal is the Host Write Data Strobe (HWR) Schmitt-trigger input. The polarity of the data strobe is programmable, but is configured as active-low (HWR) following reset.
PB12	Input or Output		Port B 12 —When the HI08 is configured as GPIO through the HPCR, this signal is individually programmed as an input or output through the HDDR.
			This input is 5 V tolerant.

 Table 1-11
 Host Interface (Continued)

Host Interface (HI08)

Signal Name	Туре	State During Reset or Stop ¹	Signal Description
HCS	Input	Disconnected	Host Chip Select —When HI08 is programmed to interface a non-multiplexed host bus and the HI function is selected, this signal is the Host Chip Select (HCS) input. The polarity of the chip select is programmable, but is configured active-low (HCS) after reset.
HA10	Input		Host Address 10—When HI08 is programmed to interface a multiplexed host bus and the HI function is selected, this signal is line 10 of the Host Address (HA10) input bus.
PB13	Input or Output		Port B 13 —When the HI08 is configured as GPIO through the HPCR, this signal is individually programmed as an input or output through the HDDR.
			This input is 5 V tolerant.
HREQ/ HREQ	Output	Disconnected	Host Request—When HI08 is programmed to interface a single host request host bus and the HI function is selected, this signal is the Host Request (HREQ) output. The polarity of the host request is programmable, but is configured as active-low (HREQ) following reset. The host request may be programmed as a driven or open-drain output.
HTRQ/ HTRQ	Output		Transmit Host Request —When HI08 is programmed to interface a double host request host bus and the HI function is selected, this signal is the Transmit Host Request (HTRQ) output. The polarity of the host request is programmable, but is configured as active- low (HTRQ) following reset. The host request may be programmed as a driven or open-drain output.
PB14	Input or Output		Port B 14 —When the HI08 is programmed to interface a multiplexed host bus and the signal is configured as GPIO through the HPCR, this signal is individually programmed as an input or output through the HDDR.
			This input is 5 V tolerant.

Table 1-11Host Interface (Continued)

DSP56304/D

Host Interface (HI08)

Signal Name	Туре	State During Reset or Stop ¹	Signal Description	
HACK/ HACK	Input	Disconnected	Host Acknowledge —When HI08 is programmed to interface a single host request host bus and the HI function is selected, this signal is the Host Acknowledge (HACK) Schmitt-trigger input. The polarity of the host acknowledge is programmable, but is configured as active-low (HACK) after reset.	
HRRQ/ HRRQ	Output		Receive Host Request —When HI08 is programmed to interface a double host request host bus and the HI function is selected, this signal is the Receive Host Request (HRRQ) output. The polarity of the host request is programmable, but is configured as active-low (HRRQ) after reset. The host request may be programmed as a driven or open-drain output.	
PB15	Input or Output		Port B 15 —When the HI08 is configured as GPIO through the HPCR, this signal is individually programmed as an input or output through the HDDR. This input is 5 V tolerant.	
Note: 1. Wait state does not affect signal state.				

 Table 1-11
 Host Interface (Continued)

Enhanced Synchronous Serial Interface 0 (ESSI0)

ENHANCED SYNCHRONOUS SERIAL INTERFACE 0 (ESSI0)

There are two synchronous serial interfaces (ESSI0 and ESSI1) that provide a fullduplex serial port for serial communication with a variety of serial devices, including one or more industry-standard codecs, other DSPs, microprocessors, and peripherals which implement the Motorola Serial Peripheral Interface (SPI).

Signal	Туре	State During ¹		Signal Description
Name	Type	Reset	Stop	
SC00	Input or Output	Input	Disconnected	Serial Control 0 —The function of SC00 is determined by the selection of either Synchronous or Asynchronous mode. For Asynchronous mode, this signal will be used for the receive clock I/O (Schmitt-trigger input). For Synchronous mode, this signal is used either for Transmitter 1 output or for Serial I/O Flag 0.
PC0				Port C 0 —The default configuration following reset is GPIO input PC0. When configured as PC0, signal direction is controlled through the Port Directions Register (PRR0). The signal can be configured as ESSI signal SC00 through the Port Control Register (PCR0). This input is 5 V tolerant.
SC01	Input/ Output	Input	Disconnected	Serial Control 1 —The function of this signal is determined by the selection of either Synchronous or Asynchronous mode. For Asynchronous mode, this signal is the receiver frame sync I/O. For Synchronous mode, this signal is used either for Transmitter 2 output or for Serial I/O Flag 1.
PC1	Input or Output			Port C 1 —The default configuration following reset is GPIO input PC1. When configured as PC1, signal direction is controlled through PRR0. The signal can be configured as an ESSI signal SC01 through PCR0. This input is 5 V tolerant.

Table 1-12 Enhanced Synchronous Serial Interface 0 (ESSI0)

Enhanced Synchronous Serial Interface 0 (ESSI0)

Signal	Туре	State During ¹		Signal Description
Name	Type	Reset	Stop	
SC02	Input/ Output	Input	Disconnected	Serial Control Signal 2 —SC02 is used for frame sync I/O. SC02 is the frame sync for both the transmitter and receiver in Synchronous mode, and for the transmitter only in Asynchronous mode. When configured as an output, this signal is the internally generated frame sync signal. When configured as an input, this signal receives an external frame sync signal for the transmitter (and the receiver in synchronous operation).
PC2	Input or Output			Port C 2 —The default configuration following reset is GPIO input PC2. When configured as PC2, signal direction is controlled through PRR0. The signal can be configured as an ESSI signal SC02 through PCR0.
				This input is 5 V tolerant.
SCK0	Input/ Output	Input	Disconnected	Serial Clock —SCK0 is a bidirectional Schmitt- trigger input signal providing the serial bit rate clock for the ESSI interface. The SCK0 is a clock input or output used by both the transmitter and receiver in Synchronous modes, or by the transmitter in Asynchronous modes.
				Although an external serial clock can be independent of and asynchronous to the DSP system clock, it must exceed the minimum clock cycle time of 6 T (i.e., the system clock frequency must be at least three times the external ESSI clock frequency). The ESSI needs at least three DSP phases inside each half of the serial clock.
PC3	Input or Output			Port C 3 —The default configuration following reset is GPIO input PC3. When configured as PC3, signal direction is controlled through PRR0. The signal can be configured as an ESSI signal SCK0 through PCR0.
				This input is 5 V tolerant.

 Table 1-12
 Enhanced Synchronous Serial Interface 0 (ESSI0) (Continued)

Enhanced Synchronous Serial Interface 0 (ESSI0)

Signal	Trues	State During ¹		Signal Description	
Name	Туре	Reset	Stop		
SRD0	Input/ Output	Input	Disconnected	Serial Receive Data —SRD0 receives serial data and transfers the data to the ESSI receive shift register. SRD0 is an input when data is being received.	
PC4	Input or Output			Port C 4 —The default configuration following reset is GPIO input PC4. When configured as PC4, signal direction is controlled through PRR0. The signal can be configured as an ESSI signal SRD0 through PCR0.	
STD0	Input/ Output	Input	Disconnected	This input is 5 V tolerant. Serial Transmit Data—STD0 is used for transmitting data from the serial transmit shift register. STD0 is an output when data is being transmitted.	
PC5	Input or Output			Port C 5 —The default configuration following reset is GPIO input PC5. When configured as PC5, signal direction is controlled through PRR0. The signal can be configured as an ESSI signal STD0 through PCR0.	
				This input is 5 V tolerant.	
Note: 1. Wait state does not affect signal state.					

ENHANCED SYNCHRONOUS SERIAL INTERFACE 1 (ESSI1)

Signal	Туре	State During ¹		Signal Description				
Name	Туре	Reset	Stop					
SC10	Input or Output	Input	Disconnected	Serial Control 0 —The function of SC10 is determined by the selection of either Synchronous or Asynchronous mode. For Asynchronous mode, this signal will be used for the receive clock I/O (Schmitt-trigger input). For Synchronous mode, this signal is used either for Transmitter 1 output or for Serial I/O Flag 0.				
PD0				Port D 0 —The default configuration following reset is GPIO input PD0. When configured as PD0, signal direction is controlled through the Port Directions Register (PRR1). The signal can be configured as an ESSI signal SC10 through the Port Control Register (PCR1). This input is 5 V tolerant.				
SC11	Input/ Output	Input	Disconnected	Serial Control 1—The function of this signal is determined by the selection of either Synchronous or Asynchronous mode. For Asynchronous mode, this signal is the receiver frame sync I/O. For Synchronous mode, this signal is used either for Transmitter 2 output or for Serial I/O Flag 1.				
PD1	Input or Output			Port D 1 —The default configuration following reset is GPIO input PD1. When configured as PD1, signal direction is controlled through PRR1. The signal can be configured as an ESSI signal SC11 through PCR1. This input is 5 V tolerant.				

 Table 1-13
 Enhanced Synchronous Serial Interface 1 (ESSI1)

Enhanced Synchronous Serial Interface 1 (ESSI1)

Signal	Туре	State During ¹		Signal Description			
Name		Reset	Stop				
SC12	Input/ Output	Input	Disconnected	Serial Control Signal 2—SC12 is used for frame sync I/O. SC12 is the frame sync for both the transmitter and receiver in Synchronous mode, and for the transmitter only in Asynchronous mode. When configured as an output, this signal is the internally generated frame sync signal. When configured as an input, this signal receives an external frame sync signal for the transmitter (and the receiver in Synchronous operation).			
PD2	Input or Output			Port D 2 —The default configuration following reset is GPIO input PD2. When configured as PD2, signal direction is controlled through PRR1. The signal can be configured as an ESSI signal SC12 through PCR1.			
				This input is 5 V tolerant.			
SCK1	Input/ Output	Input	Disconnected	Serial Clock —SCK1 is a bidirectional Schmitt- trigger input signal providing the serial bit rate clock for the ESSI interface. The SCK1 is a clock input or output used by both the transmitter and receiver in Synchronous modes, or by the transmitter in Asynchronous modes.			
				Although an external serial clock can be independent of and asynchronous to the DSP system clock, it must exceed the minimum clock cycle time of 6T (i.e., the system clock frequency must be at least three times the external ESSI clock frequency). The ESSI needs at least three DSP phases inside each half of the serial clock.			
PD3	Input or Output			Port D 3 —The default configuration following reset is GPIO input PD3. When configured as PD3, signal direction is controlled through PRR1. The signal can be configured as an ESSI signal SCK1 through PCR1.			
				This input is 5 V tolerant.			

Enhanced Synchronous Serial Interface 1 (ESSI1)

Signal	Typo	State During ¹		Signal Description			
Name	Туре	Reset	Stop				
SRD1	Input/ Output	Input	Disconnected	Serial Receive Data —SRD1 receives serial data and transfers the data to the ESSI receive shift register. SRD1 is an input when data is being received.			
PD4	Input or Output			Port D 4 —The default configuration following reset is GPIO input PD4. When configured as PD4, signal direction is controlled through PRR1. The signal can be configured as an ESSI signal SRD1 through PCR1.			
				This input is 5 V tolerant.			
STD1	Input/ Output	Input	Disconnected	Serial Transmit Data —STD1 is used for transmitting data from the serial transmit shift register. STD1 is an output when data is being transmitted.			
PD5	Input or Output			Port D 5 —The default configuration following reset is GPIO input PD5. When configured as PD5, signal direction is controlled through PRR1. The signal can be configured as an ESSI signal STD1 through PCR1.			
				This input is 5 V tolerant.			
Note: 1	Note: 1. Wait state does not affect signal state.						

Table 1-13 Enhanced Synchronous Serial Interface 1 (ESSI1) (Continued)

Serial Communication Interface (SCI)

SERIAL COMMUNICATION INTERFACE (SCI)

The Serial Communication interface (SCI) provides a full duplex port for serial communication to other DSPs, microprocessors, or peripherals such as modems.

Signal	Tuno	State During ¹		- Signal Description			
Name	Туре	Reset	Stop	Signal Description			
RXD	Input	Input	Disconnected	Serial Receive Data —This input receives byte oriented serial data and transfers it to the SCI receive shift register.			
PE0	Input or Output			Port E 0 —The default configuration following reset is GPIO input PE0. When configured as PE0, signal direction is controlled through the SCI Port Directions Register (PRR). The signal can be configured as an SCI signal RXD through the SCI Port Control Register (PCR). This input is 5 V tolerant.			
TXD	Output (may be open drain)	Input	Disconnected	Serial Transmit Data —This signal transmits data from SCI transmit data register.			
PE1	Input or Output			Port E 1 —The default configuration following reset is GPIO input PE1. When configured as PE1, signal direction is controlled through the SCI PRR. The signal can be configured as an SCI signal TXD through the SCI PCR.			
				This input is 5 V tolerant.			
SCLK	Input/ Output	Input	Disconnected	Serial Clock —This is the bidirectional Schmitt- trigger input signal providing the input or output clock used by the transmitter and/or the receiver.			
PE2	Input or Output			Port E 2 —The default configuration following reset is GPIO input PE2. When configured as PE2, signal direction is controlled through the SCI PRR. The signal can be configured as an SCI signal SCLK through the SCI PCR.			
				This input is 5 V tolerant.			
Note: 1. Wait state does not affect signal state.							

 Table 1-14
 Serial Communication Interface (SCI)

TIMERS

Three identical and independent timers are implemented in the DSP56304. Each timer can use internal or external clocking, and can interrupt the DSP56304 after a specified number of events (clocks), or can signal an external device after counting a specific number of internal events.

Signal	Туре	State During ¹		Signal Description
Name	туре	Reset	Stop	Signal Description
TIO0	Input or Output	Input	Disconnected	Timer 0 Schmitt-Trigger Input/Output —When Timer 0 functions as an external event counter or in Measurement mode, TIO0 is used as input. When Timer 0 functions in Watchdog, Timer, or Pulse Modulation mode, TIO0 is used as output. The default mode after reset is GPIO input. This can be changed to output or configured as a Timer Input/Output through the Timer 0 Control/Status Register (TCSR0). This input is 5 V tolerant.
TIO1	Inputor Output	Input	Disconnected	Timer 1 Schmitt-Trigger Input/Output —When Timer 1 functions as an external event counter or in Measurement mode, TIO1 is used as input. When Timer 1 functions in Watchdog, Timer, or Pulse Modulation mode, TIO1 is used as output. The default mode after reset is GPIO input. This can be changed to output or configured as a Timer Input/Output through the Timer 1 Control/Status Register (TCSR1). This input is 5 V tolerant.
TIO2	Inputor Output	Input	Disconnected	Timer 2 Schmitt-Trigger Input/Output —When Timer 2 functions as an external event counter or in Measurement mode, TIO2 is used as input. When Timer 2 functions in Watchdog, Timer, or Pulse Modulation mode, TIO2 is used as output. The default mode after reset is GPIO input. This can be changed to output or configured as a Timer Input/Output through the Timer 2 Control/Status Register (TCSR2). This input is 5 V tolerant.
Note:	1. Wait sta	ate does not	t affect signal state.	

Table 1-15Triple Timer Signals

MOTOROLA

OnCE/JTAG Interface

OnCE/JTAG INTERFACE

Signal Name	Туре	State During Reset	Signal Description		
ТСК	Input	Input	Test Clock —TCK is a test clock input signal used to synchronize the JTAG test logic.		
			This input is 5 V tolerant.		
TDI	Input	Input	Test Data Input—TDI is a test data serial input signal used for test instructions and data. TDI is sampled on the rising edge of TCK and has an internal pull-up resistor.This input is 5 V tolerant.		
TDO	Output	Tri-stated	Test Data Output —TDO is a test data serial output signal used for test instructions and data. TDO is tri-statable and is actively driven in the shift-IR and shift-DR controller states. TDO changes on the falling edge of TCK.		
TMS	Input	Input	Test Mode Select —TMS is an input signal used to sequence the test controller's state machine. TMS is sampled on the rising edge of TCK and has an internal pull-up resistor. This input is 5 V tolerant.		
TRST	Input	Input	Test Reset —TRST is an active-low Schmitt- trigger input signal used to asynchronously initialize the test controller. TRST has an internal pull-up resistor. TRST must be asserted after power up.		
			This input is 5 V tolerant.		

Table 1-16 OnCE/JTAG Interface

Signal/Connection Descriptions

OnCE/JTAG Interface

Signal Name	Туре	State During Reset	Signal Description
DE	Input/ Output	Input	Debug Event — \overline{DE} is an open-drain, bidirectional, active-low signal providing, as an input, a means of entering the Debug mode of operation from an external command controller, and, as an output, a means of acknowledging that the chip has entered the Debug mode. This signal, when asserted as an input, causes the DSP56300 core to finish the current instruction being executed, save the instruction pipeline information, enter the Debug mode, and wait for commands to be entered from the debug serial input line. This signal is asserted as an output for three clock cycles when the chip enters the Debug mode as a result of a debug request or as a result of meeting a breakpoint condition. The \overline{DE} has an internal pull-up resistor. This is not a standard part of the JTAG Test Access Port (TAP) Controller. The signal connects directly to the OnCE module to initiate Debug mode directly or to provide a direct external indication that the chip has entered the Debug mode. All other interface with the OnCE module must occur through the JTAG port. This input is 5 V tolerant.

 Table 1-16
 OnCE/JTAG Interface (Continued)

OnCE/JTAG Interface

SECTION 2

SPECIFICATIONS

INTRODUCTION

The DSP56304 is fabricated in high density CMOS with Transistor-Transistor Logic (TTL) compatible inputs and outputs. The DSP56304 specifications are preliminary and are from design simulations, and may not be fully tested or guaranteed at this early stage of the product life cycle. Finalized specifications will be published after full characterization and device qualifications are complete.

MAXIMUM RATINGS

CAUTION

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, normal precautions should be taken to avoid exceeding maximum voltage ratings. Reliability is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g., either GND or V_{CC}).

Note: In the calculation of timing requirements, adding a maximum value of one specification to a minimum value of another specification does not yield a reasonable sum. A maximum specification is calculated using a worst case variation of process parameter values in one direction. The minimum specification is calculated using the worst case for the same parameters in the opposite direction. Therefore, a "maximum" value for a specification will never occur in the same device that has a "minimum" value for another specification; adding a maximum to a minimum represents a condition that can never exist.

Thermal Characteristics

		-			
Rating ¹	Symbol	Value ^{1, 2}	Unit		
Supply Voltage	V _{CC}	-0.3 to +4.0	V		
All input voltages excluding "5 V tolerant" inputs ³	V _{IN}	GND – 0.3 to V _{CC} + 0.3	V		
All "5 V tolerant" input voltages ³	V _{IN5}	GND – 0.3 to V _{CC} + 3.95	V		
Current drain per pin excluding $V_{\mbox{CC}}$ and GND	Ι	10	mA		
Operating temperature range	T _J	-40 to +100	°C		
Storage temperature	T _{STG}	-55 to +150	°C		
Note: 1. GND = 0 V, V_{CC} = 3.3 V ± 0.3 V, T_I = -40°C to +100°C, CL = 50 pF + 2 TTL Loads					

Table 2-1Maximum Ratings

GND = 0 V, V_{CC} = 3.3 V ± 0.3 V, T_J = -40°C to +100°C, CL = 50 pF + 2 TTL Loads
 Absolute maximum ratings are stress ratings only, and functional operation at the maximum is not guaranteed. Stress beyond the maximum rating may affect device reliability or cause permanent damage to the device.

3. **CAUTION**: All "5 V Tolerant" input voltages cannot be more than 3.95 V greater than the supply voltage; this restriction applies to "power on", as well as during normal operation. In any case, the input voltages can not be more than 5.75 V. "5 V Tolerant" inputs are inputs that tolerate 5 V.

THERMAL CHARACTERISTICS

Characteristic	Symbol	TQFP Value	PBGA ³ Value	PBGA ⁴ Value	Unit
Junction-to-ambient thermal resistance	$R_{\theta JA}$ or θ_{JA}	55.7	57	28	°C/W
Junction-to-case thermal resistance	$R_{\theta JC}$ or θ_{JC}	11.4	15		°C/W
Thermal characterization parameter	Ψ_{JT}	6.8	8		°C/W

Table 2-2 Thermal Characteristics

Note: 1. Junction-to-ambient thermal resistance is based on measurements on a horizontal single-sided printed circuit board per SEMI G38-87 in natural convection.(SEMI is Semiconductor Equipment and Materials International, 805 East Middlefield Rd., Mountain View, CA 94043, (415) 964-5111)

2. Junction-to-case thermal resistance is based on measurements using a cold plate per SEMI G30-88, with the exception that the cold plate temperature is used for the case temperature.

3. These are simulated values; testing is not complete. See note 1 for test board conditions.

4. These are simulated values; testing is not complete. The test board has two, 2-ounce signal layers and two 1-ounce solid ground planes internal to the test board.
DC ELECTRICAL CHARACTERISTICS

Characteristics	Symbol	Min	Тур	Max	Unit
Supply voltage	V _{CC}	3.0	3.3	3.6	V
Input high voltage • D(0:23), BG, BB, TA • MOD ¹ /IRQ ¹ , RESET, PINIT/ NMI and all JTAG/ESSI/SCI/ Timer/HI08 pins	V _{IH} V _{IHP}	2.0 2.0		V _{CC} V _{CC} + 3.95	V V
• EXTAL ⁸	V _{IHX}	0.8	_	V _{CC}	V
Input low voltage • $D(0:23)$, \overline{BG} , \overline{BB} , \overline{TA} , $MOD^1/$ \overline{IRQ}^1 , \overline{RESET} , PINIT	V _{IL}	-0.3	_	0.8	V
All JTAG/ESSI/SCI/Timer/ HI08 pins	V _{ILP}	-0.3	—	0.8	V
• EXTAL ⁸	V _{ILX}	-0.3	—	0.2	V
Input leakage current	I _{IN}	-10		10	μA
High impedance (off-state) input current (@ 2.4 V / 0.4 V)	I _{TSI}	-10		10	μA
Output high voltage • TTL (I _{OH} = -0.4 mA) ^{5,7} • CMOS (I _{OH} = -10 µA) ⁵	V _{OH}	V _{CC} - 0.4 V _{CC} - 0.01			V V
Output low voltage • TTL ($I_{OL} = 3.0 \text{ mA}$, open-drain pins $I_{OL} = 6.7 \text{ mA}$) ^{5,7} • CMOS ($I_{OL} = 10 \mu\text{A}$) ⁵	V _{OL}		_	0.4	V V
Internal supply current ² :				0.01	v
In Normal mode	I _{CCI}		66 MHz: 84 80 MHz: 102	66 MHz: 120 80 MHz: 145	mA mA
• In Wait mode ³	I _{CCW}	_	66 MHz: 5 80 MHz: 6	66 MHz: 7 80 MHz: 9	mA mA
• In Stop mode ⁴	I _{CCS}		66 MHz: 100 80 MHz: 100	66 MHz: 150 80 MHz: 150	μA μA
PLL supply current in Stop mode ⁵			1	2.5	mA
Input capacitance ⁵	C _{IN}		—	10	pF

 Table 2-3
 DC Electrical Characteristics⁶

AC Electrical Characteristics

				laracteriber	(Continued)		
		Characteristics	Symbol	Min	Тур	Max	Unit
Note:	1.	Refers to MODA/IRQA, MODE	B/IRQB, MO	ODC/\overline{IRQC} , a	nd MODD/IRQD	pins	
	2.	Power Consumption Co	nsiderati	ons on page	4-4 provides a for	mula to compu	te the
		estimated current requirements					
		be terminated (i.e., not allowed					
		benchmarks (see Appendix A					
		of the measured results of this b					
		supply current is measured with					
		measured with $V_{CC} = 3.6$ V at T	$t = 100^{\circ}C$	· j			
	3.	In order to obtain these results,		nust be termin	ated (i.e., not allow	wed to float). Pl	LL and
		XTAL signals are disabled durin					
	4.	In order to obtain these results,			disconnected at St	on mode must	be
	1.	terminated (i.e., not allowed to	-	inch are not	disconnected at st	op moue, muse	50
	5.	Periodically sampled and not 10					
	6.	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}; T_{I} = -40^{\circ}\text{C} \text{ t}$		$C_r = 50 \text{ pE} + 2$	TTI Loads		
	7.	This characteristic does not app			IIL LOads		
	8.	Driving EXTAL to the extreme v			or V (0.2V)	nou course in cre	and DC
	о.	current. To achieve the lowest c	alues for v	$_{\rm IHX}$ (0.0 V _{CC})	$V_{ILX} (0.2 V_{CC})$	0.0 V and the	aseu DC
			urrent, mai	main the min	Infunit v _{IHX} above	0.9 V _{CC} and the	2
		maximum V_{ILX} below 0.1 V_{CC} .					

Table 2-3 DC Electrical Characteristics⁶ (Continued)

AC ELECTRICAL CHARACTERISTICS

The timing waveforms shown in the AC electrical characteristics section are tested with a V_{IL} maximum of 0.3 V and a V_{IH} minimum of 2.4 V for all pins except EXTAL, which is tested using the input levels shown in **Note 6** of the previous table. AC timing specifications, which are referenced to a device input signal, are measured in production with respect to the 50% point of the respective input signal's transition. DSP56304 output levels are measured with the production test machine V_{OL} and V_{OH} reference levels set at 0.8 V and 2.0 V, respectively.

INTERNAL CLOCKS

Table 2-4	Internal Clocks	, CLKOUT
-----------	-----------------	----------

Characteristics	Symbol	Expression ^{1, 2}		
		Min	Тур	Max
Internal operation frequency and CLKOUT with PLL enabled	f	_	$\frac{(\text{Ef} \times \text{MF})}{(\text{PDF} \times \text{DF})}$	_

Characteristics	Symbol		Expression ^{1, 2}	
Characteristics	Symbol	Min	Тур	Max
Internal operation frequency and CLKOUT with PLL disabled	f		Ef/2	
Internal clock and CLKOUT high period • With PLL disabled	T _H		ET _C	_
• With PLL enabled and $MF \le 4$		0.49 × ET _C × PDF × DF/ MF	_	0.51 × ET _C × PDF × DF/ MF
• With PLL enabled and MF > 4		0.47 × ET _C × PDF × DF/ MF	_	0.53 × ET _C × PDF × DF/ MF
Internal clock and CLKOUT low period • With PLL disabled	TL		ET _C	_
• With PLL enabled and $MF \le 4$		0.49 × ET _C × PDF × DF / MF	_	0.51 × ET _C × PDF × DF/ MF
• With PLL enabled and MF > 4		0.47 × ET _C × PDF × DF / MF	_	0.53 × ET _C × PDF × DF/ MF
Internal clock and CLKOUT cycle time with PLL enabled	T _C	_	ET _C × PDF × DF/MF	
Internal clock and CLKOUT cycle time with PLL disabled	T _C	_	2 × ET _C	
Instruction cycle time	I _{CYC}	_	T _C	_
Note: 1. $DF = Division Factor$ Ef = External frequency $ET_C = External clock cycle$ MF = Multiplication Factor PDF = Predivision Factor $T_C = internal clock cycle$				

 Table 2-4
 Internal Clocks, CLKOUT

See the PLL and Clock Generation section in the DSP56300 Family Manual for a detailed discussion of the PLL.

EXTERNAL CLOCK OPERATION

The DSP56304 system clock may be derived from the on–chip crystal oscillator, as shown in **Figure 1** on the cover page, or it may be externally supplied. An externally supplied square wave voltage source should be connected to EXTAL, leaving XTAL physically not connected to the board or socket (see **Figure 2-2**).

Fundamental Frequency Fork Crystal Oscillator

Suggested Component Values:

$$\label{eq:fOSC} \begin{split} f_{OSC} &= 32.768 \ \text{kHz} \\ \text{R1} &= 3.9 \ \text{M}\Omega \pm 10\% \\ \text{C} &= 22 \ \text{pF} \pm 20\% \\ \text{R2} &= 200 \ \text{k}\Omega \pm 10\% \end{split}$$

Calculations were done for a 32.768 kHz crystal with the following parameters: a load capacitance (C_L) of 12.5 pF, a shunt capacitance (C₀) of 1.8 pF, a series resistance of 40 k Ω , and a drive level of 1 μ W.

Fundamental Frequency Crystal Oscillator

Suggested Component Values:

Calculations were done for a 4/20 MHz crystal with the following parameters: a C_Lof 30/20 pF, a C₀ of 7/6 pF, a series resistance of 100/20 Ω , and a drive level of 2 mW.

External Clock Operation

Figure 2-2 External Clock Timing

NI -	Characteristics	C11	66 N	1 Hz	80 N	1Hz
No.	Characteristics	Symbol	Min	Max	Min	Max
1	Frequency of EXTAL (EXTAL Pin Frequency) The rise and fall time of the external clock should be 3 ns maximum.	Ef	0	66.0	0	80.0
2	Clock input high ^{1, 2} With PLL disabled (46.7%–53.3% duty cycle⁶) 	ET _H	7.08 ns	8	5.84 ns	œ
	 With PLL enabled (42.5%–57.5% duty cycle⁶) 		6.44 ns	157.0 μs	5.31 ns	157.0 μs
3	 Clock input low^{1, 2} With PLL disabled (46.7%–53.3% duty cycle⁶) 	ETL	7.08 ns	8	5.84 ns	×
	 With PLL enabled (42.5%–57.5% duty cycle⁶) 		6.44 ns	157.0 μs	5.31 ns	157.0 μs
4	Clock cycle time ² • With PLL disabled	ET _C	30.3 ns	œ	25.0 ns	×
	With PLL enabled		15.15 ns	273.1 µs	12.50 ns	273.1 µs
5	CLKOUT change from EXTAL fall with PLL disabled		4.3 ns	11.0 ns	4.3 ns	11.0 ns

Phase Lock Loop (PLL) Characteristics

Na	Characteristics	Symbol	66 MHz		80 MHz	
INO.	No. Characteristics Sym		Min	Max	Min	Max
6	CLKOUT from EXTAL with PLL enabled ^{3,5} a. MF = 1, PDF = 1, Ef > 15 MHz b. MF = 2 or 4, PDF = 1, Ef > 15 MHz, or, MF \leq 4, PDF \neq 1, Ef / PDF > 15 MHz		0.0 ns 0.0 ns	1.8 ns 1.8 ns	0.0 ns 0.0 ns	1.8 ns 1.8 ns
7	Instruction cycle time = I _{CYC} = T _C ⁴ (See Table 2-4 .) (46.7%–53.3% duty cycle) • With PLL disabled	I _{CYC}	30.3 ns	8	25.0 ns	~
	• With PLL enabled		15.15 ns	8.53 µs	12.50 ns	8.53 µs
Note: 1. Measured at 50% of the input transition 2. The maximum value for PLL enabled is given for minimum V _{CO} and maximum MF. 3. Periodically compled and not 100% tooted						

Table 2-5	Clock Operation	(Continued)
-----------	------------------------	-------------

3. Periodically sampled and not 100% tested

4. The maximum value for PLL enabled is given for minimum V_{CO} and maximum DF.

5. The skew is not guaranteed for any other MF value.

6. The indicated duty cycle is for the specified maximum frequency for which a part is rated. The minimum clock high or low time required for correction operation, however, remains the same at lower operating frequencies; therefore, when a lower clock frequency is used, the signal symmetry may vary from the specified duty cycle as long as the minimum high time and low time requirements are met.

PHASE LOCK LOOP (PLL) CHARACTERISTICS

Changelaristics	66 N	ИНz	80 N	ИНz	TT
Characteristics	Min	Max	Min	Max	Unit
V_{CO} frequency when PLL enabled (MF × E _f × 2/PDF)	30	132	30	160	MHz
PLL external capacitor (PCAP pin to V_{CCP}) (C_{PCAP} ⁽¹⁾					
• $@$ MF ≤ 4	$(\mathrm{MF}\times425)-125$	(MF × 590) – 175	(MF × 425) – 125	(MF × 590) – 175	pF
• @ MF > 4	$MF \times 520$	$MF \times 920$	$MF \times 520$	$MF \times 920$	pF
		tor (connected betwo can be computed fr			
$(500 \times MF) -$	150, for MF \leq 4, or				
$690 \times MF$, for	MF > 4.				

Table 2-6PLL Characteristics

RESET, STOP, MODE SELECT, AND INTERRUPT TIMING

N.	Chamatariatian	teristics Expression –		MHz	80 N	/IHz	TImit
No.	Characteristics	Expression	Min	Max	Min	Max	Unit
8	Delay from RESET assertion to all pins at reset value ³	_	_	26.0	_	26.0	ns
9	 Required RESET duration⁴ Power on, external clock generator, PLL disabled 	$50 \times \text{ET}_{\text{C}}$	760.0		625.0		ns
	 Power on, external clock generator, PLL enabled 	$1000 \times \text{ET}_{\text{C}}$	15.2	_	12.5	_	ms
	Power on, internal oscillator	$75000 \times \text{ET}_{\text{C}}$	1.14	—	1.0		ms
	 During STOP, XTAL disabled (PCTL Bit 16 = 0) 	$75000 \times \text{ET}_{\text{C}}$	1.14	_	1.0	_	ms
	• During STOP, XTAL enabled (PCTL Bit 16 = 1)	$2.5 \times T_{C}$	38.0	_	31.3	_	ns
	During normal operation	$2.5 \times T_{C}$	38.0		31.3		ns
10	 Delay from asynchronous RESET deassertion to first external address output (internal reset deassertion)⁵ Minimum 	66 MHz: 3.25 × T _C + 2.0 80 MHz:	51.0		-		ns
	• Maximum	$3.25 \times T_{C} + 2.0$ 66 MHz: $20.25 T_{C} + 11.0$ 80 MHz: $20.25 T_{C} + 9.95$	_	 318.0 	42.6 — —	 263.1	ns ns ns
11	Synchronous reset setup time from RESET deassertion to CLKOUT Transition 1 • Minimum		9.0		7.4		ns
	• Maximum	T _C	_	15.2		12.5	ns
12	Synchronous reset deasserted, delay time from the CLKOUT Transition 1 to the first external address output • Minimum	$3.25 \times T_{C} + 1.0$	50.0		41.6		ns
	• Maximum	20.25 T _C + 5.0	_	312.0		258.1	ns
13	Mode select setup time		30.0	_	30.0		ns

Table 2-7	Reset, Stop, Mode Select, and Interrupt Timing ⁶

Specifications

Reset, Stop, Mode Select, and Interrupt Timing

			66 N	ИНz	80 N	/IHz	
No.	Characteristics	Expression	Min	Max	Min	Max	Unit
14	Mode select hold time		0.0		0.0		ns
15	Minimum edge-triggered interrupt request assertion width		10.0	_	8.25		ns
16	Minimum edge-triggered interrupt request deassertion width		10.0	_	8.25		ns
17	Delay from IRQA, IRQB, IRQC, IRQD, NMI assertion to external memory access address out valid						
	Caused by first interrupt instruction fetch	$4.25 \times T_{C} + 2.0$	66.0	_	55.1	_	ns
	Caused by first interrupt instruction execution	$7.25 \times T_{C} + 2.0$	112.0		92.6		ns
18	Delay from IRQA, IRQB, IRQC, IRQD, NMI assertion to general- purpose transfer output valid caused by first interrupt instruction execution	$10 \times T_{C} + 5.0$	157.0		130.0		ns
19	Delay from address output valid caused by first interrupt instruction execute to interrupt request	$66 \text{ MHz}^8:$ $3.75 \times T_C + WS$ $\times T_C - 14$	_				ns
	deassertion for level sensitive fast interrupts ¹	80 MHz ⁸ : 3.75 × T_{C} + WS × T_{C} - 12.4					ns
20	Delay from $\overline{\text{RD}}$ assertion to interrupt request deassertion for level sensitive fast interrupts ¹	$\begin{array}{c} \textbf{66 MHz^8:}\\ 3.25 \times T_C + WS\\ \times T_C - 14 \end{array}$					ns
		80 MHz ⁸ : $3.25 \times T_{C} + WS$ $\times T_{C} - 12.4$			_		ns

Table 2-7 Reset, Stop, Mode Select, and Interrupt Timing⁶ (Continued)

			66 N	MHz	80 N	/IHz	
No.	Characteristics	Expression	Min	Max	Min	Max	Unit
21	Delay from $\overline{\text{WR}}$ assertion to interrupt request deassertion for level sensitive fast interrupts ¹						
	SSRAM for all WS	66 MHz⁸ : (3.75 + WS) × T _C − 14					ns
		80 MHz⁸ : (3.75 + WS) × T _C - 12.4			_		ns
	DRAM for all WS	66 MHz⁸ : (3.5 + WS) × T _C − 14					ns
		80 MHz⁸ : (3.5 + WS)×T _C - 12.4			_		ns
	• SRAM WS = 1	66 MHz⁸ : (WS + 3.5) × T _C − 14	_				ns
		80 MHz⁸ : (WS + 3.5) × T _C − 12.4			_		ns
	• SRAM WS = 2, 3	66 MHz⁸ : (WS + 3) × T _C − 14	_				ns
		80 MHz⁸ : (WS + 3) × T _C – 12.4			_		ns
	• SRAM WS ≥ 4	66 MHz⁸ : (2.5 + WS) × T _C − 14	_				ns
		80 MHz⁸: (2.5 + WS) × T _C - 12.4			_		ns
22	Synchronous interrupt setup time from IRQA, IRQB, IRQC, IRQD, NMI assertion to the CLKOUT Transition 2		9.0	T _C	7.4	T _C	ns

Table 2-7 Reset, Stop, Mode Select, and Interrupt Timing⁶ (Continued)

Specifications

Reset, Stop, Mode Select, and Interrupt Timing

	-						
No.	Characteristics	Expression	66 N	MHz	80 N	/IHz	Unit
	Characteristics	LAPICOOION	Min	Max	Min	Max	
23	Synchronous interrupt delay time from the CLKOUT Transition 2 to the first external address output valid caused by the first instruction fetch after coming out of Wait Processing state						
	Minimum	$9.25 \times T_{C} + 1.0$	141.0		116.6		ns
	Maximum	$24.75 \times T_{C} + 5.0$		380.0		314.4	ns
24	Duration for IRQA assertion to recover from Stop state		9.0		7.4		ns
25	 Delay from IRQA assertion to fetch of first instruction (when exiting Stop)^{2, 3} PLL is not active during Stop (PCTL Bit 17 = 0) and Stop delay is enabled (OMR Bit 6 = 0) 	PLC × ET _C × PDF + (128 K – PLC/2) × T _C	2.0	64.1	1.6	52.8	ms
	 PLL is not active during Stop (PCTL Bit 17 = 0) and Stop delay is not enabled (OMR Bit 6 = 1) 	$PLC \times ET_C \times PDF + (23.75 \pm 0.5) \times T_C$	352.3 ns	62.1 ms	290.6 ns	51.2 ms	
	 PLL is active during Stop (PCTL Bit 17 = 1) (Implies No Stop Delay) 	$(8.25 \pm 0.5) \times T_{C}$	117.4	132.6	96.9	109.4	ns
26	 Duration of level sensitive IRQA assertion to ensure interrupt service (when exiting Stop)^{2, 3} PLL is not active during Stop (PCTL Bit 17 = 0) and Stop delay is enabled (OMR Bit 6 = 0) 	PLC × ET_C × PDF + (128K – PLC/2) × T_C	64.1		52.8		ms
	 PLL is not active during Stop (PCTL Bit 17 = 0) and Stop delay is not enabled (OMR Bit 6 = 1) 	$PLC \times ET_C \times PDF + (20.5 \pm 0.5) \times T_C$	62.1		51.2		ms
	 PLL is active during Stop (PCTL Bit 17 = 1) (implies no Stop delay) 	5.5 × T _C	83.4		68.8	_	ns

Table 2-7	Reset, Stop, Mode Select, ar	nd Interrupt Timing ⁶ (Continued)
-----------	------------------------------	--

NL	Chamatariatian	E	66 N	ИНz	80 N	/IHz	TT			
No.	Characteristics	Expression	Min	Max	Min	Max	Unit			
27	Interrupt Requests Rate HI08, ESSI, SCI, Timer 	12T _C	_	181.8		150.0	ns			
	• DMA	8T _C		121.2		100.0	ns			
	• $\overline{\text{IRQ}}, \overline{\text{NMI}}$ (edge trigger)	8T _C		121.2		100.0	ns			
	• $\overline{\text{IRQ}}$, $\overline{\text{NMI}}$ (level trigger)	12T _C		181.8		150.0	ns			
28	DMA Requests Rate Data read from HI08, ESSI, SCI 	6T _C		90.9		75.0	ns			
	Data write to HI08, ESSI, SCI	7T _C		106.1		87.5	ns			
	• Timer	2T _C		30.3		25.0	ns			
	• $\overline{\text{IRQ}}$, $\overline{\text{NMI}}$ (edge trigger)	3T _C		45.5		37.5	ns			
29	Delay from IRQA, IRQB, IRQC, IRQD, NMI assertion to external memory (DMA source) access address out valid	$4.25 \times T_{C} + 2.0$	66.0		55.1	_	ns			
Note:										

Table 2-7 Reset, Stop, Mode Select, and Interrupt Timing⁶ (Continued)

				66 I	MHz	80 N	MHz			
No.		Characteristics	Expression	Min	Max	Min	Max	Unit		
	2.	This timing depends on several setti	ngs:							
		For PLL disable, using internal oscill disabled during Stop (PCTL Bit 17 = stable before executing programs. In provide the proper delay. While it is these specifications do not guarantee	0), a stabilization d that case, resetting possible to set OM	lelay is re the Stop R Bit 6 =	equired to delay (O	o assure tl MR Bit 6	he oscilla = 0) will	tor is		
		For PLL disable, using internal oscill (PCTL Bit 17=1), no stabilization dela setting is ignored).								
		For PLL disable, using external clock recovery time will be defined by the				elay is rec	quired ar	nd		
		For PLL enable, if PCTL Bit 17 is 0, the PLL is shutdown during Stop. Recovering from Stop requires the PLL to get locked. The PLL lock procedure duration, PLL Lock Cycles (PLC), may be in the range of 0 to 1000 cycles. This procedure occurs in parallel with the stop delay counter, and stop recovery will end when the last of these two events occurs. The stop delay counter completes count or PLL lock procedure completion.								
		PLC value for PLL disable is 0.								
		The maximum value for ET_C is 4096 (i.e., for 66 MHz it is 4096/66 MHz = not be constant, and their width may	$62\mu s$). During the	stabiliza	tion peric					
	3.	Periodically sampled and not 100% t	ested							
	4.	For an external clock generator, $\overline{\text{RESI}}$ asserted, V_{CC} is valid, and the EXTA			ring the t	ime in w	hich RES	ET is		
		For internal oscillator, $\overline{\text{RESET}}$ duration is measured during the time in which $\overline{\text{RESET}}$ is asserted and V _{CC} is valid. The specified timing reflects the crystal oscillator stabilization time after power- up. This number is affected both by the specifications of the crystal and other components connected to the oscillator and reflects worst case conditions.								
	When the V _{CC} is valid, but the other "required RESET duration" conditions (as specified abhave not been yet met, the device circuitry will be in an uninitialized state that can result in significant power consumption and heat-up. Designs should minimize this state to the short possible duration.									
	5. 6. 7. 8.	possible duration. If PLL does not lose lock $V_{CC} = 3.3 V \pm 0.3 V$; $T_J = -40^{\circ}C$ to $+100^{\circ}C$, $C_L = 50 \text{ pF} + 2 \text{ TTL Loads}$ WS = number of wait states (measured in clock cycles, number of T_C) Use expression to compute maximum value.								

Table 2-7 Reset, Stop, Mode Select, and Interrupt Timing⁶ (Continued)

Figure 2-6 External Interrupt Timing (Negative Edge-Triggered)

Figure 2-9 Recovery from Stop State Using IRQA

AA0467

Figure 2-10 Recovery from Stop State Using IRQA Interrupt Service

a) First Interrupt Instruction Execution

Figure 2-11 External Memory Access (DMA Source) Timing

EXTERNAL MEMORY INTERFACE (PORT A)

Ne	Characteristics	Growbal		66 N	/IHz	80 N	/IHz	Unit
No.	Characteristics	Symbol	Expression ¹	Min	Max	Min	Max	Unit
100	Address valid and AA assertion pulse	t _{RC} , t _{WC}	$(WS + 1) \times T_C - 4.0$ $[1 \le WS \le 3]$	26.3		21.0	_	ns
	width		$(WS + 2) \times T_C - 4.0$ $[4 \le WS \le 7]$	86.9	_	71.0	_	ns
			$(WS + 3) \times T_C - 4.0$ $[WS \ge 8]$	162.7	_	133.5	_	ns
101	Address and AA valid to WR assertion	t _{AS}	66 MHz: 0.25 × T _C - 3.7 [WS = 1]	0.1	_	_		ns
			80 MHz: $0.25 \times T_{C} - 3.0$ [WS = 1]	_	_	0.1		ns
			$\begin{array}{l} 0.75 \times \mathrm{T_{C}} - 4.0 \\ [2 \leq \mathrm{WS} \leq 3] \end{array}$	7.4	_	5.4	_	ns
			$1.25 \times T_{\rm C} - 4.0$ $[\rm WS \ge 4]$	14.9	_	11.6	_	ns
102	WR assertion pulse width	t _{WP}	$1.5 \times T_{C} - 4.5$ [WS = 1]	18.2	_	14.8	_	ns
			$WS \times T_C - 4.0$ $[2 \le WS \le 3]$	26.3	_	21.0	_	ns
			$(WS - 0.5) \times T_C - 4.0$ [WS \ge 4]	49.0	_	39.8	_	ns
103	WR deassertion to address not valid	t _{WR}	66 MHz: 0.25 × T _C − 3.8 [1 ≤ WS ≤ 3]	0.1				ns
			80 MHz: $0.25 \times T_{C} - 3.0$ $[1 \le WS \le 3]$	_	_	0.0	_	ns
			$1.25 \times T_{\rm C} - 4.0$ $[4 \le {\rm WS} \le 7]$	14.9	_	11.6		ns
			$2.25 \times T_{C} - 4.0$ [WS \ge 8]	30.1		24.1		ns

 Table 2-8
 SRAM Read and Write Accesses

				66 N	ИНz	80 N	/IHz	
No.	Characteristics	Symbol	Expression ¹	Min	Max	Min	Max	Unit
104	Address and AA valid to input data valid	t _{AA} , t _{AC}	66 MHz: (WS + 0.75) × T_C - 10.0 [WS ≥ 1]		16.5			ns
			80 MHz: (WS + 0.75) × $T_C - 9.5$ [WS ≥ 1]				12.4	ns
105	RD assertion to input data valid	t _{OE}	66 MHz: (WS + 0.25) × T _C − 10.0 [WS ≥ 1]		8.9			ns
			80 MHz: (WS + 0.25) × T_C - 9.5 [WS ≥ 1]				6.1	ns
106	RD deassertion to data not valid (data hold time)	t _{OHZ}		0.0		0.0		ns
107	Address valid to \overline{WR} deassertion	t _{AW}	$(WS + 0.75) \times T_C - 4.0$ [WS \ge 1]	22.5	_	17.9	_	ns
108	Data valid to WR deassertion (data setup time)	t _{DS} (t _{DW})	66 MHz: (WS – 0.25) × T _C – 3.9 [WS ≥ 1]	7.5				ns
			80 MHz: (WS - 0.25) × T_C - 3.3 [WS ≥ 1]			6.1		ns
109	Data hold time from WR deassertion	t _{DH}	66 MHz: $0.25 \times T_{C} - 3.7$ $[1 \le WS \le 3]$	0.1	_			ns
			80 MHz: $0.25 \times T_{C} - 3.0$ $[1 \le WS \le 3]$		_	0.1		ns
			$1.25 \times T_{C} - 3.7$ [4 ≤ WS ≤ 7]	15.2	_	11.8		ns
			$2.25 \times T_{C} - 3.7$ [WS \ge 8]	30.4		24.3		ns

Table 2-8 SRAM Read and Write Accesses (Continued)

N T	Characteristics	0 1 1	1	66 N	/IHz	80 N	/IHz	.
No.	Characteristics	Symbol	Expression ¹	Min	Max	Min	Max	Unit
110	WR assertion to data active		$0.75 \times T_{C} - 3.7$ [WS = 1]	7.7		5.7		ns
			$0.25 \times T_{\rm C} - 3.7$ [2 ≤ WS ≤ 3]	0.1	_	-0.6	_	ns
			$-0.25 \times T_{C} - 3.7$ [WS ≥ 4]	-7.5	_	-6.8	_	ns
111	WR deassertion to data high impedance		$0.25 \times T_{C} + 0.2$ [1 ≤ WS ≤ 3]	_	4.0		3.3	ns
			$1.25 \times T_{C} + 0.2$ $[4 \le WS \le 7]$	_	19.1		15.8	ns
			$2.25 \times T_{C} + 0.2$ [WS \ge 8]	_	34.3		28.3	ns
112	Previous RD deassertion to data active (write)		$1.25 \times T_{C} - 4.0$ $[1 \le WS \le 3]$	14.9		11.6		ns
			$2.25 \times T_{C} - 4.0$ $[4 \le WS \le 7]$	30.1		24.1		ns
			$3.25 \times T_{C} - 4.0$ $[WS \ge 8]$	45.2		36.6		ns
113	$\overline{\text{RD}}$ deassertion time		$\begin{array}{l} 0.75 \times \mathrm{T_{C}} - 4.0 \\ [1 \leq \mathrm{WS} \leq 3] \end{array}$	7.4		5.4		ns
			$1.75 \times T_{\rm C} - 4.0$ $[4 \le {\rm WS} \le 7]$	22.5	_	17.9	_	ns
			$2.75 \times T_{\rm C} - 4.0$ $[\rm WS \ge 8]$	37.7	_	30.4	_	ns
114	WR deassertion time		$0.5 \times T_{C} - 3.5$ [WS = 1]	4.1	_	2.8		ns
			$T_{C} - 3.5$ [2 ≤ WS ≤ 3]	11.7	_	9.0	_	ns
			$2.5 \times T_{\rm C} - 3.5$ $[4 \le WS \le 7]$	34.4	_	27.8		ns
			$3.5 \times T_{\rm C} - 3.5$ [WS \ge 8]	49.5	_	40.3	_	ns
115	Address valid to $\overline{\text{RD}}$ assertion		$0.5 \times T_{C} - 4$	3.5		2.3		ns
116	RD assertion pulse width		$(WS + 0.25) \times T_C - 3.8$	15.1		11.8		ns

 Table 2-8
 SRAM Read and Write Accesses (Continued)

N.	Characteristics	Symbol	Expression ¹	66 MHz		80 MHz		Unit	
No.				Min	Max	Min	Max	Unit	
117	RD deassertion to address not valid		$0.25 \times T_{C} - 3.0$ [1 ≤ WS ≤ 3]	0.7	_	0.1	_	ns	
			$1.25 \times T_{C} - 3.0$ [4 ≤ WS ≤ 7]	15.9	_	12.6	_	ns	
			$2.25 \times T_{C} - 3.0$ [WS \ge 8]	31.0	_	25.1	_	ns	
Note:	Note: 1. WS is the number of wait states specified in the BCR. 2. $V_{CC} = 3.3 V \pm 0.3 V$; $T_I = -40^{\circ}C$ to $+100^{\circ}C$, $C_L = 50 \text{ pF} + 2 \text{ TTL Loads}$								

 Table 2-8
 SRAM Read and Write Accesses (Continued)

Figure 2-12 SRAM Read Access

Figure 2-13 SRAM Write Access

No.	Characteristics	Symbol	ymbol Expression ²		1Hz ¹	66 N	/IHz	80 MHz		Unit
110.	Characteristics	Symbol	Expression	Min	Max	Min	Max	Min	Max	
118	BCLK high to BCLK high (cycle time)	t _{KHKH}	$(WS + 1) \times T_C$	20.0		15.1		12.5		ns
119	BCLK high time	t _{KHKL}	50 MHz: $0.5 \times T_C - 5.5$ 66 MHz: $0.5 \times T_C - 4.8$ 80 MHz: $0.5 \times T_C - 4.2$	4.5		2.8	_	1.5	_	ns ns ns
120	BCLK low time	t _{KLKH}	50 MHz and 66 MHz: (WS + 0.5) \times T _C - 2.5 80 MHz: (WS + 0.5) \times T _C - 2.3	7.5		5.1		4.0		ns ns
121	BCLK high to input data valid	t _{KHQV}	$(WS + 1) \times T_C - 7.5$		12.5		7.7	_	5.0	ns
122	RD assertion to input data valid	t _{GLQV}	$(WS + 1) \times T_C - 7.5$		12.5		7.7		5.0	ns

No.	Characteristics	Sumbol	. 2	50 N	1Hz ¹	66 N	1Hz	80 MHz		Unit
INO.	Characteristics	Symbol	Expression ²	Min	Max	Min	Max	Min	Max	Unit
123	RD deassertion to input data invalid	t _{GHQX}		0.0		0.0		0.0		ns
124	Address and AA setup time to clock high	t _{AVKH}	$0.5 \times T_{C} - 4.0$	6.0		3.6		2.8		ns
125	WR setup time to clock high	t _{SWVKH}	$0.5 \times T_{C} - 4.0$	6.0		3.6		2.8		ns
126	Data out setup time to clock high	t _{DVKH}	$(WS + 0.5) \times T_C - 4.0$	6.0		3.6	_	2.8		ns
127	BCLK high to address and AA invalid (hold time)	t _{KHAX}	$(WS + 0.5) \times T_C - 1.0$	9.0		6.6		5.3		ns
128	BCLK high to WR deassertion (hold time)	t _{KHSWX}	$(WS + 0.5) \times T_C - 1.0$	9.0		6.6		5.3		ns
129	BCLK high to input data invalid (data hold time)	t _{KHQX2}		0.0		0.0		0.0		ns
130	BCLK high to output data invalid (data hold time) BCLK high to data high impedance	t _{KHDX}	0.5 × T _C – 1.0	9.0		6.6		5.3		ns

 Table 2-9
 SSRAM Read and Write Access (Continued)

Figure 2-15 SSRAM Write Access

Figure 2-16 DRAM Page Mode Wait States Selection Guide

Table 2-10	DRAM Page Mode	Timings, One W	/ait State (Low-Power .	Applications) ^{1, 2, 3}
------------	----------------	----------------	-------------------------	----------------------------------

No.	Characteristics	Symbol	Expression	20 MHz ⁶ 30 MHz ⁶					IHz ⁶	Unit	
110.	Characteristics	Symbol			Max	Min	Max	Onit			
131	Page mode cycle time	t _{PC}	$1.25 \times T_{C}$	62.5	—	41.7		ns			
132	CASassertion to data valid(read)	t _{CAC}	T _C – 7.5		42.5		25.8	ns			
133	Column address valid to data valid (read)	t _{AA}	$1.5 \times T_{\rm C} - 7.5$	_	67.5	_	42.5	ns			
134	CAS deassertion to data not valid (read hold time)	t _{OFF}		0.0	_	0.0	_	ns			
135	Last \overline{CAS} assertion to \overline{RAS} deassertion	t _{RSH}	$0.75 \times T_{C} - 4.0$	33.5	-	21.0		ns			
136	Previous \overline{CAS} deassertion to \overline{RAS} deassertion	t _{RHCP}	$2 \times T_{C} - 4.0$	96.0	-	62.7		ns			
137	CAS assertion pulse width	t _{CAS}	$0.75 \times T_{C} - 4.0$	33.5	_	21.0	—	ns			

No	Charactoristics	Symbol	Evenesion	20 M	(Hz ⁶			Unit
No.	Characteristics	Symbol	Expression	Min	Max	Min	Max	Unit
138	Last \overline{CAS} deassertion to \overline{RAS} deassertion ⁴	t _{CRP}						
	• BRW[1:0] = 00		$1.75 \times T_{\rm C} - 6.0$	81.5	_	52.3		ns
	• BRW[1:0] = 01		$3.25 \times T_{\rm C} - 6.0$	156.5	_	102.2	_	ns
	• BRW[1:0] = 10		$4.25 \times T_{\rm C} - 6.0$	206.5	_	135.5	_	ns
	• BRW[1:0] = 11		$6.25 \times T_{\rm C} - 6.0$	306.5	_	202.1		ns
139	CAS deassertion pulse width	t _{CP}	$0.5 \times T_{C} - 4.0$	21.0	_	12.7		ns
140	Column address valid to CAS assertion	t _{ASC}	$0.5 \times T_{C} - 4.0$	21.0		12.7		ns
141	CAS assertion to column address not valid	t _{CAH}	$0.75 \times T_{C} - 4.0$	33.5		21.0		ns
142	Last column address valid to RAS deassertion	t _{RAL}	$2 \times T_{C} - 4.0$	96.0		62.7		ns
143	$\overline{\text{WR}}$ deassertion to $\overline{\text{CAS}}$ assertion	t _{RCS}	$0.75 \times T_{C} - 3.8$	33.7		21.2		ns
144	\overline{CAS} deassertion to \overline{WR} assertion	t _{RCH}	$0.25 \times T_{C} - 3.7$	8.8		4.6		ns
145	\overline{CAS} assertion to \overline{WR} deassertion	t _{WCH}	$0.5 \times T_{C} - 4.2$	20.8		12.5		ns
146	WR assertion pulse width	t _{WP}	$1.5 \times T_{C} - 4.5$	70.5		45.5		ns
147	Last \overline{WR} assertion to \overline{RAS} deassertion	t _{RWL}	$1.75 \times T_{C} - 4.3$	83.2	_	54.0		ns
148	\overline{WR} assertion to \overline{CAS} deassertion	t _{CWL}	$1.75 \times T_{C} - 4.3$	83.2	_	54.0		ns
149	Data valid to \overline{CAS} assertion (Write)	t _{DS}	$0.25 \times T_{C} - 4.0$	8.5		4.3		ns
150	CAS assertion to data not valid (write)	t _{DH}	$0.75 \times T_{C} - 4.0$	33.5		21.0		ns
151	$\overline{\text{WR}}$ assertion to $\overline{\text{CAS}}$ assertion	t _{WCS}	T _C – 4.3	45.7		29.0		ns
152	Last $\overline{\text{RD}}$ assertion to $\overline{\text{RAS}}$ deassertion	t _{ROH}	$1.5 \times T_{C} - 4.0$	71.0		46.0		ns

 Table 2-10
 DRAM Page Mode Timings, One Wait State (Low-Power Applications)^{1, 2, 3}

Characteristics	Symbol	Evpression	20 MHz ⁶		30 MHz ⁶		Unit
Characteristics	Symbol	Expression	Min	Max	Min	Max	Unit
$\overline{\text{RD}}$ assertion to data valid	t _{GA}	T _C -7.5		42.5		25.8	ns
$\overline{\text{RD}}$ deassertion to data not valid ⁵	t_{GZ}		0.0		0.0	_	ns
$\overline{\mathrm{WR}}$ assertion to data active		$0.75 \times T_{\rm C} - 0.3$	37.2		24.7	_	ns
WR deassertion to data high impedance		$0.25 \times T_{C}$	_	12.5	_	8.3	ns
	RDdeassertion to data not valid 5WRassertion to data activeWRdeassertion to data	\overline{RD} assertion to data valid t_{GA} \overline{RD} deassertion to data not valid 5 t_{GZ} \overline{WR} assertion to data active \overline{WR} deassertion to data	\overline{RD} assertion to data valid t_{GA} $T_C - 7.5$ \overline{RD} deassertion to data not valid 5 t_{GZ} $0.75 \times T_C - 0.3$ \overline{WR} deassertion to data $0.25 \times T_C$	CharacteristicsSymbolExpression \overline{RD} assertion to data valid t_{GA} $T_C - 7.5$ — \overline{RD} deassertion to data not valid 5 t_{GZ} 0.0 \overline{WR} assertion to data active $0.75 \times T_C - 0.3$ 37.2 \overline{WR} deassertion to data $0.25 \times T_C$ —	CharacteristicsSymbolExpression \overline{RD} assertion to data valid t_{GA} $T_C - 7.5$ 42.5 \overline{RD} deassertion to data not valid 5 t_{GZ} 0.0 \overline{WR} assertion to data active $0.75 \times T_C - 0.3$ 37.2 \overline{WR} deassertion to data $0.25 \times T_C$ 12.5	CharacteristicsSymbolExpressionImage: margin base of the constraint of the c	CharacteristicsSymbolExpressionImage: Constraint of the symbolMaxMinMax \overline{RD} assertion to data valid t_{GA} $T_C - 7.5$ 42.525.8 \overline{RD} deassertion to data not valid 5 t_{GZ} C_{C} 0.00.0 \overline{WR} assertion to data active0.75 × T_C - 0.337.224.7 \overline{WR} deassertion to data0.25 × T_C 12.58.3

Table 2-10	DRAM Page Mode	Timings, One Wait Sta	ate (Low-Power A	Applications) ^{1, 2, 3}
------------	----------------	-----------------------	------------------	----------------------------------

The number of wait states for page mode access is specified in the DCR. Note: 1.

2. The refresh period is specified in the DCR.

3. All the timings are calculated for the worst case. Some of the timings are better for specific cases (e.g., t_{PC} equals $2 \times T_C$ for read-after-read or write-after-write sequences).

4. BRW[1:0] (DRAM control register bits) defines the number of wait states that should be inserted in each DRAM out-of-page access.

5. $\overline{\text{RD}}$ deassertion will always occur after $\overline{\text{CAS}}$ deassertion; therefore, the restricted timing is t_{OFF} and not t_{GZ}.

6. Reduced DSP clock speed allows use of Page Mode DRAM with one wait state (See Figure 2-16.).

Table 2-11	DRAM Page Mode Timings, Two Wait States ^{1, 2, 3}	

Ът		0 1 1	. .	66 N	/IHz	80 N	/IHz	T T •
No.	Characteristics	Symbol	Expression	Min	Max	Min	Max	Unit
131	Page mode cycle time	t _{PC}	$2.75 \times T_{C}$	41.7		34.4		ns
132	CAS assertion to data valid (read)	t _{CAC}	66 MHz : 1.5 × T _C – 7.5		15.2			ns
			80 MHz : 1.5 × T _C – 6.5	_			12.3	ns
133	Column address valid to data valid	t _{AA}	66 MHz : 2.5 × T _C − 7.5	_	30.4	_	_	ns
	(read)		80 MHz: 2.5 × T _C – 6.5	_	_	_	24.8	ns
134	CAS deassertion to data not valid (read hold time)	t _{OFF}		0.0	—	0.0		ns
135	Last \overline{CAS} assertion to \overline{RAS} deassertion	t _{RSH}	$1.75 \times T_{C} - 4.0$	22.5		17.9		ns
136	Previous \overline{CAS} deassertion to \overline{RAS} deassertion	t _{RHCP}	$3.25 \times T_{C} - 4.0$	45.2		36.6		ns

	a			66 N	/Hz	80 N	ΛHz	Unit	
No.	Characteristics	Symbol	Expression	Min	Max	Min	Max	Unit	
137	CAS assertion pulse width	t _{CAS}	$1.5 \times T_{C} - 4.0$	18.7		14.8		ns	
138	Last \overline{CAS} deassertion to \overline{RAS} deassertion ⁵ • BRW[1:0] = 00	t _{CRP}	$2.0 \times T_{\rm C} - 6.0$	24.4		19.0		ns	
	• BRW[1:0] = 01		$3.5 \times T_{C} - 6.0$	47.2	_	37.8	_	ns	
	• BRW[1:0] = 10		$4.5 \times T_{C} - 6.0$	62.4	_	50.3	_	ns	
	• BRW[1:0] = 11		$6.5 \times T_{C} - 6.0$	92.8	_	75.3	_	ns	
139	CAS deassertion pulse width	t _{CP}	$1.25 \times T_{C} - 4.0$	14.9		11.6		ns	
140	Column address valid to CAS assertion	t _{ASC}	T _C -4.0	11.2	_	8.5		ns	
141	CAS assertion to column address not valid	t _{CAH}	$1.75 \times T_{C} - 4.0$	22.5		17.9		ns	
142	Last column address valid to RAS deassertion	t _{RAL}	$3 \times T_C - 4.0$	41.5		33.5		ns	
143	$\overline{\text{WR}}$ deassertion to $\overline{\text{CAS}}$ assertion	t _{RCS}	$1.25 \times T_{C} - 3.8$	15.1		11.8		ns	
144	\overline{CAS} deassertion to \overline{WR} assertion	t _{RCH}	$0.5 \times T_{C} - 3.7$	3.9		2.6		ns	
145	CAS assertion to WR deassertion	t _{WCH}	$1.5 \times T_{C} - 4.2$	18.5		14.6		ns	
146	WR assertion pulse width	t _{WP}	$2.5 \times T_{C} - 4.5$	33.4		26.8		ns	
147	$\frac{\text{Last }\overline{\text{WR}} \text{ assertion to}}{\text{RAS} \text{ deassertion}}$	t _{RWL}	$2.75 \times T_{C} - 4.3$	37.4		30.1		ns	
148	$\overline{\text{WR}}$ assertion to $\overline{\text{CAS}}$ deassertion	t _{CWL}	$2.5 \times T_{C} - 4.3$	33.6		27.0		ns	

Table 2-11	DRAM Page Mode Timings	Two Wait States ^{1, 2, 3} (Continued)
1 abic 2-11	Dia mi i age mode i mingo,	(Continued)

		0	0					
NT		0 1 1	. .	66 N	ΛHz	80 MHz		T T •4
No.	Characteristics	Symbol	Expression	Min	Max	Min	Max	Unit
149	Data valid to \overline{CAS} assertion (write)	t _{DS}	66 MHz : 0.25 × T _C - 3.7	0.1		_		ns
			80 MHz : 0.25 × T _C – 3.0			0.1		ns
150	CAS assertion to data not valid (write)	t _{DH}	$1.75 \times T_{C} - 4.0$	22.5		17.9		ns
151	$\overline{\text{WR}}$ assertion to $\overline{\text{CAS}}$ assertion	t _{WCS}	T _C -4.3	10.9		8.2		ns
152	Last $\overline{\text{RD}}$ assertion to $\overline{\text{RAS}}$ deassertion	t _{ROH}	$2.5 \times T_{\rm C} - 4.0$	33.9	_	27.3		ns
153	$\overline{\text{RD}}$ assertion to data valid	t _{GA}	$1.75 \times T_{C} - 7.5$	_	19.0	_	15.4	ns
154	RD deassertion to data not valid ⁶	t _{GZ}		0.0	_	0.0		ns
155	$\overline{\text{WR}}$ assertion to data active		$0.75 \times T_{C} - 0.3$	11.1	_	9.1		ns
156	WR deassertion to data high impedance		$0.25 \times T_{C}$	_	3.8		3.1	ns

Table 2-11 D	DRAM Page Mode	Timings, T	'wo Wait States ^{1, 2, 3}	(Continued)
--------------	-----------------------	------------	------------------------------------	-------------

Note: 1. The number of wait states for page mode access is specified in the DCR.

2. The refresh period is specified in the DCR.

3. The asynchronous delays specified in the expressions are valid for DSP56304.

4. All the timings are calculated for the worst case. Some of the timings are better for specific cases (e.g., t_{PC} equals $3 \times T_C$ for read-after-read or write-after-write sequences).

5. BRW[1:0] (DRAM Control Register bits) defines the number of wait states that should be inserted in each DRAM out-of-page access.

6. $\overline{\text{RD}}$ deassertion will always occur after $\overline{\text{CAS}}$ deassertion; therefore, the restricted timing is t_{OFF} and not t_{GZ}.

		C 1 1		66 N	ΛHz	80 N	/Hz	
No.	Characteristics	Symbol	Expression	Min	Max	Min	Max	Unit
131	Page mode cycle time	t _{PC}	$3.5 \times T_C$	53.0		43.8		ns
132	CAS assertion to data valid (read)	t _{CAC}	66 MHz : 2 × T _C − 7.5		22.8			ns
			80 MHz : 2 × T _C – 6.5	_	_		18.5	ns
133	Column address valid to data valid (read)	t _{AA}	66 MHz : 3 × T _C − 7.5	_	37.9			ns
			80 MHz : 3 × T _C – 6.5	_	_	_	31.0	ns
134	CAS deassertion to data not valid (read hold time)	t _{OFF}		0.0		0.0		ns
135	Last \overline{CAS} assertion to \overline{RAS} deassertion	t _{RSH}	$2.5 \times T_{C} - 4.0$	33.9	_	27.3		ns
136	Previous \overline{CAS} deassertion to \overline{RAS} deassertion	t _{RHCP}	$4.5 \times T_{C} - 4.0$	64.2		52.3		ns
137	CAS assertion pulse width	t _{CAS}	$2 \times T_{C} - 4.0$	26.3		21.0		ns
138	Last \overline{CAS} deassertion to \overline{RAS} deassertion ⁵ • BRW[1:0] = 00	t _{CRP}						
			$2.25 \times T_{C} - 6.0$	28.2	_	22.2		ns
	• BRW[1:0] = 01		$3.75 \times T_{\rm C} - 6.0$	51.0	_	40.9		ns
	• BRW[1:0] = 10		$4.75 \times T_{C} - 6.0$	66.2	_	53.4		ns
	• BRW[1:0] = 11		$6.75 \times T_{\rm C} - 6.0$	96.6		78.4		ns
139	\overline{CAS} deassertion pulse width	t _{CP}	$1.5 \times T_{C} - 4.0$	18.7	_	14.8		ns
140	Column address valid to \overline{CAS} assertion	t _{ASC}	T _C – 4.0	11.2		8.5		ns
141	CAS assertion to column address not valid	t _{CAH}	$2.5 \times T_{C} - 4.0$	33.9		27.3		ns
142	Last column address valid to RAS deassertion	t _{RAL}	$4 \times T_{C} - 4.0$	56.6		46.0		ns

Table 2-12	DRAM Page Mode Timings, Three Wait States ^{1, 2, 3}
------------	--

				66 N	/IHz	80 N	ИНz	
No.	Characteristics	Symbol	Expression	Min	Max	Min	Max	Unit
143	WR deassertion to CAS assertion	t _{RCS}	$1.25 \times T_{C} - 3.8$	15.1		11.8		ns
144	\overline{CAS} deassertion to \overline{WR} assertion	t _{RCH}	$0.75 \times T_{C} - 3.7$	7.7		5.7		ns
145	\overline{CAS} assertion to \overline{WR} deassertion	t _{WCH}	$2.25 \times T_{C} - 4.2$	29.9		23.9		ns
146	WR assertion pulse width	t _{WP}	$3.5 \times T_{\rm C} - 4.5$	48.5		39.3		ns
147	Last \overline{WR} assertion to \overline{RAS} deassertion	t _{RWL}	$3.75 \times T_{C} - 4.3$	52.5		42.6		ns
148	$\overline{\text{WR}}$ assertion to $\overline{\text{CAS}}$ deassertion	t _{CWL}	$3.25 \times T_{C} - 4.3$	44.9		36.3		ns
149	Data valid to CAS assertion (write)	t _{DS}	$0.5 \times T_{\rm C} - 4.0$	3.6	_	2.3		ns
150	CAS assertion to data not valid (write)	t _{DH}	$2.5 \times T_{\rm C} - 4.0$	33.9	_	27.3		ns
151	$\overline{\text{WR}}$ assertion to $\overline{\text{CAS}}$ assertion	t _{WCS}	$1.25 \times T_{C} - 4.3$	14.6	_	11.3		ns
152	Last $\overline{\text{RD}}$ assertion to $\overline{\text{RAS}}$ deassertion	t _{ROH}	$3.5 \times T_{\rm C} - 4.0$	49.0	_	39.8		ns
153	RD assertion to data valid	t _{GA}	66 MHz : 2.5 × T _C – 7.5	_	30.4			ns
			80 MHz : $2.5 \times T_{\rm C} - 6.5$	_	_	_	24.8	ns
154	$\overline{\text{RD}}$ deassertion to data not valid ⁶	t _{GZ}		0.0		0.0	_	ns
155	$\overline{\mathrm{WR}}$ assertion to data active		$0.75 \times T_{C} - 0.3$	11.1		9.1		ns
156	WR deassertion to data high impedance		$0.25 \times T_{C}$	_	3.8	_	3.1	ns

Table 2-12	DRAM Page Mode Timings, Three Wait Stat	$es^{1, 2, 3}$ (Continued)
		· · · · · · · · · · · · · · · · · · ·

2. The refresh period is specified in the DCR.

3. The asynchronous delays specified in the expressions are valid for DSP56304.

4. All the timings are calculated for the worst case. Some of the timings are better for specific cases (e.g., t_{PC} equals $4 \times T_C$ for read-after-read or write-after-write sequences).

5. BRW[1:0] (DRAM control register bits) defines the number of wait states that should be inserted in each DRAM out-of page-access.

6. $\overline{\text{RD}}$ deassertion will always occur after $\overline{\text{CAS}}$ deassertion; therefore, the restricted timing is t_{OFF} and not t_{GZ}.

NT		0 1 1		66 N	ИНz	80 N	ИНz	T
No.	Characteristics	Symbol	Expression	Min	Max	Min	Max	Unit
131	Page mode cycle time	t _{PC}	$4.5 \times T_{C}$	68.2		56.3		ns
132	CAS assertion to data valid (read)	t _{CAC}	66 MHz : 2.75 × T _C – 7.5 80 MHz :	_	34.2		_	ns
133	Column address valid to data valid (read)	t _{AA}	2.75 × T_C – 6.5 66 MHz: 3.75 × T_C – 7.5 80 MHz:		49.3		27.9	ns ns
134	CAS deassertion to data not valid (read hold time)	t _{OFF}	$3.75 \times T_{C} - 6.5$	0.0		0.0	40.4	ns ns
135	Last \overline{CAS} assertion to \overline{RAS} deassertion	t _{RSH}	$3.5 \times T_{\rm C} - 4.0$	49.0		39.8		ns
136	Previous CAS deassertion to RAS deassertion	t _{RHCP}	$6 \times T_{C} - 4.0$	86.9		71.0		ns
137	\overline{CAS} assertion pulse width	t _{CAS}	$2.5 \times T_{\rm C} - 4.0$	33.9	_	27.3	_	ns
138	Last \overline{CAS} deassertion to \overline{RAS} deassertion ⁵ • BRW[1:0] = 00	t _{CRP}	$2.75 \times T_{C} - 6.0$	35.8		28.4		ns
	• BRW[1:0] = 01		$4.25 \times T_{C} - 6.0$	58.6	_	47.2	_	ns
	• BRW[1:0] = 10		$5.25 \times T_{C} - 6.0$	73.8	_	59.7	_	ns
	• BRW[1:0] = 11		$6.25 \times T_{C} - 6.0$	89.0	_	72.2	_	ns
139	CAS deassertion pulse width	t _{CP}	$2 \times T_C - 4.0$	26.3		21.0		ns
140	Column address valid to CAS assertion	t _{ASC}	T _C – 4.0	11.2		8.5		ns

 Table 2-13
 DRAM Page Mode Timings, Four Wait States^{1, 2, 3}

				66 N	ИНz	80 N	ИНz	
No.	Characteristics	Symbol	Expression					Unit
				Min	Max	Min	Max	
141	CAS assertion to column address not valid	t _{CAH}	$3.5 \times T_{C} - 4.0$	49.0		39.8		ns
142	Last column address valid to RAS deassertion	t _{RAL}	$5 \times T_{\rm C} - 4.0$	71.8		58.5	_	ns
143	\overline{WR} deassertion to \overline{CAS} assertion	t _{RCS}	$1.25 \times T_{C} - 3.8$	15.1	_	11.8	_	ns
144	\overline{CAS} deassertion to \overline{WR} assertion	t _{RCH}	$1.25 \times T_{C} - 3.7$	15.2		11.9	_	ns
145	\overline{CAS} assertion to \overline{WR} deassertion	t _{WCH}	$3.25 \times T_{C} - 4.2$	45.0	_	36.4	_	ns
146	\overline{WR} assertion pulse width	t _{WP}	$4.5 \times T_{C} - 4.5$	63.7	_	51.8	_	ns
147	Last \overline{WR} assertion to \overline{RAS} deassertion	t _{RWL}	$4.75 \times T_{\rm C} - 4.3$	67.7	_	55.1	_	ns
148	\overline{WR} assertion to \overline{CAS} deassertion	t _{CWL}	$3.75 \times T_{C} - 4.3$	52.5	_	42.6	_	ns
149	Data valid to \overline{CAS} assertion (write)	t _{DS}	$0.5 \times T_{C} - 4.0$	3.6	_	2.3	_	ns
150	CAS assertion to data not valid (write)	t _{DH}	$3.5 \times T_{C} - 4.0$	49.0		39.8		ns
151	\overline{WR} assertion to \overline{CAS} assertion	t _{WCS}	$1.25 \times T_{C} - 4.3$	14.6	_	11.3	_	ns
152	Last \overline{RD} assertion to \overline{RAS} deassertion	t _{ROH}	$4.5 \times T_{\rm C} - 4.0$	64.2	_	52.3	_	ns
153	$\overline{\text{RD}}$ assertion to data valid	t_{GA}	66 MHz : 3.25 × T _C - 7.5	_	41.7	_	_	ns
			80 MHz : 3.25 × T _C - 6.5	_	_	_	34.1	ns
154	$\overline{\text{RD}}$ deassertion to data not valid ⁶	t _{GZ}		0.0	_	0.0	_	ns
155	WR assertion to data active		$0.75 \times T_{C} - 0.3$	11.1	_	9.1	-	ns

Table 2-13	DRAM Page Mode Timings	, Four Wait States ^{1, 2, 3} (Continued)
------------	------------------------	---

N.	Characteristics	611	T	66 MHz		80 MHz		Unit	
No.	o. Characteristics Symbol Express		Expression	Min	Max	Min	Max	Unit	
156	data	WR deassertion to $0.25 \times T_C$ data high impedance			_	3.8		3.1	ns
Note:	1. 2. 3. 4. 5.	The refresh peri The asynchrono All the timings (e.g., t _{PC} equals BRW[1:0] (DRA in each DRAM	od is specifie ous delays spe are calculated 3 × T _C for rea M control reg out-of-page a	ecified in the expressions a l for the worst case. Some ad-after-read or write-afte gister bits) defines the nur	are valid of the tin er-write se mber of w	for DSP nings are equences) vait states	better for). that show	ıld be ins	serted

Table 2-13	DRAM Page Mode Timings, Four Wait States ^{1, 2, 3} (Continued)
------------	---

Figure 2-17 DRAM Page Mode Write Accesses

Figure 2-18 DRAM Page Mode Read Accesses

Figure 2-19 DRAM Out-of-Page Wait States Selection Guide

Table 2-14	DRAM Out-of-Page and	Refresh Timings, Four Wait States ^{1, 2}

No.	Characteristics ³	Symbol	Expression	20 MHz ⁴		30 MHz ⁴		Unit
	Characteristics	Symbol	Expression	Min	Max	Min	Max	Unit
157	Random read or write cycle time	t _{RC}	$5 \times T_C$	250.0	_	166.7		ns
158	RAS assertion to data valid (read)	t _{RAC}	$2.75 \times T_{C} - 7.5$	_	130.0	—	84.2	ns
159	\overline{CAS} assertion to data valid (read)	t _{CAC}	$1.25 \times T_{C} - 7.5$	_	55.0	—	34.2	ns
160	Column address valid to data valid (read)	t _{AA}	$1.5 \times T_{C} - 7.5$	_	67.5	—	42.5	ns
161	CAS deassertion to data not valid (read hold time)	t _{OFF}		0.0		0.0		ns
162	$\overline{\text{RAS}}$ deassertion to $\overline{\text{RAS}}$ assertion	t _{RP}	$1.75 \times T_{C} - 4.0$	83.5		54.3	_	ns
163	$\overline{\text{RAS}}$ assertion pulse width	t _{RAS}	$3.25 \times T_{C} - 4.0$	158.5		104.3		ns

No.	Channel 1 1 3	Symbol	Expression	20 N	20 MHz ⁴		1Hz ⁴	Unit
INO.	Characteristics ³	Symbol	Expression	Min	Max	Min	Max	Unit
164	\overline{CAS} assertion to \overline{RAS} deassertion	t _{RSH}	$1.75 \times T_{C} - 4.0$	83.5		54.3		ns
165	$\overline{\text{RAS}}$ assertion to $\overline{\text{CAS}}$ deassertion	t _{CSH}	$2.75 \times T_{C} - 4.0$	133.5		87.7		ns
166	\overline{CAS} assertion pulse width	t _{CAS}	$1.25 \times T_{C} - 4.0$	58.5	_	37.7		ns
167	$\overline{\text{RAS}}$ assertion to $\overline{\text{CAS}}$ assertion	t _{RCD}	$1.5 \times T_C \pm 2$	73.0	77.0	48.0	52.0	ns
168	$\overline{\text{RAS}}$ assertion to column address valid	t _{RAD}	$1.25 \times T_C \pm 2$	60.5	64.5	39.7	43.7	ns
169	CAS deassertion to RAS assertion	t _{CRP}	$2.25 \times T_{C} - 4.0$	108.5	_	71.0	_	ns
170	CAS deassertion pulse width	t _{CP}	$1.75 \times T_{C} - 4.0$	83.5	_	54.3	_	ns
171	Row address valid to RAS assertion	t _{ASR}	$1.75 \times T_{C} - 4.0$	83.5		54.3		ns
172	$\overline{\text{RAS}}$ assertion to row address not valid	t _{RAH}	$1.25 \times T_{C} - 4.0$	58.5		37.7		ns
173	Column address valid to \overline{CAS} assertion	t _{ASC}	$0.25 \times T_{C} - 4.0$	8.5		4.3		ns
174	CAS assertion to column address not valid	t _{CAH}	$1.75 \times T_{\rm C} - 4.0$	83.5		54.3		ns
175	RAS assertion to column address not valid	t _{AR}	$3.25 \times T_{C} - 4.0$	158.5		104.3		ns
176	Column address valid to \overline{RAS} deassertion	t _{RAL}	$2 \times T_{C} - 4.0$	96.0		62.7		ns
177	\overline{WR} deassertion to \overline{CAS} assertion	t _{RCS}	$1.5 \times T_{C} - 3.8$	71.2		46.2		ns
178	\overline{CAS} deassertion to \overline{WR} assertion	t _{RCH}	$0.75 \times T_{C} - 3.7$	33.8		21.3		ns
179	\overline{RAS} deassertion to \overline{WR} assertion	t _{RRH}	$0.25 \times T_{C} - 3.7$	8.8		4.6		ns
180	\overline{CAS} assertion to \overline{WR} deassertion	t _{WCH}	$1.5 \times T_{C} - 4.2$	70.8		45.8		ns

Table 2-14	DRAM Out-of-Page	and Refresh Timings,	Four Wait States ^{1, 2}	(Continued)				
No.	Characteristics ³	Symbol	Expression	20 N	1Hz ⁴	30 N	1Hz ⁴	Unit
------	--	------------------	------------------------------	-------	------------------	-------	------------------	------
INU.	Characteristics ³	Symbol	Expression	Min	Max	Min	Max	UIII
181	\overline{RAS} assertion to \overline{WR} deassertion	t _{WCR}	$3 \times T_{C} - 4.2$	145.8		95.8		ns
182	WR assertion pulse width	t _{WP}	$4.5 \times T_{\rm C} - 4.5$	220.5	_	145.5	_	ns
183	$\overline{\text{WR}}$ assertion to $\overline{\text{RAS}}$ deassertion	t _{RWL}	$4.75 \times T_{C} - 4.3$	233.2	_	154.0	_	ns
184	$\overline{\text{WR}}$ assertion to $\overline{\text{CAS}}$ deassertion	t _{CWL}	$4.25 \times T_{C} - 4.3$	208.2	_	137.4	_	ns
185	Data valid to \overline{CAS} assertion (write)	t _{DS}	$2.25 \times T_{C} - 4.0$	108.5		71.0		ns
186	\overline{CAS} assertion to data not valid (write)	t _{DH}	$1.75 \times T_{C} - 4.0$	83.5	_	54.3	_	ns
187	$\overline{\text{RAS}}$ assertion to data not valid (write)	t _{DHR}	$3.25 \times T_{C} - 4.0$	158.5	_	104.3	_	ns
188	$\overline{\text{WR}}$ assertion to $\overline{\text{CAS}}$ assertion	t _{WCS}	$3 \times T_C - 4.3$	145.7	_	95.7	_	ns
189	\overline{CAS} assertion to \overline{RAS} assertion (refresh)	t _{CSR}	$0.5 \times T_{C} - 4.0$	21.0	_	12.7	_	ns
190	$\frac{\overline{RAS}}{\overline{CAS}}$ deassertion to \overline{CAS} assertion (refresh)	t _{RPC}	$1.25 \times T_{C} - 4.0$	58.5	_	37.7	_	ns
191	$\overline{\text{RD}}$ assertion to $\overline{\text{RAS}}$ deassertion	t _{ROH}	$4.5 \times T_{C} - 4.0$	221.0	_	146.0	_	ns
192	$\overline{\text{RD}}$ assertion to data valid	t_{GA}	$4 \times T_{C} - 7.5$	_	192.5	_	125.8	ns
193	$\overline{\text{RD}}$ deassertion to data not valid ³	t_{GZ}		0.0		0.0		ns
194	$\overline{\text{WR}}$ assertion to data active		$0.75 \times T_{C} - 0.3$	37.2	_	24.7	_	ns
195	WR deassertion to data high impedance		$0.25 \times T_C$	_	12.5	_	8.3	ns

Table 2-14	DRAM Out-of-Page	and Refresh 7	Timings, Four	Wait States ^{1, 2}	(Continued)

4. Reduced DSP clock speed allows use of DRAM out-of-page access with four Wait states (See **Figure 2-19**.).

			2	66 N	/ Hz	80 N	/IHz	Tinit
No.	Characteristics ⁴	Symbol	Expression ³	Min	Max	Min	Max	Unit
157	Random read or write cycle time	t _{RC}	9×T _C	136.4		112.5		ns
158	RAS assertion to data valid (read)	t _{RAC}	66 MHz : 4.75 × T _C − 7.5	_	64.5			ns
			80 MHz : 4.75 × T _C – 6.5	_			52.9	ns
159	CAS assertion to data valid (read)	t _{CAC}	66 MHz : 2.25 × T _C − 7.5	_	26.6	_	_	ns
			80 MHz : 2.25 × T _C – 6.5				21.6	ns
160	Column address valid to data valid	t _{AA}	66 MHz : 3 × T _C − 7.5	_	40.0	_	_	ns
	(read)		80 MHz : 3 × T _C – 6.5	_	_	_	31.0	ns
161	CAS deassertion to data not valid (read hold time)	t _{OFF}		0.0	_	0.0	—	ns
162	\overline{RAS} deassertion to \overline{RAS} assertion	t _{RP}	$3.25 \times T_{C} - 4.0$	45.2		36.6		ns
163	RAS assertion pulse width	t _{RAS}	$5.75 \times T_{C} - 4.0$	83.1		67.9		ns
164	\overline{CAS} assertion to \overline{RAS} deassertion	t _{RSH}	$3.25 \times T_{C} - 4.0$	45.2		36.6		ns
165	$\overline{\text{RAS}}$ assertion to $\overline{\text{CAS}}$ deassertion	t _{CSH}	$4.75 \times T_{C} - 4.0$	68.0		55.4		ns
166	CAS assertion pulse width	t _{CAS}	$2.25 \times T_{C} - 4.0$	30.1		24.1		ns
167	$\overline{\text{RAS}}$ assertion to $\overline{\text{CAS}}$ assertion	t _{RCD}	$2.5 \times T_C \pm 2$	35.9	39.9	29.3	33.3	ns
168	RAS assertion to column address valid	t _{RAD}	$1.75 \times T_{C} \pm 2$	24.5	28.5	19.9	23.9	ns
169	\overline{CAS} deassertion to \overline{RAS} assertion	t _{CRP}	$4.25 \times T_{C} - 4.0$	59.8		49.1		ns
170	CAS deassertion pulse width	t _{CP}	$2.75 \times T_{C} - 4.0$	37.7		30.4		ns

		1.0
Table 2-15	DRAM Out-of-Page and Refr	esh Timings, Eight Wait States ^{1, 2}
14010 2 10	Did init Out of Fuge und Ren	con minigo, Light Wate States

			66 N	/IHz	80 N	/IHz	Unit	
No.	Characteristics ⁴	Symbol	Expression ³	Min	Max	Min	Max	Unit
171	Row address valid to \overline{RAS} assertion	t _{ASR}	$3.25 \times T_{C} - 4.0$	45.2		36.6		ns
172	$\overline{\text{RAS}}$ assertion to row address not valid	t _{RAH}	$1.75 \times T_{C} - 4.0$	22.5		17.9		ns
173	Column address valid to CAS assertion	t _{ASC}	$0.75 \times T_{C} - 4.0$	7.4	—	5.4		ns
174	CAS assertion to column address not valid	t _{CAH}	$3.25 \times T_{C} - 4.0$	45.2		36.6		ns
175	RAS assertion to column address not valid	t _{AR}	$5.75 \times T_{C} - 4.0$	83.1		67.9		ns
176	Column address valid to RAS deassertion	t _{RAL}	$4 \times T_{C} - 4.0$	56.6		46.0		ns
177	$\overline{\text{WR}}$ deassertion to $\overline{\text{CAS}}$ assertion	t _{RCS}	$2 \times T_{C} - 3.8$	26.5		21.2		ns
178	\overline{CAS} deassertion to \overline{WR} assertion	t _{RCH}	$1.25 \times T_{\rm C} - 3.7$	15.2	—	11.9		ns
179	\overline{RAS} deassertion to \overline{WR} assertion	t _{RRH}	66 MHz : 0.25 × T _C − 3.7	0.1	_			ns
			80 MHz : 0.25 × T _C − 3.0	_	_	0.1	_	ns
180	\overline{CAS} assertion to \overline{WR} deassertion	t _{WCH}	$3 \times T_{C} - 4.2$	41.3		33.3		ns
181	\overline{RAS} assertion to \overline{WR} deassertion	t _{WCR}	$5.5 \times T_{\rm C} - 4.2$	79.1	_	64.6	_	ns
182	WR assertion pulse width	t _{WP}	$8.5 \times T_{C} - 4.5$	124.3	_	101.8		ns
183	\overline{WR} assertion to \overline{RAS} deassertion	t _{RWL}	$8.75 \times T_{C} - 4.3$	128.3	_	105.1		ns
184	\overline{WR} assertion to \overline{CAS} deassertion	t _{CWL}	$7.75 \times T_{\rm C} - 4.3$	113.1		92.6		ns
185	Data valid to CAS assertion (write)	t _{DS}	$4.75 \times T_{C} - 4.0$	68.0	_	55.4		ns

 Table 2-15
 DRAM Out-of-Page and Refresh Timings, Eight Wait States^{1, 2} (Continued)

sertion to sertion to ot valid sertion to ot valid ertion to CAS on sertion to sertion to	Symbol ^t _{DH} ^t _{DHR} ^t _{WCS}	Expression ³ $3.25 \times T_C - 4.0$ $5.75 \times T_C - 4.0$	Min 45.2 83.1	Max — —	Min 36.6 67.9	Max —	Unit ns
ertion to \overline{CAS} on sertion to	t _{DHR}	$5.75 \times T_{\rm C} - 4.0$					
ertion to \overline{CAS} on sertion to			83.1		67.9		
on sertion to	t _{WCS}						ns
		$5.5 \times T_{\rm C} - 4.3$	79.0	_	64.5		ns
n)	t _{CSR}	$1.5 \times T_{C} - 4.0$	18.7		14.8	—	ns
eassertion to sertion n)	t _{RPC}	$1.75 \times T_{C} - 4.0$	22.5		17.9		ns
ertion to RAS	t _{ROH}	$8.5 \times T_{C} - 4.0$	124.8	_	102.3	_	ns
ertion to data	t _{GA}	66 MHz : 7.5 × T _C − 7.5	_	106.1			ns
		80 MHz : 7.5 × T _C – 6.5			_	87.3	ns
ssertion to ot valid ⁴	t _{GZ}	0.0	0.0	_	0.0		ns
ertion to data		$0.75 \times T_{C} - 0.3$	11.1		9.1		ns
assertion to		$0.25 \times T_{C}$	_	3.8		3.1	ns
•	t valid ⁴ ertion to data ssertion to ch impedance the number of w	t valid ⁴ ertion to data ssertion to th impedance enumber of wait states for	ssertion to t valid4 t_{GZ} 0.0ertion to data $0.75 \times T_C - 0.3$ ssertion to th impedance $0.25 \times T_C$	ssertion to t valid4 t_{GZ} 0.00.0ertion to data $0.75 \times T_C - 0.3$ 11.1ssertion to ch impedance $0.25 \times T_C$ we number of wait states for out-of-page access is specified in	ssertion to t valid4 t_{GZ} 0.00.0ertion to data $0.75 \times T_C - 0.3$ 11.1 ssertion to ch impedance $0.25 \times T_C$ 3.8 we number of wait states for out-of-page access is specified in the DCR.	ssertion to t valid4 t_{GZ} 0.00.0-0.0ertion to data $0.75 \times T_C - 0.3$ 11.1 - 9.1 ssertion to th impedance $0.25 \times T_C$ - 3.8 -we number of wait states for out-of-page access is specified in the DCR.	ssertion to t valid4 t_{GZ} 0.00.0-0.0-ertion to data $0.75 \times T_C - 0.3$ 11.1 - 9.1 -ssertion to th impedance $0.25 \times T_C$ - 3.8 - 3.1 we number of wait states for out-of-page access is specified in the DCR.

Table 2-15	DRAM Out-of-Page and Refresh	ı Timings, Eight Wait States ^{1, 2}	² (Continued)

3.

The asynchronous delays specified in the expressions are valid for DSP56304. $\overline{\text{RD}}$ deassertion will always occur after $\overline{\text{CAS}}$ deassertion; therefore, the restricted timing is t_{OFF} 4. and not t_{GZ} .

NT		Course h a l	3	66 N	/IHz	80 N	ΛHz	Unit
No.	Characteristics ⁴	Symbol	Expression ³	Min	Max	Min	Max	Unit
157	Random read or write cycle time	t _{RC}	$12 \times T_C$	181.8		150.0		ns
158	RAS assertion to data valid (read)	t _{RAC}	66 MHz : 6.25 × T _C − 7.5	_	87.2			ns
			80 MHz: 6.25 × T _C – 6.5	_	_	_	71.6	ns
159	\overline{CAS} assertion to data valid (read)	t _{CAC}	66 MHz : 3.75 × T _C − 7.5	_	49.3	_	_	ns
			80 MHz : 3.75 × T _C − 6.5	_		_	40.4	ns
160	Column address valid to data valid	t _{AA}	66 MHz : 4.5 × T _C – 7.5	_	60.7			ns
	(read)		80 MHz : $4.5 \times T_{\rm C} - 6.5$	_		_	49.8	ns
161	CAS deassertion to data not valid (read hold time)	t _{OFF}		0.0		0.0		ns
162	\overline{RAS} deassertion to \overline{RAS} assertion	t _{RP}	$4.25 \times T_{C} - 4.0$	60.4		49.1		ns
163	RAS assertion pulse width	t _{RAS}	$7.75 \times T_{C} - 4.0$	113.4		92.9		ns
164	\overline{CAS} assertion to \overline{RAS} deassertion	t _{RSH}	$5.25 \times T_{C} - 4.0$	75.5		61.6		ns
165	$\overline{\text{RAS}}$ assertion to $\overline{\text{CAS}}$ deassertion	t _{CSH}	$6.25 \times T_{C} - 4.0$	90.7		74.1		ns
166	CAS assertion pulse width	t _{CAS}	$3.75 \times T_{C} - 4.0$	52.8		42.9	_	ns
167	$\overline{\text{RAS}}$ assertion to $\overline{\text{CAS}}$ assertion	t _{RCD}	$2.5 \times T_{C} \pm 2$	35.9	39.9	29.3	33.3	ns
168	RAS assertion to column address valid	t _{RAD}	$1.75 \times T_C \pm 2$	24.5	28.5	19.9	23.9	ns
169	\overline{CAS} deassertion to \overline{RAS} assertion	t _{CRP}	$5.75 \times T_{C} - 4.0$	83.1		67.9		ns
170	CAS deassertion pulse width	t _{CP}	$4.25 \times T_{C} - 4.0$	60.4		49.1		ns

Table 2-16DRAM Out-of-Page and Refresh Timings, Eleven Wait States^{1, 2}

NT		0 1 1	3	66 N	/IHz	80 N	ΛHz	Unit
No.	Characteristics ⁴	Symbol	Expression ³	Min	Max	Min	Max	Unit
171	Row address valid to \overline{RAS} assertion	t _{ASR}	$4.25 \times T_{C} - 4.0$	60.4		49.1		ns
172	RAS assertion to row address not valid	t _{RAH}	$1.75 \times T_{C} - 4.0$	22.5		17.9		ns
173	Column address valid to CAS assertion	t _{ASC}	$0.75 \times T_{C} - 4.0$	7.4		5.4		ns
174	CAS assertion to column address not valid	t _{CAH}	$5.25 \times T_{C} - 4.0$	75.5		61.6		ns
175	RAS assertion to column address not valid	t _{AR}	$7.75 \times T_{C} - 4.0$	113.4		92.9		ns
176	Column address valid to RAS deassertion	t _{RAL}	$6 \times T_C - 4.0$	86.9		71.0		ns
177	\overline{WR} deassertion to \overline{CAS} assertion	t _{RCS}	$3.0 \times T_{\rm C} - 3.8$	41.7		33.7		ns
178	\overline{CAS} deassertion to \overline{WR} assertion	t _{RCH}	$1.75 \times T_{\rm C} - 3.7$	22.8	_	18.2		ns
179	\overline{RAS} deassertion to \overline{WR} assertion	t _{RRH}	66 MHz : 0.25 × T _C - 3.7	0.1		0.1		ns
			80 MHz : $0.25 \times T_{C} - 3.0$	0.1		0.1	_	ns
180	\overline{CAS} assertion to \overline{WR} deassertion	t _{WCH}	$5 \times T_C - 4.2$	71.6		58.3		ns
181	\overline{RAS} assertion to \overline{WR} deassertion	t _{WCR}	$7.5 \times T_{\rm C} - 4.2$	109.4		89.6		ns
182	\overline{WR} assertion pulse width	t _{WP}	$11.5 \times T_{C} - 4.5$	169.7		139.3		ns
183	WR assertion to RAS deassertion	t _{RWL}	$11.75 \times T_{C} - 4.3$	173.7		142.7		ns
184	WR assertion to CAS deassertion	t _{CWL}	$10.25 \times T_{C} - 4.3$	151.0		130.1		ns
185	Data valid to \overline{CAS} assertion (write)	t _{DS}	$5.75 \times T_{C} - 4.0$	83.1		67.9		ns

Table 2-16	DRAM Out-of-Page	and Refresh Timings,	Eleven Wait States ^{1, 2}	(Continued)
				()

	1	1	1					
No.	Characteristics ⁴	Symbol	E	66 N	ΛHz	80 N	/IHz	Unit
INU.	Characteristics	Symbol	Expression ³	Min	Max	Min	Max	Unit
186	CAS assertion to data not valid (write)	t _{DH}	$5.25 \times T_{\rm C} - 4.0$	75.5		61.6		ns
187	RAS assertion to data not valid (write)	t _{DHR}	$7.75 \times T_{C} - 4.0$	113.4		92.9		ns
188	$\overline{\text{WR}}$ assertion to $\overline{\text{CAS}}$ assertion	t _{WCS}	$6.5 \times T_{\rm C} - 4.3$	94.2		77.0		ns
189	CASassertion toRASassertion(refresh)	t _{CSR}	$1.5 \times T_{\rm C} - 4.0$	18.7		14.8		ns
190	$\frac{\overline{RAS}}{\overline{CAS}}$ deassertion to \overline{CAS} assertion (refresh)	t _{RPC}	$2.75 \times T_{\rm C} - 4.0$	37.7		30.4		ns
191	$\overline{\text{RD}}$ assertion to $\overline{\text{RAS}}$ deassertion	t _{ROH}	$11.5 \times T_{C} - 4.0$	170.2		139.8		ns
192	RD assertion to data valid	t _{GA}	66 MHz : 10 × T _C − 7.5	_	144.0	_	_	ns
			80 MHz : 10 × T _C − 6.5	_	_		118.5	ns
193	$\overline{\text{RD}}$ deassertion to data not valid ⁴	t _{GZ}		0.0		0.0	_	ns
194	WR assertion to data active		$0.75 \times T_{C} - 0.3$	11.1		9.1	_	ns
195	WR deassertion to data high impedance		$0.25 \times T_{C}$		3.8		3.1	ns
Note:	 The refresh period The asynchronom 	od is specifie us delays spe	r out-of-page access is sp d in the DCR. ecified in the expressions occur after CAS deassertion	are valid	l for DSF	2 56304.	timing is	t _{OFF}

 Table 2-16
 DRAM Out-of-Page and Refresh Timings, Eleven Wait States^{1, 2} (Continued)

• •		6 1 1		66 N	/IHz	80 N	/IHz	T Tan it
No.	Characteristics ³	Symbol	Expression	Min	Max	Min	Max	Unit
157	Random read or write cycle time	t _{RC}	$16 \times T_C$	242.4		200.0		ns
158	RAS assertion to data valid (read)	t _{RAC}	66 MHz : 8.25 × T _C – 7.5	_	117.5			ns
			80 MHz : 8.25 × T _C – 6.5	_	_	_	96.6	ns
159	CAS assertion to data valid (read)	t _{CAC}	66 MHz : 4.75 × T _C – 7.5	_	64.5			ns
			80 MHz : 4.75 × T _C – 6.5	_			52.9	ns
160	Column address valid to data valid (read)	t_{AA}	66 MHz : 5.5 × T _C − 7.5	_	75.8			ns
			80 MHz : $5.5 \times T_{\rm C} - 6.5$	_		_	62.3	ns
161	CAS deassertion to data not valid (read hold time)	t _{OFF}	0.0	0.0		0.0		ns
162	\overline{RAS} deassertion to \overline{RAS} assertion	t _{RP}	$6.25 \times T_{C} - 4.0$	90.7		74.1		ns
163	RAS assertion pulse width	t _{RAS}	$9.75 \times T_{\rm C} - 4.0$	143.7		117.9		ns
164	\overline{CAS} assertion to \overline{RAS} deassertion	t _{RSH}	$6.25 \times T_{\rm C} - 4.0$	90.7		74.1		ns
165	\overline{RAS} assertion to \overline{CAS} deassertion	t _{CSH}	$8.25 \times T_{C} - 4.0$	121.0		99.1		ns
166	CAS assertion pulse width	t _{CAS}	$4.75 \times T_{\rm C} - 4.0$	68.0		55.4		ns
167	$\overline{\text{RAS}}$ assertion to $\overline{\text{CAS}}$ assertion	t _{RCD}	$3.5 \times T_C \pm 2$	51.0	55.0	41.8	45.8	ns
168	RAS assertion to column address valid	t _{RAD}	$2.75 \times T_{C} \pm 2$	39.7	43.7	32.4	36.4	ns
169	\overline{CAS} deassertion to \overline{RAS} assertion	t _{CRP}	$7.75 \times T_{\rm C} - 4.0$	113.4		92.9		ns
170	CAS deassertion pulse width	t _{CP}	$6.25 \times T_{\rm C} - 4.0$	90.7		74.1		ns

Table 2-17	DRAM Out-of-Page	and Refresh Timings	, Fifteen Wait States ^{1, 2}
	0	0,	

		<u> </u>		66 N	/IHz	80 MHz		
No.	Characteristics ³	Symbol	Expression	Min	Max	Min	Max	Unit
171	Row address valid to RAS assertion	t _{ASR}	$6.25 \times T_{C} - 4.0$	90.7		74.1		ns
172	RAS assertion to row address not valid	t _{RAH}	$2.75 \times T_{\rm C} - 4.0$	37.7	_	30.4	_	ns
173	Column address valid to \overline{CAS} assertion	t _{ASC}	$0.75 \times T_{\rm C} - 4.0$	7.4		5.4		ns
174	CAS assertion to column address not valid	t _{CAH}	$6.25 \times T_{\rm C} - 4.0$	90.7		74.1		ns
175	RAS assertion to column address not valid	t _{AR}	$9.75 \times T_{C} - 4.0$	143.7		117.9		ns
176	Column address valid to \overline{RAS} deassertion	t _{RAL}	$7 \times T_{C} - 4.0$	102.1	_	83.5	_	ns
177	$\overline{\text{WR}}$ deassertion to $\overline{\text{CAS}}$ assertion	t _{RCS}	$5 \times T_{\rm C} - 3.8$	72.0		58.7		ns
178	\overline{CAS} deassertion to \overline{WR} assertion	t _{RCH}	$1.75 \times T_{\rm C} - 3.7$	22.8		18.1		ns
179	\overline{RAS} deassertion to \overline{WR} assertion	t _{RRH}	66 MHz : 0.25 × T _C - 3.7	0.1				ns
			80 MHz : $0.25 \times T_{\rm C} - 3.0$	_		0.1		ns
180	\overline{CAS} assertion to \overline{WR} deassertion	t _{WCH}	$6 \times T_C - 4.2$	86.7		70.8		ns
181	\overline{RAS} assertion to \overline{WR} deassertion	t _{WCR}	$9.5 \times T_{\rm C} - 4.2$	139.7	_	114.6	_	ns
182	WR assertion pulse width	t _{WP}	$15.5 \times T_{\rm C} - 4.5$	230.3		189.3		ns
183	\overline{WR} assertion to \overline{RAS} deassertion	t _{RWL}	$15.75 \times T_{C} - 4.3$	234.3		192.6		ns
184	\overline{WR} assertion to \overline{CAS} deassertion	t _{CWL}	$14.25 \times T_{C} - 4.3$	211.6		180.1		ns
185	Data valid to CAS assertion (write)	t _{DS}	$8.75 \times T_{C} - 4.0$	128.6		105.4		ns
186	CAS assertion to data not valid (write)	t _{DH}	$6.25 \times T_{C} - 4.0$	90.7		74.1		ns

	1.0
Table 2-17	DRAM Out-of-Page and Refresh Timings, Fifteen Wait States ^{1, 2} (Continued)

N 7	Characteristics ³	6 1 1		66 N	66 MHz		80 MHz	
No.		Symbol	Expression	Min	Max	Min	Max	Unit
187	RAS assertion to data not valid (write)	t _{DHR}	$9.75 \times T_{\rm C} - 4.0$	143.7		117.9		ns
188	\overline{WR} assertion to \overline{CAS} assertion	t _{WCS}	$9.5 \times T_{C} - 4.3$	139.6		114.5		ns
189	\overline{CAS} assertion to \overline{RAS} assertion (refresh)	t _{CSR}	$1.5 \times T_{C} - 4.0$	18.7		14.8		ns
190	\overline{RAS} deassertion to \overline{CAS} assertion (refresh)	t _{RPC}	$4.75 \times T_{\rm C} - 4.0$	68.0		55.4		ns
191	$\overline{\text{RD}}$ assertion to $\overline{\text{RAS}}$ deassertion	t _{ROH}	$15.5 \times T_{C} - 4.0$	230.8		189.8		ns
192	RD assertion to data valid	t _{GA}	66 MHz : 14 × T _C – 7.5	_	204.6	_	_	ns
			80 MHz : 14 × T _C – 6.5	_	_	_	168.5	ns
193	$\overline{\text{RD}}$ deassertion to data not valid ³	t _{GZ}		0.0	_	0.0	_	ns
194	WR assertion to data active		$0.75 \times T_{\rm C} - 0.3$	11.1		9.1		ns
195	WR deassertion to data high impedance		$0.25 \times T_{C}$	—	3.8	_	3.1	ns

Table 2-17 DRAM Out-of-Page and Refresh Timings, Fifteen Wait States ^{1, 2} (Continued)
--	---

3. $\overline{\text{RD}}$ deassertion will always occur after $\overline{\text{CAS}}$ deassertion; therefore, the restricted timing is t_{OFF} and not t_{GZ}.

Figure 2-20 DRAM Out-of-Page Read Access

Figure 2-21 DRAM Out-of-Page Write Access

Figure 2-22 DRAM Refresh Access

Ne	Characteristics	— , 12	66 N	/IHz	80 N	/IHz	TTali
No.	Characteristics	Expression ^{1, 2}	Min	Max	Min	Max	Unit
198	CLKOUT high to address, and AA valid	66 MHz : 0.25 × T _C + 5.0		8.8			ns
		80 MHz: 0.25 × T _C + 4.5				7.6	ns
199	CLKOUT high to address, and AA invalid	$0.25 \times T_{C}$	3.8		3.1		ns
200	TA valid to CLKOUT high (setup time)		6.0		5.0		ns
201	CLKOUT high to \overline{TA} invalid (hold time)		0.0		0.0		ns
202	CLKOUT high to data out active	$0.25 \times T_{C}$	3.8		3.1		ns
203	CLKOUT high to data out valid	66 MHz: 0.25 × T _C + 5.0	4.8	8.8			ns
		80 MHz: 0.25 × T _C + 4.5			4.1	7.6	ns
204	CLKOUT high to data out invalid	$0.25 \times T_{C}$	3.8		3.1		ns

Table 2-18	External Bus S	ynchronous	Timings	(SRAM	Access) ⁴
-------------------	----------------	------------	---------	-------	----------------------

			66 1	111~	80 MHz				
No.	Characteristics	Expression ^{1, 2}	66 MHz				Unit		
		Lapression	Min	Max	Min	Max			
205	CLKOUT high to data out high impedance	66 MHz : 0.25 × T _C + 1.0		4.8			ns		
		80 MHz : 0.25 × T _C + 0.5	_			3.6	ns		
206	Data in valid to CLKOUT high (setup)		5.0	_	5.0		ns		
207	CLKOUT high to data in invalid (hold)		0.0	_	0.0	_	ns		
208	CLKOUT high to \overline{RD} assertion	66 MHz : 0.75 × T _C + 5.0	12.4	16.4			ns		
		80 MHz : 0.75 × T _C + 4.5			10.4	13.9	ns		
209	CLKOUT high to $\overline{\text{RD}}$ deassertion		0.0	5.0	0.0	4.5	ns		
210	CLKOUT high to \overline{WR} assertion ³	66 MHz : $0.5 \times T_{C} + 5.3$ [WS = 1 or WS \ge 4]	8.9	12.9			ns		
		80 MHz: $0.5 \times T_{C} + 4.8$ [WS = 1 or WS ≥ 4]		_	7.6	11.1	ns		
		$[2 \le WS \le 3]$	1.3	5.3	1.3	4.8	ns		
211	CLKOUT high to WR deassertion		0.0	4.8	0.0	4.3	ns		
Note:	 WS is the number of wait states The asynchronous delays speci If WS > 1, WR assertion refers t External bus synchronous timin relative timings. 	fied in the expressions a o the next rising edge of	f CLKOU	Т.		nd <i>not</i> for	r		

Table 2-18	External Bus Synchronous	s Timings (SRAM Access) ⁴ (Continued)
------------	--------------------------	--

Preliminary Data

Figure 2-23 Synchronous Bus Timings SRAM 1 WS (BCR Controlled)

Figure 2-24 Synchronous Bus Timings SRAM 2 WS (TA Controlled)

No.	Characteristics	Expression	66 MHz		80 MHz		Unit
			Min	Max	Min	Max	Unit
212	CLKOUT high to BR assertion/ deassertion		1.0	5.0	1.0	4.5	ns
213	BG asserted/deasserted to CLKOUT high (setup)		6.0		5.0		ns
214	CLKOUT high to \overline{BG} deasserted/asserted (hold)		0.0	_	0.0	_	ns
215	BB deassertion to CLKOUT high (input setup)		6.0		5.0	_	ns

 Table 2-19
 Arbitration Bus Timings

NT.		F .	66 N	/IHz	80 N	/IHz	
No.	Characteristics	Expression	Min	Max	Min	Max	Unit
216	CLKOUT high to \overline{BB} assertion (input hold)		0.0		0.0		ns
217	CLKOUT high to BB assertion (output)		1.0	5.0	1.0	4.5	ns
218	CLKOUT high to \overline{BB} deassertion (output)		1.0	5.0	1.0	4.5	ns
219	BB high to BB high impedance (output)		_	2.7		2.2	ns
220	CLKOUT high to address and controls active	$0.25 \times T_{C}$	3.8		3.1		ns
221	CLKOUT high to address and controls high impedance	66 MHz : 0.25 × T _C + 1.0	_	4.8			ns
		80 MHz : 0.25 × T _C + 0.5	_			3.6	ns
222	CLKOUT high to AA active	$0.25 \times T_{C}$	3.8		3.1		ns
223	CLKOUT high to AA deassertion	66 MHz : 0.25 × T _C + 5.0	4.8	8.8	_		ns
		80 MHz : 0.25 × T _C + 4.5	_		4.1	7.6	ns
224	CLKOUT high to AA high impedance	66 MHz : 0.75 × T _C + 1.0	_	12.4	_	_	ns
		80 MHz : 0.75 × T _C + 0.5	_			9.9	ns
Note:	The asynchronous delays specified	in the expressions are va	alid for D	SP5630	4.		

 Table 2-19
 Arbitration Bus Timings (Continued)

Figure 2-25 Bus Acquisition Timings

AA0482

Figure 2-26 Bus Release Timings Case 1 (BRT Bit in OMR Cleared)

Figure 2-27 Bus Release Timings Case 2 (BRT Bit in OMR Set)

HOST INTERFACE TIMING

	10		66 N	ИНz	80 N		
No.	Characteristic ¹⁰	Expression	Min	Max	Min	Max	Unit
300	Access cycle time	$4 \times T_C$	60.6		50.0		ns
317	Read data strobe assertion width ⁵ HACK assertion width	66 MHz: T _C + 15.0	30.2				ns
		80 MHz : T _C + 12.4			24.9		ns
318	Read data strobe deassertion width ⁵ HACK deassertion width		15.0		12.4		ns
319	Read data strobe deassertion width between two consecutive "Last Data Register" reads, or two consecutive	66 MHz : 2.5 × T _C + 10.0 80 MHz :	47.9		_	_	ns
	CVR reads, or two consecutive ICR, or two consecutive ISR reads ^{3,5,8}	$2.5 \times T_{\rm C} + 8.3$			39.5		ns
320	Write data strobe assertion width ⁶		20.0		16.5		ns
321	Write data strobe deassertion width ⁶	66 MHz: 2.5 × T _C + 10.0	47.9	_	_		ns
		80 MHz: 2.5 × T _C + 8.3			39.5		ns
322	HAS assertion width		15.0		12.4		ns
323	HAS deassertion to data strobe assertion ⁴		0.0		0.0		ns
324	Host data input setup time before write data strobe deassertion ⁶		15.0	_	12.4		ns
325	Host data input hold time after write data strobe deassertion ⁶		5.0	_	4.1		ns
326	Read data strobe assertion to output data active from high impedance ⁵ HACK assertion to output data active from high impedance		5.0		4.1		ns
327	Read data strobe assertion to output data valid ⁵ HACK assertion to output data valid			30.0		24.8	ns
328	Read data strobe deassertion to output data high impedance ⁵ HACK deassertion to output data high impedance			15.0		12.4	ns

	Tuble 2 20 Trost internate Timing (Continued)								
No.	Characteristic ¹⁰	Expression	66 N	/Hz	80 MHz		Unit		
110.	Characteristic	Expression	Min	Max	Min	Max	Unit		
329	Output data hold time after read data strobe deassertion ⁵ Output data hold time after HACK deassertion		5.0		4.1		ns		
330	HCS assertion to read data strobe deassertion ⁵	66 MHz : T _C + 15.0	30.2				ns		
		80 MHz : T _C + 12.4	_	_	24.9	_	ns		
331	HCS assertion to write data strobe deassertion ⁶		15.0		12.4		ns		
332	HCS assertion to output data valid			25.0		20.6	ns		
333	HCS hold time after data strobe deassertion ⁴		0.0	_	0.0	_	ns		
334	Address (AD7–AD0) setup time before HAS deassertion (HMUX=1)		7.0	_	5.8	_	ns		
335	Address (AD7–AD0) hold time after HAS deassertion (HMUX=1)		5.0		4.1		ns		
336	A10–A8 (HMUX=1), A2–A0 (HMUX=0), HR/W setup time before data strobe assertion ⁴		10.0		8.3		ns		
337	A10–A8 (HMUX=1), A2–A0 (HMUX=0), HR/ \overline{W} hold time after data strobe deassertion ⁴		5.0		4.1		ns		
338	Delay from read data strobe deassertion to host request assertion	66 MHz : 2 × T _C + 25.0	55.3				ns		
	for "Last Data Register" read ^{5, 7, 8}	80 MHz : 2 × T _C + 20.6	_	_	45.6	_	ns		
339	Delay from write data strobe deassertion to host request assertion	66 MHz : 1.5 × T _C + 25.0	47.7				ns		
	for "Last Data Register" write ^{6, 7, 8}	80 MHz : 1.5 × T _C + 20.6			39.4		ns		
340	Delay from data strobe assertion to host request deassertion for "Last Data Register" read or write (HROD=0) ^{4, 7, 8}			25.0		20.6	ns		

 Table 2-20
 Host Interface Timing^{1, 2} (Continued)

N.		Characteristic ¹⁰	F arman i an	66 N	66 MHz		80 MHz			
No.		Characteristic	Expression	Min	Max	Min	Max	Unit		
341	host Data (HRC	y from data strobe assertion to request deassertion for "Last Register" read or write DD=1, open drain host est) ^{4, 7, 8, 9}			300.0		300.0	ns		
Note:	1. 2. 3.	See Host Port Usage Conside In the timing diagrams below, the co programmable. This timing must be adhered to only executed.	ontrols pins are dra	iwn as ac						
	4.	The data strobe is Host Read (HRD) Data Strobe (DS) in the Single Data S		R) in the	Dual Dat	a Strobe	mode and	d Host		
	5.	The read data strobe is HRD in the I mode.		ode and	HDS in tl	ne Single	Data Stro	obe		
	6.	The write data strobe is HWR in the mode.	Dual Data Strobe	mode and	d HDS in	the Singl	e Data St	ata Strobe		
	7.	The host request is HREQ in the Sin Host Request mode.	gle Host Request n	node and	HRRQ at	nd HTRÇ) in the D	ouble		
	8.	The "Last Data Register" is the regist written in data transfers. This is RXI the Big Endian mode (HBE = 1).								
	9.	In this calculation, the host request s mode.	signal is pulled up	by a 4.7 k	Ω resisto	r in the C)pen-drai	n		
	10.	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}; \text{ T}_{\text{J}} = -40^{\circ}\text{C} \text{ to } +10^{\circ}\text{C} to$	$.00 ^{\circ}C, C_{\rm L} = 50 \rm pF +$	- 2 TTL lo	ads					

Table 2-20	Host Interface	Timing ^{1, 2}	(Continued)
------------	----------------	------------------------	-------------

Specifications

AA0484

Figure 2-29 Read Timing Diagram, Non-Multiplexed Bus

Figure 2-30 Write Timing Diagram, Non-Multiplexed Bus

Preliminary Data

AA0485

Figure 2-31 Read Timing Diagram, Multiplexed Bus

Figure 2-32 Write Timing Diagram, Multiplexed Bus

SCI Timing

SCI TIMING

NT		0 1 1	. .	66 N	/IHz	80 MHz		TInit
No.	Characteristics ¹	Symbol	Expression	Min	Max	Min	Max	Unit
400	Synchronous clock cycle	t _{SCC} ²	8×T _C	121.0	_	100.0	_	ns
401	Clock low period		$t_{SCC}/2 - 10.0$	50.5	_	40.0	_	ns
402	Clock high period		$t_{SCC}/2 - 10.0$	50.5	—	40.0	—	ns
403	Output data setup to clock falling edge (internal clock)		$t_{SCC}/4 + 0.5 \times T_{C} - 17.0$	20.5	_	14.3	_	ns
404	Output data hold after clock rising edge (internal clock)		$t_{SCC}/4 - 0.5 \times T_C$	22.5	_	18.8	_	ns
405	Input data setup time before clock rising edge (internal clock)		$t_{SCC}/4 + 0.5 \times T_{C} + 25.0$	63.0		56.3		ns
406	Input data not valid before clock rising edge (internal clock)		$t_{SCC}/4 + 0.5 \times T_C - 5.5$		32.0		25.8	ns
407	Clock falling edge to output data valid (external clock)				32.0		32.0	ns
408	Output data hold after clock rising edge (external clock)		T _C + 8.0	23.0		20.5		ns
409	Input data setup time before clock rising edge (external clock)			0.0		0.0		ns
410	Input data hold time after clock rising edge (external clock)			9.0		9.0		ns
411	Asynchronous clock cycle	t _{ACC} ³	$64 \times T_C$	969.7		800.0		ns
412	Clock low period		$t_{ACC}/2 - 10.0$	474.8	—	390.0	—	ns

Table 2-21 SCI Timing

SCI Timing

NT-	Characteristics ¹ Symbol Expression	F	66 N	ИНz	80 MHz		Unit	
No.		Symbol	Expression	Min	Max	Min	Max	Unit
413	Clock high period		$t_{ACC}/2 - 10.0$	474.8		390.0		ns
414	Output data setup to clock rising edge (internal clock)		t _{ACC} /2 - 30.0	458.8		370.0		ns
415	Output data hold after clock rising edge (internal clock)		t _{ACC} /2-30.0	458.8		370.0		ns
Note:	 Note: 1. V_{CC} = 3.3 V ± 0.3 V; T_J = -40°C to +100 °C, C_L = 50 pF + 2 TTL Loads 2. t_{SCC} = synchronous clock cycle time (For internal clock, t_{SCC} is determined by the SCI clock control register and T_C.) 3. t_{ACC} = asynchronous clock cycle time; value given for 1X clock mode (For internal clock, t_{ACC} is determined by the SCI clock control register and T_C.) 							

 Table 2-21
 SCI Timing (Continued)

SCI Timing

ESSI0/ESSI1 Timing

ESSI0/ESSI1 TIMING

N.	467	C11	E	66 N	ИHz	80 N	ΛHz	Cond-	TL. 1
No.	Characteristics ^{4, 6, 7}	Symbol	Expression	Min	Max	Min	Max	ition ⁵	Unit
430	Clock cycle ¹	t _{SSICC}	$\begin{array}{c} 4 \times T_{C} \\ 3 \times T_{C} \end{array}$	60.6 45.5		50.0 37.5		i ck x ck	ns
431	Clock high period • For internal clock		$2 \times T_{C} - 10.0$	20.3		15.0			ns
	For external clock		$1.5 \times T_C$	22.7		18.8			ns
432	Clock low period • For internal clock		$2 \times T_{C} - 10.0$	20.3		15.0			ns
	• For external clock		$1.5 \times T_C$	22.7	_	18.8	_		ns
433	RXC rising edge to FSR out (bl) high			_	37.0 22.0		37.0 22.0	x ck i ck a	ns
434	RXC rising edge to FSR out (bl) low			_	37.0 22.0		37.0 22.0	x ck i ck a	ns
435	RXC rising edge to FSR out (wr) high ²			_	39.0 24.0		39.0 24.0	x ck i ck a	ns
436	RXC rising edge to FSR out (wr) low ²				39.0 24.0		39.0 24.0	x ck i ck a	ns
437	RXC rising edge to FSR out (wl) high				36.0 21.0		36.0 21.0	x ck i ck a	ns
438	RXC rising edge to FSR out (wl) low			_	37.0 22.0		37.0 22.0	x ck i ck a	ns
439	Data in setup time before RXC (SCK in synchronous mode) falling edge			0.0 19.0		0.0 19.0		x ck i ck	ns
440	Data in hold time after RXC falling edge			5.0 3.0		5.0 3.0		x ck i ck	ns
441	FSR input (bl, wr) high before RXC falling edge ²			23.0 1.0		23.0 1.0		x ck i ck a	ns

Table 2-22ESSI Timings

Specifications

ESSI0/ESSI1 Timing

		a 1.1	. .	66 N	ИНz	80 N	/IHz	Cond-	T T • <i>i</i>
No.	Characteristics ^{4, 6, 7}	Symbol	Expression	Min	Max	Min	Max	ition ⁵	Unit
442	FSR input (wl) high before RXC falling edge			23.0 1.0		23.0 1.0		x ck i ck a	ns
443	FSR input hold time after RXC falling edge			3.0 0.0		3.0 0.0		x ck i ck a	ns
444	Flags input setup before RXC falling edge			0.0 19.0	_	0.0 19.0	_	x ck i ck s	ns
445	Flags input hold time after RXC falling edge			6.0 0.0	_	6.0 0.0		x ck i ck s	ns
446	TXC rising edge to FST out (bl) high				29.0 15.0		29.0 15.0	x ck i ck	ns
447	TXC rising edge to FST out (bl) low				31.0 17.0		31.0 17.0	x ck i ck	ns
448	TXC rising edge to FST out (wr) high ²				31.0 17.0		31.0 17.0	x ck i ck	ns
449	TXC rising edge to FST out (wr) low ²			_	33.0 19.0		33.0 19.0	x ck i ck	ns
450	TXC rising edge to FST out (wl) high				30.0 16.0		30.0 16.0	x ck i ck	ns
451	TXC rising edge to FST out (wl) low			_	31.0 17.0		31.0 17.0	x ck i ck	ns
452	TXC rising edge to data out enable from high impedance				31.0 17.0		31.0 17.0	x ck i ck	ns
453	TXC rising edge to Transmitter #0 drive enable assertion				34.0 20.0		34.0 20.0	x ck i ck	ns
454	TXC rising edge to data out valid		$35 + 0.5 \times T_{C}$ 21.0	_	42.6 21.0		41.3 21.0	x ck i ck	ns
455	TXC rising edge to data out high impedance ³				31.0 16.0		31.0 16.0	x ck i ck	ns
456	TXC rising edge to Transmitter #0 drive enable deassertion ³				34.0 20.0		34.0 20.0	x ck i ck	ns

Table 2-22ESSI Timings (Continued)

		0 1 1	. .	66 N	ΛHz	80 N	ΛHz	Cond-	T.L
No.	Characteristics ^{4, 6, 7}	Symbol	Expression	Min	Max	Min	Max	ition ⁵	Unit
457	FST input (bl, wr) setup time before TXC falling edge ²			2.0 21.0		2.0 21.0		x ck i ck	ns
458	FST input (wl) to data out enable from high impedance			_	27.0		27.0	_	ns
459	FST input (wl) to Transmitter #0 drive enable assertion			_	31.0		31.0		ns
460	FST input (wl) setup time before TXC falling edge			2.0 21.0		2.0 21.0		x ck i ck	ns
461	FST input hold time after TXC falling edge			4.0 0.0		4.0 0.0		x ck i ck	ns
462	Flag output valid after TXC rising edge			_	32.0 18.0	_	32.0 18.0	x ck i ck	ns
Note:									nner as clock

 Table 2-22
 ESSI Timings (Continued)

ESSI0/ESSI1 Timing

ESSI0/ESSI1 Timing

Figure 2-36 ESSI Receiver Timing

Timer Timing

TIMER TIMING

N	Characteristics		66 N	/IHz	80 N	ΛHz	Init
No.	Characteristics	Expression	Min	Max	Min	Max	Unit
480	TIO Low	$2 \times T_{C} + 2.0$	32.5		27.0		ns
481	TIO High	$2 \times T_{C} + 2.0$	32.5	_	27.0	_	ns
482	Timer setup time from TIO (Input) assertion to CLKOUT rising edge		9.0	Τ _C	9.0	T _C	ns
483	Synchronous timer delay time from CLKOUT rising edge to the external memory access address out valid caused by first interrupt instruction execution	10.25 × T _C + 1.0	156.0		129.1		ns
484	CLKOUT rising edge to TIO (Output) assertion • Minimum	66 MHz: 0.5 × T _C + 3.4	11.0				ns
		80 MHz : 0.5 × T _C + 3.5	_		9.8		ns
	• Maximum	66 MHz : 0.5 × T _C + 20.5	_	28.1	_	_	ns
		80 MHz: 0.5 × T _C + 19.8	_	_		26.1	ns
485	CLKOUT rising edge to TIO (Output) deassertion • Minimum	66 MHz : 0.5 × T _C + 3.4	11.0	28.1			ns
		80 MHz : $0.5 \times T_{\rm C} + 3.5$	_		9.8	26.1	ns
	• Maximum	66 MHz: 0.5 × T _C + 20.5	11.0	28.1			ns
		80 MHz : 0.5 × T _C + 19.8			9.8	26.1	ns
Note:	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}; \text{ T}_{\text{J}} = -40^{\circ}\text{C} \text{ to}$	+100 °C, $C_{\rm L} = 50 \text{ pF} + 2$	TTL Load	ds			

Table 2-23Timer Timing

Figure 2-39 External Pulse Generation

Specifications

GPIO Timing

GPIO TIMING

N	Chanatariation	T	66 MHz		80 MHz		T Le . L
No.	Characteristics	Expression	Min	Max	Min	Max	Unit
490	CLKOUT edge to GPIO out valid (GPIO out delay time)		_	31.0		31.0	ns
491	CLKOUT edge to GPIO out not valid (GPIO out hold time)		3.0	—	3.0	_	ns
492	GPIO In valid to CLKOUT edge (GPIO in set-up time)		12.0		12.0		ns
493	CLKOUT edge to GPIO in not valid (GPIO in hold time)		0.0		0.0		ns
494	Fetch to CLKOUT edge before GPIO change	$6.75 \times T_{C}$	102.3		84.4		ns
Note:	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}; T_{J} = -40$	°C to +100 °C, $C_{\rm L} = 50 \text{ pF} +$	2 TTL Lc	ads			

Table 2-24 GPIO Timing

Fetch the instruction MOVE X0,X:(R0); X0 contains the new value of GPIO and R0 contains the address of GPIO data register.

Figure 2-40 GPIO Timing

AA0495

JTAG Timing

JTAG TIMING

NT	Characteristics	F	66 N	/Hz	80 N	T T •	
No.		Expression	Min	Max	Min	Max	Unit
500	TCK frequency of operation		0.0	22.0	0.0	22.0	MHz
501	TCK cycle time in crystal mode		45.0		45.0		ns
502	TCK clock pulse width measured at 1.5 V		20.0	_	20.0	_	ns
503	TCK rise and fall times		0.0	3.0	0.0	3.0	ns
504	Boundary scan input data setup time		5.0	_	5.0		ns
505	Boundary scan input data hold time		24.0	_	24.0		ns
506	TCK low to output data valid		0.0	40.0	0.0	40.0	ns
507	TCK low to output high impedance		0.0	40.0	0.0	40.0	ns
508	TMS, TDI data setup time		5.0		5.0		ns
509	TMS, TDI data hold time		25.0		25.0		ns
510	TCK low to TDO data valid		0.0	44.0	0.0	44.0	ns
511	TCK low to TDO high impedance		0.0	44.0	0.0	44.0	ns
512	TRST assert time		100.0		100.0		ns
513	TRST setup time to TCK low		40.0	_	40.0		ns

Table 2-25 JTAG Timing

Note: 1. $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$; $T_J = -40^{\circ}\text{C}$ to $+100^{\circ}\text{C}$, $C_L = 50 \text{ pF} + 2 \text{ TTL Loads}$ 2. All timings apply to OnCE module data transfers because it uses the JTAG port as an interface.

Figure 2-41 Test Clock Input Timing Diagram

JTAG Timing

Figure 2-43 Test Access Port Timing Diagram

Specifications

OnCE Module TimIng

Figure 2-44 TRST Timing Diagram

OnCE MODULE TIMING

No.	Characteristics	Expression	66 N	/ IHz	80 N	Unit	
110.	Characteristics	Expression	Min	Max	Min	Max	Unit
500	TCK frequency of operation	1/(3×T _C), max 22.0 MHz	0.0	22.0	0.0	22.0	MHz
514	$\overline{\text{DE}}$ assertion time in order to enter debug mode	$1.5 \times T_{C} + 10.0$	32.0		28.8		ns
515	Response time when DSP56304 is executing NOP instructions from internal memory	$5.5 \times T_{C} + 30.0$	_	114.0		98.8	ns
516	Debug acknowledge assertion time	$3 \times T_{C} + 10.0$	55.5		47.5	—	ns
Note:	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}; T_{J} = -40^{\circ}$	$^{\circ}C$ to +100 $^{\circ}C$, $C_{\rm L} = 50 \text{ pF} + 100 \text{ s}^{\circ}$	2 TTL Lo	ads			

Table 2-26	OnCE Module Timing
-------------------	--------------------

Figure 2-45 OnCE—Debug Request

dsp

Specifications

OnCE Module TimIng

SECTION 3

PACKAGING

PIN-OUT AND PACKAGE INFORMATION

This sections provides information about the available packages for this product, including diagrams of the package pinouts and tables describing how the signals described in **Section 1** are allocated for each package.

The DSP56304 is available in two package types:

- 144-pin Thin Quad Flat Pack (TQFP)
- 196-pin Plastic Ball Grid Array (PBGA)

Pin-out and Package Information

TQFP Package Description

Top and bottom views of the TQFP package are shown in **Figure 3-1** and **Figure 3-2** with their pin-outs.

Note: Because of size constraints in this figure, only one name is shown for multiplexed pins. Refer to **Table 3-1** and **Table 3-2** for detailed information about pin functions and signal names.

AA0301

Figure 3-1 DSP56304 Thin Quad Flat Pack (TQFP), Top View

Pin-out and Package Information

Note: Because of size constraints in this figure, only one name is shown for multiplexed pins. Refer to **Table 3-1** and **Table 3-2** for detailed information about pin functions and signal names.

AA0302

Figure 3-2 DSP56304 Thin Quad Flat Pack (TQFP), Bottom View

Pin-out and Package Information

Table 3-1	DSP56304 TQFP Signal Identification by Pin Number
-----------	---

Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name
1	SRD1 or PD4	26	GND _S	51	AA2/RAS2
2	STD1 or PD5	27	TIO2	52	CAS
3	SC02 or PC2	28	TIO1	53	XTAL
4	SC01 or PC1	29	TIO0	54	GND _Q
5	DE	30	$\overline{\text{HCS}}/\text{HCS}$, HA10, or PB13	55	EXTAL
6	PINIT/NMI	31	HA2, HA9, or PB10	56	V _{CCQ}
7	SRD0 or PC4	32	HA1, HA8, or PB9	57	V _{CCC}
8	V _{CCS}	33	HA0, $\overline{\text{HAS}}/\text{HAS}$, or PB8	58	GND _C
9	GND _S	34	H7, HAD7, or PB7	59	CLKOUT
10	STD0 or PC5	35	H6, HAD6, or PB6	60	BCLK
11	SC10 or PD0	36	H5, HAD5, or PB5	61	BCLK
12	SC00 or PC0	37	H4, HAD4, or PB4	62	TA
13	RXD or PE0	38	V _{CCH}	63	BR
14	TXD or PE1	39	GND _H	64	BB
15	SCLK or PE2	40	H3, HAD3, or PB3	65	V _{CCC}
16	SCK1 or PD3	41	H2, HAD2, or PB2	66	GND _C
17	SCK0 or PC3	42	H1, HAD1, or PB1	67	WR
18	V _{CCQ}	43	H0, HAD0, or PB0	68	RD
19	GND _Q	44	RESET	69	AA1/RAS1
20	Not Connected (NC), reserved	45	V _{CCP}	70	AA0/RAS0
21	HDS/HDS, HWR/HWR, or PB12	46	РСАР	71	BG
22	HRW, HRD/HRD, or PB11	47	GND _P	72	A0
23	HACK/HACK, HRRQ/HRRQ, or PB15	48	GND _{P1}	73	A1
24	HREQ/HREQ, HTRQ/HTRQ, or PB14	49	Not Connected (NC), reserved	74	V _{CCA}
25	V _{CCS}	50	AA3/RAS3	75	GND _A

Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name			
76	A2	99	A17	122	D16			
77	A3	100	D0	123	D17			
78	A4	101	D1	124	D18			
79	A5	102	D2	125	D19			
80	V _{CCA}	103	V _{CCD}	126	V _{CCQ}			
81	GND _A	104	GND _D	127	GND _Q			
82	A6	105	D3	128	D20			
83	A7	106	D4	129	V _{CCD}			
84	A8	107	D5	130	GND _D			
85	A9	108	D6	131	D21			
86	V _{CCA}	109	D7	132	D22			
87	GND _A	110	D8	133	D23			
88	A10	111	V _{CCD}	134	MODD/IRQD			
89	A11	112	GND _D	135	MODC/IRQC			
90	GND _Q	113	D9	136	MODB/IRQB			
91	V _{CCQ}	114	D10	137	MODA/IRQA			
92	A12	115	D11	138	TRST			
93	A13	116	D12	139	TDO			
94	A14	117	D13	140	TDI			
95	V _{CCA}	118	D14	141	ТСК			
96	GND _A	119	V _{CCD}	142	TMS			
97	A15	120	GND _D	143	SC12 or PD2			
98	A16	121	D15	144	SC11 or PD1			
Note	Note: Signal names are based on configured functionality. Most pins supply a single signal. Some pins provide a signal with dual functionality, such as the MODx/IRQx pins that select an operating mode after RESET is deasserted, but act as interrupt lines during operation. Some							

 Table 3-1
 DSP56304 TQFP Signal Identification by Pin Number (Continued)

Note: Signal names are based on configured functionality. Most pins supply a single signal. Some pins provide a signal with dual functionality, such as the MODx/IRQx pins that select an operating mode after RESET is deasserted, but act as interrupt lines during operation. Some signals have configurable polarity; these names are shown with and without overbars, such as HAS/HAS. Some pins have two or more configurable functions; names assigned to these pins indicate the function for a specific configuration. For example, Pin 34 is data line H7 in non-multiplexed bus mode, data/address line HAD7 in multiplexed bus mode, or GPIO line PB7 when the GPIO function is enabled for this pin.

Pin-out and Package Information

		0			
Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.
A0	72	BG	71	D7	109
A1	73	BR	63	D8	110
A10	88	CAS	52	D9	113
A11	89	CLKOUT	59	DE	5
A12	92	D0	100	EXTAL	55
A13	93	D1	101	GND _A	75
A14	94	D10	114	GND _A	81
A15	97	D11	115	GND _A	87
A16	98	D12	116	GND _A	96
A17	99	D13	117	GND _C	58
A2	76	D14	118	GND _C	66
A3	77	D15	121	GND _D	104
A4	78	D16	122	GND _D	112
A5	79	D17	123	GND _D	120
A6	82	D18	124	GND _D	130
A7	83	D19	125	GND _H	39
A8	84	D2	102	GND _P	47
A9	85	D20	128	GND _{P1}	48
AA0	70	D21	131	GNDQ	19
AA1	69	D22	132	GND _Q	54
AA2	51	D23	133	GND _Q	90
AA3	50	D3	105	GND _Q	127
BB	64	D4	106	GND _S	9
BCLK	60	D5	107	GND _S	26
BCLK	61	D6	108	H0	43

 Table 3-2
 DSP56304 TQFP Signal Identification by Name

Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.
H1	42	HRD/HRD	22	PB2	41
H2	41	HREQ/HREQ	24	PB3	40
H3	40	HRRQ/HRRQ	23	PB4	37
H4	37	HRW	22	PB5	36
H5	36	HTRQ/HTRQ	24	PB6	35
H6	35	HWR /HWR	21	PB7	34
H7	34	ĪRQĀ	137	PB8	33
HA0	33	ĪRQB	136	PB9	32
HA1	32	ĪRQC	135	PC0	12
HA10	30	ĪRQD	134	PC1	4
HA2	31	MODA	137	PC2	3
HA8	32	MODB	136	PC3	17
HA9	31	MODC	135	PC4	7
HACK/HACK	23	MODD	134	PC5	10
HAD0	43	NC	20	РСАР	46
HAD1	42	NMI	6	PD0	11
HAD2	41	NC	49	PD1	144
HAD3	40	PB0	43	PD2	143
HAD4	37	PB1	42	PD3	16
HAD5	36	PB10	31	PD4	1
HAD6	35	PB11	22	PD5	2
HAD7	34	PB12	21	PE0	13
HAS	33	PB13	30	PE1	14
HCS/HCS	30	PB14	24	PE2	15
HDS/HDS	21	PB15	23	PINIT	6

Table 3-2DSP56304 TQFP Signal Identification by Name (Continued)

Pin-out and Package Information

Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.
RASO	70	SRD1	1	V _{CCC}	57
RAS1	69	STD0	10	V _{CCC}	65
RAS2	51	STD1	2	V _{CCD}	103
RAS3	50	TA	62	V _{CCD}	111
RD	68	TCK	141	V _{CCD}	119
RESET	44	TDI	140	V _{CCD}	129
RXD	13	TDO	139	V _{CCH}	38
SC00	12	TIO0	29	V _{CCP}	45
SC01	4	TIO1	28	V _{CCQ}	18
SC02	3	TIO2	27	V _{CCQ}	56
SC10	11	TMS	142	V _{CCQ}	91
SC11	144	TRST	138	V _{CCQ}	126
SC12	143	TXD	14	V _{CCS}	8
SCK0	17	V _{CCA}	74	V _{CCS}	25
SCK1	16	V _{CCA}	80	WR	67
SCLK	15	V _{CCA}	86	XTAL	53
SRD0	7	V _{CCA}	95		

Table 3-2	DSP56304 TQFP Signal Identification by Name	(Continued)
-----------	---	-------------

TQFP Package Mechanical Drawing

Figure 3-3 DSP56304 Mechanical Information, 144-pin TQFP Package

Pin-out and Package Information

PBGA Package Description

Top and bottom views of the PBGA package are shown in **Figure 3-4** and **Figure 3-5** with their pin-outs.

Pin-out and Package Information

Figure 3-5 DSP56304 Plastic Ball Grid Array (PBGA), Bottom View

Pin-out and Package Information

Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name
A1	Not Connected (NC), reserved	B12	D8	D9	GND
A2	SC11 or PD1	B13	D5	D10	GND
A3	TMS	B14	NC	D11	GND
A4	TDO	C1	SC02 or PC2	D12	D1
A5	MODB/IRQB	C2	STD1 or PD5	D13	D2
A6	D23	C3	ТСК	D14	V _{CCD}
A7	V _{CCD}	C4	MODA/IRQA	E1	STD0 or PC5
A8	D19	C5	MODC/IRQC	E2	V _{CCS}
A9	D16	C6	D22	E3	SRD0 or PC4
A10	D14	C7	V _{CCQ}	E4	GND
A11	D11	C8	D18	E5	GND
A12	D9	C9	V _{CCD}	E6	GND
A13	D7	C10	D12	E7	GND
A14	NC	C11	V _{CCD}	E8	GND
B1	SRD1 or PD4	C12	D6	E9	GND
B2	SC12 or PD2	C13	D3	E10	GND
B3	TDI	C14	D4	E11	GND
B4	TRST	D1	PINIT/ NMI	E12	A17
B5	MODD/IRQD	D2	SC01 or PC1	E13	A16
B6	D21	D3	DE	E14	D0
B7	D20	D4	GND	F1	RXD or PE0
B8	D17	D5	GND	F2	SC10 or PD0
B9	D15	D6	GND	F3	SC00 or PC0
B10	D13	D7	GND	F4	GND
B11	D10	D8	GND	F5	GND

Table 3-3 DSP56304 PBGA Signal Identification by Pin Number

Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name
F6	GND	H3	SCK0 or PC3	J14	A9
F7	GND	H4	GND	K1	V _{CCS}
F8	GND	H5	GND	K2	HREQ/HREQ, HTRQ/HTRQ, or PB14
F9	GND	H6	GND	K3	TIO2
F10	GND	H7	GND	K4	GND
F11	GND	H8	GND	K5	GND
F12	V _{CCA}	H9	GND	K6	GND
F13	A14	H10	GND	K7	GND
F14	A15	H11	GND	K8	GND
G1	SCK1 or PD3	H12	V _{CCA}	K9	GND
G2	SCLK or PE2	H13	A10	K10	GND
G3	TXD or PE1	H14	A11	K11	GND
G4	GND	J1	HACK/HACK, HRRQ/HRRQ, or PB15	K12	V _{CCA}
G5	GND	J2	HRW, HRD/HRD, or PB11	K13	A5
G6	GND	J3	HDS/HDS, HWR/HWR, or PB12	K14	A6
G7	GND	J4	GND	L1	HCS/HCS, HA10, or PB13
G8	GND	J5	GND	L2	TIO1
G9	GND	J6	GND	L3	TIO0
G10	GND	J7	GND	L4	GND
G11	GND	J8	GND	L5	GND
G12	A13	J9	GND	L6	GND
G13	V _{CCQ}	J10	GND	L7	GND
G14	A12	J11	GND	L8	GND
H1	NC	J12	A8	L9	GND
H2	V _{CCQ}	J13	A7	L10	GND

 Table 3-3
 DSP56304 PBGA Signal Identification by Pin Number (Continued)

Pin-out and Package Information

Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name
L11	GND	M13	A1	P1	NC
L12	V _{CCA}	M14	A2	P2	H5, HAD5, or PB5
L13	A3	N1	H6, HAD6, or PB6	Р3	H3, HAD3, or PB3
L14	A4	N2	H7, HAD7, or PB7	P4	H1, HAD1, or PB1
M1	HA1, HA8, or PB9	N3	H4, HAD4, or PB4	P5	РСАР
M2	HA2, HA9, or PB10	N4	H2, HAD2, or PB2	P6	GND _{P1}
M3	HA0, HAS/HAS, or PB8	N5	RESET	P7	AA2/RAS2
M4	V _{CCH}	N6	GND _P	P8	XTAL
M5	H0, HAD0, or PB0	N7	AA3/RAS3	P9	V _{CCC}
M6	V _{CCP}	N8	CAS	P10	TA
M7	NC	N9	V _{CCQ}	P11	BB
M8	EXTAL	N10	BCLK	P12	AA1/RAS1
M9	CLKOUT	N11	BR	P13	BG
M10	BCLK	N12	V _{CCC}	P14	NC
M11	WR	N13	AA0/RAS0		
M12	RD	N14	A0		

Table 3-3	DSP56304 PBGA Signal Identification by Pin Number	(Continued)
-----------	---	-------------

Note: Signal names are based on configured functionality. Most connections supply a single signal. Some connections provide a signal with dual functionality, such as the MODx/IRQx pins that select an operating mode after RESET is deasserted, but act as interrupt lines during operation. Some signals have configurable polarity; these names are shown with and without overbars, such as HAS/HAS. Some connections have two or more configurable functions; names assigned to these connections indicate the function for a specific configuration. For example, connection N2 is data line H7 in non-multiplexed bus mode, data/address line HAD7 in multiplexed bus mode, or GPIO line PB7 when the GPIO function is enabled for this pin. Unlike the TQFP package, most of the GND pins are connected internally in the center of the connection array and act as heat sink for the chip. Therefore, except for GND_P and GND_{P1} that support the PLL, other GND signals do not support individual subsystems in the chip.

Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.
A0	N14	BG	P13	D7	A13
A1	M13	BR	N11	D8	B12
A10	H13	CAS	N8	D9	A12
A11	H14	CLKOUT	M9	DE	D3
A12	G14	D0	E14	EXTAL	M8
A13	G12	D1	D12	GND	D4
A14	F13	D10	B11	GND	D5
A15	F14	D11	A11	GND	D6
A16	E13	D12	C10	GND	D7
A17	E12	D13	B10	GND	D8
A2	M14	D14	A10	GND	D9
A3	L13	D15	B9	GND	D10
A4	L14	D16	A9	GND	D11
A5	K13	D17	B8	GND	E4
A6	K14	D18	C8	GND	E5
A7	J13	D19	A8	GND	E6
A8	J12	D2	D13	GND	E7
A9	J14	D20	B7	GND	E8
AA0	N13	D21	B6	GND	E9
AA1	P12	D22	C6	GND	E10
AA2	P7	D23	A6	GND	E11
AA3	N7	D3	C13	GND	F4
BB	P11	D4	C14	GND	F5
BCLK	M10	D5	B13	GND	F6
BCLK	N10	D6	C12	GND	F7

Table 3-4DSP56304 PBGA Signal Identification by Name

Pin-out and Package Information

	0		-		
Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.
GND	F8	GND	J9	H4	N3
GND	F9	GND	J10	H5	P2
GND	F10	GND	J11	H6	N1
GND	F11	GND	K4	H7	N2
GND	G4	GND	K5	HA0	M3
GND	G5	GND	K6	HA1	M1
GND	G6	GND	K7	HA10	L1
GND	G7	GND	K8	HA2	M2
GND	G8	GND	K9	HA8	M1
GND	G9	GND	K10	HA9	M2
GND	G10	GND	K11	HACK/HACK	J1
GND	G11	GND	L4	HAD0	M5
GND	H4	GND	L5	HAD1	P4
GND	H5	GND	L6	HAD2	N4
GND	H6	GND	L7	HAD3	P3
GND	H7	GND	L8	HAD4	N3
GND	H8	GND	L9	HAD5	P2
GND	H9	GND	L10	HAD6	N1
GND	H10	GND	L11	HAD7	N2
GND	H11	GND _P	N6	HAS/HAS	M3
GND	J4	GND _{P1}	P6	HCS/HCS	L1
GND	J5	H0	M5	HDS/HDS	J3
GND	J6	H1	P4	HRD/HRD	J2
GND	J7	H2	N4	HREQ/HREQ	K2
GND	J8	H3	P3	HRRQ/HRRQ	J1
	-				

Table 3-4	DSP56304 PBGA Signal Iden	tification by Name (C	Continued)
-----------	---------------------------	-----------------------	------------

DSP56304/D

Signal NamePin No.Signal NamePin No.Signal NameHRWJ2PB14K2PE2HTRQ/HTRQK2PB15J1PINITHWR/HWRJ3PB2N4RAS0IRQAC4PB3P3RAS1IRQBA5PB4N3RAS2IRQDB5PB6N1RDMODAC4PB7N2RESET	Pin No. G2 D1 N13 P12 P7 N7 M12
HTRQ/HTRQK2PB15J1PINITHWR/HWRJ3PB2N4RAS0IRQAC4PB3P3RAS1IRQBA5PB4N3RAS2IRQCC5PB5P2RAS3IRQDB5PB6N1RD	D1 N13 P12 P7 N7 M12
HWR/HWRJ3PB2N4RAS0IRQAC4PB3P3RAS1IRQBA5PB4N3RAS2IRQCC5PB5P2RAS3IRQDB5PB6N1RD	N13 P12 P7 N7 M12
IRQAC4PB3P3RAS1IRQBA5PB4N3RAS2IRQCC5PB5P2RAS3IRQDB5PB6N1RD	P12 P7 N7 M12
IRQBA5PB4N3RAS2IRQCC5PB5P2RAS3IRQDB5PB6N1RD	P7 N7 M12
IRQC C5 PB5 P2 RAS3 IRQD B5 PB6 N1 RD	N7 M12
IRQDB5PB6N1RD	M12
MODA C4 PB7 N2 RESET	
	N5
MODB A5 PB8 M3 RXD	F1
MODC C5 PB9 M1 SC00	F3
MODD B5 PC0 F3 SC01	D2
NC A1 PC1 D2 SC02	C1
NC A14 PC2 C1 SC10	F2
NC B14 PC3 H3 SC11	A2
NC H1 PC4 E3 SC12	B2
NC M7 PC5 E1 SCK0	H3
NC P1 PCAP P5 SCK1	G1
NC P14 PD0 F2 SCLK	G2
NMI D1 PD1 A2 SRD0	E3
PB0 M5 PD2 B2 SRD1	B1
PB1 P4 PD3 G1 STD0	E1
PB10 M2 PD4 B1 STD1	C2
PB11 J2 PD5 C2 TA	P10
PB12 J3 PE0 F1 TCK	C3
PB13 L1 PE1 G3 TDI	B3

Table 3-4DSP56304 PBGA Signal Identification by Name (Continued)

Pin-out and Package Information

Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.
TDO	A4	V _{CCA}	K12	V _{CCP}	M6
TIO0	L3	V _{CCA}	L12	V _{CCQ}	C7
TIO1	L2	V _{CCC}	N12	V _{CCQ}	G13
TIO2	K3	V _{CCC}	P9	V _{CCQ}	H2
TMS	A3	V _{CCD}	A7	V _{CCQ}	N9
TRST	B4	V _{CCD}	C9	V _{CCS}	E2
TXD	G3	V _{CCD}	C11	V _{CCS}	K1
V _{CCA}	F12	V _{CCD}	D14	WR	M11
V _{CCA}	H12	V _{CCH}	M4	XTAL	P8

 Table 3-4
 DSP56304 PBGA Signal Identification by Name (Continued)

CASE 1128-01

Figure 3-6 DSP56304 Mechanical Information, 196-pin PBGA Package

ORDERING DRAWINGS

All devices manufactured by Motorola conform to current JEDEC standards. Complete mechanical information regarding DSP56304 packaging is available by facsimile through Motorola's Mfax[™] system. Call the following number to obtain information by facsimile:

The Mfax automated system requests the following information:

- The receiving facsimile telephone number including area code or country code
- The caller's Personal Identification Number (PIN)

Note: For first time callers, the system provides instructions for setting up a PIN, which requires entry of a name and telephone number.

- The type of information requested:
 - Instructions for using the system
 - A literature order form
 - Specific part technical information or data sheets
 - Other information described by the system messages

A total of three documents may be ordered per call.

The DSP56304 144-pin TQFP package mechanical drawing is referenced as 918-03. The reference number for the 196-pin PBGA package is 1128-01.

SECTION 4

DESIGN CONSIDERATIONS

THERMAL DESIGN CONSIDERATIONS

An estimation of the chip junction temperature, T_J , in °C can be obtained from the equation:

Equation 1: $T_J = T_A + (P_D \times R_{\theta JA})$

Where:

 T_A = ambient temperature °C $R_{\theta JA}$ = package junction-to-ambient thermal resistance °C/W P_D = power dissipation in package

Historically, thermal resistance has been expressed as the sum of a junction-tocase thermal resistance and a case-to-ambient thermal resistance:

Equation 2: $R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$

Where:

 $\begin{array}{l} R_{\theta JA} = package \ junction-to-ambient \ thermal \ resistance \ ^{\circ}C/W \\ R_{\theta JC} = package \ junction-to-case \ thermal \ resistance \ ^{\circ}C/W \\ R_{\theta CA} = package \ case-to-ambient \ thermal \ resistance \ ^{\circ}C/W \end{array}$

 $R_{\theta JC}$ is device-related and cannot be influenced by the user. The user controls the thermal environment to change the case-to-ambient thermal resistance, $R_{\theta CA}$. For example, the user can change the air flow around the device, add a heat sink, change the mounting arrangement on the printed circuit board, or otherwise change the thermal dissipation capability of the area surrounding the device on a printed circuit board. This model is most useful for ceramic packages with heat sinks; some 90% of the heat flow is dissipated through the case to the heat sink and out to the ambient environment. For ceramic packages, in situations where the heat flow is split between a path to the case and an alternate path through the printed circuit board, analysis of the device thermal performance may need the additional modeling capability of a system level thermal simulation tool.

Thermal Design Considerations

The thermal performance of plastic packages is more dependent on the temperature of the printed circuit board to which the package is mounted. Again, if the estimations obtained from $R_{\theta JA}$ do not satisfactorily answer whether the thermal performance is adequate, a system level model may be appropriate.

A complicating factor is the existence of three common ways for determining the junction-to-case thermal resistance in plastic packages:

- To minimize temperature variation across the surface, the thermal resistance is measured from the junction to the outside surface of the package (case) closest to the chip mounting area when that surface has a proper heat sink.
- To define a value approximately equal to a junction-to-board thermal resistance, the thermal resistance is measured from the junction to where the leads are attached to the case.
- If the temperature of the package case (T_T) is determined by a thermocouple, the thermal resistance is computed using the value obtained by the equation $(T_I T_T)/P_D$.

As noted above, the junction-to-case thermal resistances quoted in this data sheet are determined using the first definition. From a practical standpoint, that value is also suitable for determining the junction temperature from a case thermocouple reading in forced convection environments. In natural convection, using the junction-to-case thermal resistance to estimate junction temperature from a thermocouple reading on the case of the package will estimate a junction temperature slightly hotter than actual temperature. Hence, the new thermal metric, Thermal Characterization Parameter or Ψ_{JT} , has been defined to be $(T_J - T_T)/P_D$. This value gives a better estimate of the junction temperature in natural convection when using the surface temperature of the package. Remember that surface temperature readings of packages are subject to significant errors caused by inadequate attachment of the sensor to the surface and to errors caused by heat loss to the sensor. The recommended technique is to attach a 40-gauge thermocouple wire and bead to the top center of the package with thermally conductive epoxy.

Electrical Design Considerations

ELECTRICAL DESIGN CONSIDERATIONS

CAUTION

This device contains protective circuitry to guard against damage due to high static voltage or electrical fields. However, normal precautions are advised to avoid application of any voltages higher than maximum rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g., either GND or V_{CC}).

Use the following list of recommendations to assure correct DSP operation:

- Provide a low-impedance path from the board power supply to each V_{CC} pin on the DSP, and from the board ground to each GND pin.
- Use at least six 0.01–0.1 μ F bypass capacitors positioned as close as possible to the four sides of the package to connect the V_{CC} power source to GND.
- Ensure that capacitor leads and associated printed circuit traces that connect to the chip V_{CC} and GND pins are less than 0.5 in per capacitor lead.
- Use at least a four-layer Printed Circuit Board (PCB) with two inner layers for V_{CC} and GND.
- Because the DSP output signals have fast rise and fall times, PCB trace lengths should be minimal. This recommendation particularly applies to the address and data buses as well as the IRQA, IRQB, IRQC, IRQD, TA, and BG pins. Maximum PCB trace lengths on the order of 6 inches are recommended.
- Consider all device loads as well as parasitic capacitance due to PCB traces when calculating capacitance. This is especially critical in systems with higher capacitive loads that could create higher transient currents in the V_{CC} and GND circuits.
- All inputs must be terminated (i.e., not allowed to float) using CMOS levels, except for the three pins with internal pull-up resistors (TRST, TMS, DE).

Power Consumption Considerations

- Take special care to minimize noise levels on the V_{CCP} , GND_P , and GND_{P1} pins.
- The following pins must be asserted after power-up: **RESET** and **TRST** (See note 4 in **Table 2-7**).
- If multiple DSP56304 devices are on the same board, check for cross-talk or excessive spikes on the supplies due to synchronous operation of the devices.

POWER CONSUMPTION CONSIDERATIONS

Power dissipation is a key issue in portable DSP applications. Some of the factors which affect current consumption are described in this section. Most of the current consumed by CMOS devices is Alternating Current (AC), which is charging and discharging the capacitances of the pins and internal nodes.

Current consumption is described by the formula:

Equation 3: $I = C \times V \times f$

where: C = node/pin capacitance V = voltage swing f = frequency of node/pin toggle

Example 4-1 Current Consumption

For a Port A address pin loaded with 50 pF capacitance, operating at 3.3 V, and with a 66 MHz clock, toggling at its maximum possible rate (33 MHz), the current consumption is:

Equation 4: $I = 50 \times 10^{-12} \times 3.3 \times 33 \times 10^{6} = 5.48 \text{ mA}$

The Maximum Internal Current (I_{CCI} max) value reflects the typical possible switching of the internal buses on best-case operation conditions, which is not necessarily a real application case. The Typical Internal Current (I_{CCItyp}) value reflects the average switching of the internal buses on typical operating conditions.

For applications that require very low current consumption:

- Set the EBD bit when not accessing external memory.
- Minimize external memory accesses, and use internal memory accesses.
- Minimize the number of pins that are switching.

- Minimize the capacitive load on the pins.
- Connect the unused inputs to pull-up or pull-down resistors. Unused output pins may be left unconnected. Unused GPIO pins may either be connected to pull-up or pull-down resistors, or defined as outputs and left unconnected.
- Disable unused peripherals.
- Disable unused pin activity (e.g., CLKOUT, XTAL).

One way to evaluate power consumption is to use a current per MIPS measurement methodology to minimize specific board effects (i.e., to compensate for measured board current not caused by the DSP). A benchmark power consumption test algorithm is listed in **Appendix A**. Use the test algorithm, specific test current measurements, and the following equation to derive the current per MIPS value:

Equation 5: $I/MIPS = I/MHz = (I_{typF2} - I_{typF1})/(F2 - F1)$

where: $I_{typF2} = current at F2$ $I_{typF1} = current at F1$ F2 = high frequency (any specified operating frequency)F1 = low frequency (any specified operating frequency lower than F2)

Note: F1 should be significantly less than F2. For example, F2 could be 66 MHz and F1 could be 33 MHz. The degree of difference between F1 and F2 determines the amount of precision with which the current rating can be determined for an application.

PLL PERFORMANCE ISSUES

The following explanations should be considered as general observations on expected PLL behavior. There is no testing that verifies these exact numbers. These observations were measured on a limited number of parts and were not verified over the entire temperature and voltage ranges.

Phase Skew Performance

The phase skew of the PLL is defined as the time difference between the falling edges of EXTAL and CLKOUT for a given capacitive load on CLKOUT, over the entire process, temperature and voltage ranges. As defined in **Figure 2-2** on page 2-7, for input frequencies greater than 15 MHz and the MF \leq 4, this skew is greater than or equal to 0.0 ns and less than 1.8 ns; otherwise, this skew is not

PLL Performance Issues

guaranteed. However, for MF < 10 and input frequencies greater than 10 MHz, this skew is between -1.4 ns and +3.2 ns.

Phase Jitter Performance

The phase jitter of the PLL is defined as the variations in the skew between the falling edges of EXTAL and CLKOUT for a given device in specific temperature, voltage, input frequency, MF, and capacitive load on CLKOUT. These variations are a result of the PLL locking mechanism. For input frequencies greater than 15 MHz and MF \leq 4, this jitter is less than ±0.6 ns; otherwise, this jitter is not guaranteed. However, for MF < 10 and input frequencies greater than 10 MHz, this jitter is less than ±2 ns.

Frequency Jitter Performance

The frequency jitter of the PLL is defined as the variation of the frequency of CLKOUT. For small MF (MF < 10) this jitter is smaller than 0.5%. For mid-range MF (10 < MF < 500) this jitter is between 0.5% and approximately 2%. For large MF (MF > 500), the frequency jitter is 2–3%.

Input (EXTAL) Jitter Requirements

The allowed jitter on the frequency of EXTAL is 0.5%. If the rate of change of the frequency of EXTAL is slow (i.e., it does not jump between the minimum and maximum values in one cycle) or the frequency of the jitter is fast (i.e., it does not stay at an extreme value for a long time), then the allowed jitter can be 2%. The phase and frequency jitter performance results are only valid if the input jitter is less than the prescribed values.

dsp

SECTION 5

ORDERING INFORMATION

Consult a Motorola Semiconductor sales office or authorized distributor to determine product availability and to place an order.

Part	Supply Voltage	Package Type	Pin Count	Frequency (MHz)	Order Number
DSP56304	3 V	Thin Quad Flat Pack (TQFP)	144	66	DSP56304PV66
DSP56304	3 V	Thin Quad Flat Pack (TQFP)	144	80	DSP56304PV80
DSP56304	3 V	Plastic Ball Grid Array (PBGA)	196	66	DSP56304GC66
DSP56304	3 V	Plastic Ball Grid Array (PBGA)	196	80	DSP56304GC80

dsp

DSP56304/D

APPENDIX A

POWER CONSUMPTION BENCHMARK

The following benchmark program permits evaluation of DSP power usage in a test situation. It enables the PLL, disables the external clock, and uses repeated multiply-accumulate (MAC) instructions with a set of synthetic DSP application data to emulate intensive sustained DSP operation.

```
;*
;* CHECKS Typical Power Consumption
;*
200,55,0,0,0
        page
        nolist
I_VEC EQU $000000 ; Interrupt vectors for program debug only
START EQU $8000 ; MAIN (external) program starting address
INT_PROG EQU $100 ; INTERNAL program memory starting address
INT_XDAT EQU $0 ; INTERNAL X-data memory starting address
INT_YDAT EQU $0
               ; INTERNAL Y-data memory starting address
        INCLUDE "ioequ.asm"
        INCLUDE "intequ.asm"
        list
        org
               P:START
;
        movep #$0123FF,x:M_BCR; BCR: Area 3 : 1 w.s (SRAM)
; Area 2 : 0 w.s (SSRAM)
; Default: 1 w.s (SRAM)
;
        movep
                #$0d0000,x:M_PCTL
                                       ; XTAL disable
                      ; PLL enable
                       ; CLKOUT disable
;
; Load the program
;
              #INT_PROG,r0
        move
               #PROG START,r1
        move
        do
               #(PROG_END-PROG_START), PLOAD_LOOP
        move
               p:(r1)+,x0
               x0,p:(r0)+
        move
        nop
PLOAD LOOP
;
```

```
; Load the X-data
;
                     #INT_XDAT,r0
          move
          move
                     #XDAT_START,r1
          do
                     #(XDAT_END-XDAT_START),XLOAD_LOOP
          move
                     p:(r1)+,x0
                     x0,x:(r0)+
          move
XLOAD_LOOP
;
; Load the Y-data
;
                     #INT_YDAT,r0
          move
          move
                     #YDAT_START,r1
          do
                     #(YDAT_END-YDAT_START),YLOAD_LOOP
          move
                     p:(r1)+,x0
          move
                     x0,y:(r0)+
YLOAD_LOOP
;
          jmp
                     INT_PROG
PROG_START
                     #$0,r0
          move
                     #$0,r4
          move
          move
                     #$3f,m0
                     #$3f,m4
          move
;
          clr
                     а
          clr
                     b
          move
                     #$0,x0
          move
                     #$0,x1
                     #$0,y0
          move
          move
                     #$0,y1
                                           ; ebd
          bset
                     #4,omr
;
sbr
          dor
                     #60,_end
                     x0,y0,a
                               x:(r0)+,x1
                                                     y:(r4)+,y1
          mac
                     x1,y1,a
                                x:(r0)+,x0
                                                     y:(r4)+,y0
          mac
          add
                     a,b
                     x0,y0,a
                                x:(r0)+,x1
          mac
          mac
                     x1,y1,a
                                                     y:(r4)+,y0
          move
                     bl,x:$ff
_end
          bra
                     sbr
          nop
          nop
          nop
          nop
PROG_END
          nop
          nop
```
XDAT_	_START
;	0

START	
org	x:0
dc	\$262EB9
dc	\$86F2FE
dc	\$E56A5F
dc	\$616CAC
dc	\$8FFD75
dc	\$9210A
dc	\$A06D7B
dc	\$CEA798
dc	\$8DFBF1
dc	\$A063D6
dc	\$6C6657
dc	\$C2A544
dc	\$A3662D
dc	\$A4E762
dc	\$84F0F3
dc	\$E6F1B0
dc	\$B3829
dc	\$8BF7AE
dc	\$63A94F
dc	\$EF78DC
dc	\$242DE5
dc	\$A3E0BA
dc	\$EBAB6B
dc	\$8726C8
dc	\$CA361
dc	\$2F6E86
dc	\$A57347
dc	\$4BE774
dc	\$8F349D
dc	\$A1ED12
dc	\$4BFCE3
dc	\$EA26E0
dc	\$CD7D99
dc	\$4BA85E
dc	\$27A43F
dc	\$A8B10C
dc	\$D3A55
dc	\$25EC6A
	\$25EC0A \$2A255B
dc	
dc	\$A5F1F8
dc	\$2426D1
dc	\$AE6536
dc	\$CBBC37
dc	\$6235A4
dc	\$37F0D
dc	\$63BEC2
dc	\$A5E4D3
dc	\$8CE810
dc	\$3FF09
dc	\$60E50E
dc	\$CFFB2F

dc	\$40753C
dc	\$8262C5
dc	\$CA641A
dc	\$EB3B4B
dc	\$2DA928
dc	\$AB6641
dc	\$28A7E6
dc	\$4E2127
dc	\$482FD4
dc	\$7257D
dc	\$E53C72
dc	\$1A8C3
dc	\$E27540

XDAT_END

YDAT_START

;

IAI(I	
org	y:0
dc	\$5B6DA
dc	\$C3F70B
dc	\$6A39E8
dc	\$81E801
dc	\$C666A6
dc	\$46F8E7
dc	\$AAEC94
dc	\$24233D
dc	\$802732
dc	\$2E3C83
dc	\$A43E00
dc	\$C2B639
dc	\$85A47E
dc	\$ABFDDF
dc	\$F3A2C
dc	\$2D7CF5
dc	\$E16A8A
dc	\$ECB8FB
dc	\$4BED18
dc	\$43F371
dc	\$83A556
dc	\$E1E9D7
dc	\$ACA2C4
dc	\$8135AD
dc	\$2CE0E2
dc	\$8F2C73
dc	\$432730
dc	\$A87FA9
dc	\$4A292E
dc	\$A63CCF
dc	\$6BA65C
dc	\$E06D65
dc	\$1AA3A
dc	\$A1B6EB
dc	\$48AC48
dc	\$EF7AE1

```
dc
             $6E3006
       dc
             $62F6C7
             $6064F4
       dc
       dc
             $87E41D
      dc
             $CB2692
      dc
             $2C3863
             $C6BC60
       dc
       dc
             $43A519
       dc
             $6139DE
       dc
             $ADF7BF
       dc
             $4B3E8C
             $6079D5
       dc
       dc
             $E0F5EA
       dc
             $8230DB
      dc
             $A3B778
      dc
             $2BFE51
      dc
             $E0A6B6
             $68FFB7
      dc
      dc
             $28F324
       dc
             $8F2E8D
       dc
             $667842
      dc
             $83E053
             $A1FD90
       dc
             $6B2689
       dc
      dc
             $85B68E
       dc
             $622EAF
      dc
             $6162BC
      dc
             $E4A245
YDAT_END
;
   EQUATES for DSP56304 I/O registers and ports
;
;
   Last update: June 11 1995
;
;
page 132,55,0,0,0
opt mex
            mex
      opt
ioequ ident 1,0
;
     EQUATES for I/O Port Programming
;
;
;-----
     Register Addresses
;
M_HDR EQU $FFFFC9 ; Host port GPIO data Register
M_HDDR EQU $FFFFC8 ; Host port GPIO direction Register
```

```
M_PCRC EQU $FFFFBF ; Port C Control Register
M_PRRC EQU $FFFFBE ; Port C Direction Register
M_PRRC EQU $FFFFBE, Port C Direction RegisterM_PDRC EQU $FFFFBD; Port C GPIO Data RegisterM_PCRD EQU $FFFFAF; Port D Control registerM_PRRD EQU $FFFFAE; Port D Direction Data RegisterM_PDRD EQU $FFFFAD; Port D GPIO Data RegisterM_PCRE EQU $FFFF9F; Port E Control registerM_PRRE EQU $FFFF9E; Port E Direction RegisterM_PDRE EQU $FFFF9D; Port E Data RegisterM_OGDB EQU $FFFFFC; OnCE GDB Register
 ;-----
 ;
            EQUATES for Host Interface
 ;
 ;-----
 ;
             Register Addresses
M_HCR EQU $FFFFC2
                                   ; Host Control Register
M_HSR EQU $FFFFC3
                                                ; Host Status Rgister
M_HSR EQU $FFFFC3 ; Host Status Rgister
M_HPCR EQU $FFFFC4 ; Host Polarity Control Register
M_HBAR EQU $FFFFC5 ; Host Base Address Register
M_HRX EQU $FFFFC6 ; Host Receive Register
M_HTX EQU $FFFFC7 ; Host Transmit Register
 ; HCR bits definition
                                              ; Host Receive interrupts Enable
; Host Transmit Interrupt Enable
M HRIE EQU $0
M_HTIE EQU $1
M_HCIE EQU $2
                                                ; Host Command Interrupt Enable
M_HF2 EQU $3
                                                ; Host Flag 2
M_HF3 EQU $4
                                                 ; Host Flag 3
            HSR bits definition
 ;
M_HRDF EQU $0 ; Host Receive Data Full
M_HTDE EQU $1 ; Host Receive Data Emptiy
M_HCP EQU $2 ; Host Command Pending
; Host Command Pending
M HFO EOU $3
                                                ; Host Flaq O
M_HF1 EQU $4
                                                 ; Host Flag 1
            HPCR bits definition
 ;
                            ; Host Port GPIO Enable
M_HGEN EQU $0
M_HGEAN EQU $1 ; Host Address o Enable
M_HA9EN EQU $2 ; Host Address 9 Enable
M_HCSEN EQU $3 ; Host Chip Select Enable
M_HREN EQU $4 ; Host Request Enable
M_HAEN EQU $5 ; Host Acknowledge Enable
M_HOD EQU $6 ; Host Enable
M_HDSP EQU $9 ; Host Request Open Drain mode
M_HDSP EQU $9 ; Host Data Strobe Polarity
M_HASP EQU $A ; Host Address Strobe Polarity
```

```
; Host Multiplexed bus select
; Host Double/Single Strobe select
; Host Chip Select Polarity
; Host Request PolarityPolarity
; Host Acknowledge Polarity
M_HMUX EQU $B
M_HMUA By ...
M_HD_HS EQU $C
M_HCSP EQU $D
M_HRP EQU $E
M HAP EQU $F
 ;------
 ;
            EQUATES for Serial Communications Interface (SCI)
 ;
 Register Addresses
 ;
M_STXH EQU $FFFF97 ; SCI Transmit Data Register (high)
M_STXM EQU $FFFF96 ; SCI Transmit Data Register (middle)
M_STXL EQU $FFFF95 ; SCI Transmit Data Register (low)
M_SRXH EQU $FFFF9A ; SCI Receive Data Register (high)
M_SRXM EQU $FFFF99 ; SCI Receive Data Register (middle)
M_SRXL EQU $FFFF98 ; SCI Receive Data Register (low)
M_STXA EQU $FFFF98 ; SCI Receive Data Register (low)
M_STXA EQU $FFFF94 ; SCI Transmit Address Register
M_SCR EQU $FFFF92 ; SCI Control Register
M_SCR EQU $FFFF93 ; SCI Status Register
M_SCCR EQU $FFFF98 ; SCI Clock Control Register
 ; SCI Control Register Bit Flags
M WDS EQU $7
                                                  ; Word Select Mask (WDS0-WDS3)
                                                ; Word Select 0
M_WDS0 EQU 0
M_WDS1 EQU 1
                                                ; Word Select 0
; Word Select 1
; Word Select 2
; SCI Shift Direction
M_WDS2 EQU 2
M_SSFTD EQU 3
                                    ; SCI Shift Direction
; Send Break
; Wakeup Mode Select
; Receiver Wakeup Enable
; Wired-OR Mode Select
; SCI Receiver Enable
; SCI Transmitter Enable
; Idle Line Interrupt Enable
; SCI Receive Interrupt Enable
; SCI Transmit Interrupt Enable
; Timer Interrupt Enable
; Timer Interrupt Rate
; SCI Clock Polarity
M_SBK EQU 4
M_BER ==
M_WAKE EQU 5
M_RWU EQU 6
M WOMS EOU 7
M SCRE EQU 8
M SCTE EOU 9
M_ILIE EQU 10
M_SCRIE EQU 11
M_SCTIE EQU 12
M_TMIE EQU 13
M_TIR EQU 14
M_SCKP EQU 15
                                                 ; SCI Clock Polarity
M_REIE EQU 16
                                                  ; SCI Error Interrupt Enable (REIE)
          SCI Status Register Bit Flags
 ;
                                                 ; Transmitter Empty
; Transmit Data Register Empty
M TRNE EQU 0
M_TDRE EQU 1
                                                 ; Receive Data Register Full
M_RDRF EQU 2
M IDLE EQU 3
                                                   ; Idle Line Flag
```

```
M_OR EQU 4
                                                         ; Overrun Error Flag
 M PE EQU 5
                                                           ; Parity Error
 M FE EQU 6
                                                        ; Framing Error Flag
 M_R8 EQU 7
                                                         ; Received Bit 8 (R8) Address
 ;
              SCI Clock Control Registe
 r
                                                ; Clock Divider Mask (CD0-CD11)
 M CD EQU $FFF
 M_COD EQU 12
                                                        ; Clock Out Divider
 M SCP EQU 13
                                                        ; Clock Prescaler
                                                      ; Receive Clock Mode Source Bit
 M_RCM EQU 14
 M_TCM EQU 15
                                                         ; Transmit Clock Source Bit
 ;-----
 ;
               EQUATES for Synchronous Serial Interface (SSI)
 ;
 :
 ;------
 ;
              Register Addresses Of SSIO
; Register Addresses Of SSI0

M_TX00 EQU $FFFFBC ; SSI0 Transmit Data Register 0

M_TX01 EQU $FFFFBB ; SSI0 Transmit Data Register 1

M_TX02 EQU $FFFFBA ; SSI0 Transmit Data Register 2

M_TSR0 EQU $FFFFB9 ; SSI0 Time Slot Register

M_RX0 EQU $FFFFB8 ; SSI0 Receive Data Register

M_SSISR0 EQU $FFFFB8 ; SSI0 Control Register

M_CRB0 EQU $FFFFB6 ; SSI0 Control Register B

M_CRA0 EQU $FFFFB5 ; SSI0 Control Register A

M_TSMA0 EQU $FFFFB4 ; SSI0 Transmit Slot Mask Register A

M_TSMB0 EQU $FFFFB2 ; SSI0 Receive Slot Mask Register A

M_RSMB0 EQU $FFFFB1 ; SSI0 Receive Slot Mask Register B
 ;
              Register Addresses Of SSI1
; Register Addresses Of SSI1

M_TX10 EQU $FFFFAC ; SSI1 Transmit Data Register 0

M_TX11 EQU $FFFFAB ; SSI1 Transmit Data Register 1

M_TX12 EQU $FFFFAB ; SSI1 Transmit Data Register 2

M_TSR1 EQU $FFFFA9 ; SSI1 Time Slot Register

M_RX1 EQU $FFFFA8 ; SSI1 Receive Data Register

M_CRB1 EQU $FFFFA6 ; SSI1 Control Register B

M_CRA1 EQU $FFFFA6 ; SSI1 Control Register A

M_TSMA1 EQU $FFFFA3 ; SSI1 Transmit Slot Mask Register A

M_TSMB1 EQU $FFFFA2 ; SSI1 Receive Slot Mask Register A

M_RSMB1 EQU $FFFFA1 ; SSI1 Receive Slot Mask Register B
 ;
                SSI Control Register A Bit Flags
 ;
 M_PM EQU $FF
                                                         ; Prescale Modulus Select Mask (PM0-PM7)
 M PSR EQU 11
                                                          ; Prescaler Range
```

; Frame Rate Divider Control Mask (DC0-DC7) M_DC EQU \$1F000 ; Alignment Control (ALC) ; Word Length Control Mask (WL0-WL7) M ALC EQU 18 M_WL EQU \$380000 ; Select SC1 as TR #0 drive enable (SSC1) M_SSC1 EQU 22 SSI Control Register B Bit Flags ; ; Serial Output Flag Mask ; Serial Output Flag 0 ; Serial Output Flag 1 ; Serial Control Direction Mask ; Serial Control 0 Direction ; Serial Control 1 Direction ; Serial Control 2 Direction ; Clock Source Direction ; Clock Source Direction ; Shift Direction ; Frame Sync Length Mask (FSL0-FSL1) ; Frame Sync Length 1 ; Frame Sync Length 1 ; Frame Sync Relative Timing ; Frame Sync Polarity ; Clock Polarity ; Clock Polarity ; Sync/Async Control ; SSI Transmit enable Mask ; SSI Transmit #1 Enable ; SSI Transmit #1 Enable ; SSI Transmit #1 Enable ; SSI Transmit Interrupt Enable ; SSI Receive Enable ; SSI Receive Interrupt Enable ; SSI Transmit Last Slot Interrupt Enable ; SSI Transmit Error Interrupt Enable ; SSI Transmit Error Interrupt Enable ; SI Receive Error Interrupt Enable ; SI Receive Error Interrupt Enable M OF EQU \$3 ; Serial Output Flag Mask M OFO EQU O M_OF1 EQU 1 M SCD EQU \$1C M_SCD0 EQU 2 M_SCD1 EQU 3 LU2 EQU 4 M_SCKD EQU 5 M_SHFD EQU 6 M_FSL EOU M_FSL EQU \$180 M_FSLO EQU 7 M_FSL1 EQU 8 m fsr equ 9 M_FSP EQU 10 M_CKP EQU 11 M_SYN EQU 12 M_MOD EQU 13 M_SSTE EQU \$1C000 M_SSTE2 EQU 14 M_SSTE1 EQU 15 M_SSTE0 EQU 16 M_SSRE EQU 17 M_SSTIE EQU 18 M_SSRIE EQU 19 M_STLIE EQU 20 M_SRLIE EQU 21 M_STEIE EQU 22 M_SREIE EQU 23 SSI Status Register Bit Flags ; M IF EOU \$3 ; Serial Input Flag Mask M_IFO EQU O ; Serial Input Flag 0 ; Serial Input Flag 0 ; Serial Input Flag 1 ; Transmit Frame Sync Flag ; Receive Frame Sync Flag ; Transmitter Underrun Error Flag ; Receiver Overrun Error Flag M_IFU EQU U M_IF1 EQU 1 M_TFS EQU 2 M_RFS EQU 3 m tue equ 4 M_ROE EQU 5 M_TDE EQU 6 ; Transmit Data Register Empty M RDF EQU 7 ; Receive Data Register Full SSI Transmit Slot Mask Register A ; M SSTSA EOU \$FFFF ; SSI Transmit Slot Bits Mask A (TS0-TS15) SSI Transmit Slot Mask Register B ;

M_SSTSB EQU \$FFFF ; SSI Transmit Slot Bits Mask B (TS16-TS31) ; SSI Receive Slot Mask Register A ; SSI Receive Slot Bits Mask A (RSO-RS15) M SSRSA EOU SFFFF ; SSI Receive Slot Mask Register B M_SSRSB EQU \$FFFF ; SSI Receive Slot Bits Mask B (RS16-RS31) ; EQUATES for Exception Processing ; ;-----; Register Addresses M_IPRC EQU \$FFFFFF; Interrupt Priority Register CoreM_IPRP EQU \$FFFFFE; Interrupt Priority Register Peripheral Interrupt Priority Register Core (IPRC) ; /Interrupt Priority Register Core (IPRC)M_IAL EQU \$7; IRQA Mode MaskM_IAL1 EQU 1; IRQA Mode Interrupt Priority Level (low)M_IAL1 EQU 1; IRQA Mode Interrupt Priority Level (high)M_IAL2 EQU 2; IRQB Mode Interrupt Priority Level (low)M_IBL EQU 338; IRQB Mode Interrupt Priority Level (low)M_IBL EQU 4; IRQB Mode Interrupt Priority Level (low)M_IBL1 EQU 5; IRQB Mode Interrupt Priority Level (low)M_ICL EQU 5; IRQB Mode Interrupt Priority Level (low)M_ICL EQU 5; IRQC Mode Interrupt Priority Level (low)M_ICL EQU 5; IRQC Mode Interrupt Priority Level (low)M_ICL EQU 6; IRQC Mode Interrupt Priority Level (low)M_ICL EQU 800; IRQC Mode Interrupt Priority Level (low)M_IDL EQU \$200; IRQD Mode Interrupt Priority Level (low)M_IDLD EQU 9; IRQD Mode Interrupt Priority Level (low)M_DLL EQU 10; IRQD Mode Interrupt Priority Level (low)M_DLL EQU \$3000; DMA0 Interrupt Priority Level (low)M_DLL EQU 13; DMA0 Interrupt Priority Level (high)M_DLL EQU 14; DMA1 Interrupt Priority Level (high)M_DLL EQU 15; DMA1 Interrupt Priority Level (high)M_DLL EQU \$3000; DMA2 Interrupt Priority Level (high)M_DLL EQU 16; DMA2 Interrupt Priority Level (high)M_D2L EQU 17; DMA2 Interrupt Priority Level (high)M_D2L EQU 16; DMA3 Interrupt Priority Level (high) M D3L EQU \$C0000 ; DMA3 Interrupt Priority Level Mask

Preliminary Data

A-10

M_D3L0 EQU 18; DMA3 Interrupt Priority Level (low)M_D3L1 EQU 19; DMA3 Interrupt Priority Level (high)M_D4L EQU \$300000; DMA4 Interrupt priority Level MaskM_D4L0 EQU 20; DMA4 Interrupt Priority Level (low)M_D4L1 EQU 21; DMA4 Interrupt Priority Level (high)M_D5L6 EQU \$C00000; DMA5 Interrupt priority Level MaskM_D5L0 EQU 22; DMA5 Interrupt Priority Level (low)M_D5L1 EQU 23; DMA5 Interrupt Priority Level (high) Interrupt Priority Register Peripheral (IPRP) ; M_HPL EQU \$3; Host Interrupt Priority Level MaskM_HPL0 EQU 0; Host Interrupt Priority Level (low)M_HPL1 EQU 1; Host Interrupt Priority Level (high)M_SOL EQU \$C; SSI0 Interrupt Priority Level MaskM_SOL1 EQU 3; SSI0 Interrupt Priority Level (low)M_S1L EQU \$30; SSI1 Interrupt Priority Level (low)M_S1L1 EQU 5; SSI1 Interrupt Priority Level (low)M_SCL EQU \$CO; SSI1 Interrupt Priority Level (high)M_SCL EQU \$CO; SCI Interrupt Priority Level (high)M_SCL1 EQU 7; SCI Interrupt Priority Level (low)M_TOL EQU \$300; TIMER Interrupt Priority Level (high)M_TOL1 EQU 9; TIMER Interrupt Priority Level (low) M_HPL EQU \$3 ; Host Interrupt Priority Level Mask ;------; ; EQUATES for TIMER ;-----Register Addresses Of TIMER0 ; M_TCSR0 EQU \$FFFF8F; Timer 0 Control/Status RegisterM_TLR0 EQU \$FFFF8E; TIMER0 Load RegM_TCPR0 EQU \$FFFF8D; TIMER0 Compare RegisterM_TCR0 EQU \$FFFF8C; TIMER0 Count Register Register Addresses Of TIMER1 ; M_TCSR1 EQU \$FFFF8B; TIMER1 Control/Status RegisterM_TLR1 EQU \$FFFF8A; TIMER1 Load RegM_TCPR1 EQU \$FFFF89; TIMER1 Compare RegisterM_TCR1 EQU \$FFFF88; TIMER1 Count Register Register Addresses Of TIMER2 ; M_TCSR2 EQU \$FFFF87 ; TIMER2 Control/Status Register

```
M_TLR2 EQU $FFFF86
                                            ; TIMER2 Load Reg
M_TCPR2 EQU $FFFF85 ; TIMER2 Compare Register
M_TCR2 EQU $FFFF84
                                ; TIMER2 Count Register
M_TPLR EQU $FFFF83
                                           ; TIMER Prescaler Load Register
M TPCR EQU $FFFF82
                                            ; TIMER Prescalar Count Register
 ;
       Timer Control/Status Register Bit Flags
                     ; Timer Enable
M_TE EQU 0
M TOIE EQU 1
                     ; Timer Overflow Interrupt Enable
M_TCIE EQU 2

M_TCIE EQU 5F0 ; Timer Concre-

M_INV EQU 8 ; Inverter Bit

M_TRM EQU 9 ; Timer Restart Mode

M_DIR EQU 11 ; Direction Bit

M_DI EQU 12 ; Data Input

M_DO EQU 13 ; Data Output

M_PCE EQU 15 ; Prescaled Clock Enable

M_TOF EQU 20 ; Timer Overflow Flag

M_TCF EQU 21 ; Timer Compare Flag
M_TCIE EQU 2
                     ; Timer Compare Interrupt Enable
                     ; Timer Control Mask (TCO-TC3)
        Timer Prescaler Register Bit Flags
 ;
M_PS EQU $600000 ; Prescaler Source Mask
M PSO EQU 21
M PS1 EQU 22
 ; Timer Control Bits
M_TC0EQU4; Timer Control0M_TC1EQU5; Timer Control1M_TC2EQU6; Timer Control2M_TC3EQU7; Timer Control3
 ;
       EQUATES for Direct Memory Access (DMA)
 ;
 ;-----
 ;
        Register Addresses Of DMA
                                       ; DMA Status Register
M_DSTR EQU FFFFF4
M_DOR0 EQU $FFFFF3 ; DMA Offset Register 0
M_DOR1 EQU $FFFFF2 ; DMA Offset Register 1
M_DOR2 EQU $FFFFF1 ; DMA Offset Register 2
M_DOR3 EQU $FFFFF0 ; DMA Offset Register 3
 ;
         Register Addresses Of DMA0
M_DSR0 EQU $FFFFEF ; DMA0 Source Address Register
M_DDR0 EQU $FFFFEE ; DMA0 Destination Address Register
```

```
M_DCO0 EQU $FFFFED ; DMA0 Counter
M_DCR0 EQU $FFFFEC ; DMA0 Control Register
       Register Addresses Of DMA1
;
M DSR1 EQU $FFFFEB ; DMA1 Source Address Register
M_DDR1 EQU $FFFFEA ; DMA1 Destination Address Register
M_DCO1 EQU $FFFFE9 ; DMA1 Counter
M_DCR1 EQU $FFFFE8 ; DMA1 Control Register
       Register Addresses Of DMA2
;
M_DSR2 EQU $FFFFE7 ; DMA2 Source Address Register
M_DDR2 EQU $FFFFE6 ; DMA2 Destination Address Register
M_DCO2 EQU $FFFFE5 ; DMA2 Counter
M_DCR2 EQU $FFFFE4 ; DMA2 Control Register
       Register Addresses Of DMA4
;
M_DSR3 EQU $FFFFE3 ; DMA3 Source Address Register
M_DDR3 EQU $FFFFE2 ; DMA3 Destination Address Register
M_DCO3 EQU $FFFFE1 ; DMA3 Counter
M_DCR3 EQU $FFFFE0 ; DMA3 Control Register
       Register Addresses Of DMA4
;
M_DSR4 EQU $FFFFDF ; DMA4 Source Address Register
M_DDR4 EQU $FFFFDE ; DMA4 Destination Address Register
M_DCO4 EQU $FFFFDD ; DMA4 Counter
M_DCR4 EQU $FFFFDC ; DMA4 Control Register
;
       Register Addresses Of DMA5
M_DSR5 EQU $FFFFDB ; DMA5 Source Address Register
M_DDR5 EQU $FFFFDA ; DMA5 Destination Address Register
M_DCO5 EQU $FFFFD9 ; DMA5 Counter
M_DCR5 EQU $FFFFD8 ; DMA5 Control Register
         DMA Control Register
;
M DSS EQU $3
                  ; DMA Source Space Mask (DSS0-Dss1)
M_DSS0 EQU 0
                  ; DMA Source Memory space 0
M DSS1 EQU 1
                  ; DMA Source Memory space 1
M_DDS EQU $C
                  ; DMA Destination Space Mask (DDS-DDS1)
M_DDS0 EQU 2
                  ; DMA Destination Memory Space 0
                  ; DMA Destination Memory Space 1
M_DDS1 EQU 3
M_DAM EQU $3f0
                  ; DMA Address Mode Mask (DAM5-DAM0)
M_DAMO EQU 4
                  ; DMA Address Mode 0
M DAM1 EQU 5
                  ; DMA Address Mode 1
M_DAM2 EQU 6
                  ; DMA Address Mode 2
M_DAM3 EQU 7
                  ; DMA Address Mode 3
              ; DMA Address Mode 4
M DAM4 EQU 8
```

```
M_DAM5 EQU 9
                               ; DMA Address Mode 5
                               ; DMA Three Dimensional Mode
M D3D EQU 10
M_DRS EQU $F800 ; DMA Request Source Mask (DRS0-DRS4)
M_DCON EQU 16 ; DMA Continuous Mode
M_DPR EQU $60000 ; DMA Channel Priority
M_DPR0 EQU 17 ; DMA Channel Priority Level (low)
M_DPR1 EQU 18 ; DMA Channel Priority Level (high)
M_DTM EQU $380000 ; DMA Transfer Mode Mask (DTM2-DTM0)
M_DTM0 EQU 19 ; DMA Transfer Mode 0
                               ; DMA Transfer Mode 1
M_DTM1 EQU 20
M DTM2 EQU 21
                              ; DMA Transfer Mode 2
                           ; DMA Interrupt Enable bit
M_DIE EQU 22
                               ; DMA Channel Enable bit
M_DE EQU 23
 ;
          DMA Status Register
M_DTD EQU $3F ; Channel Transfer Done Status MASK (DTD0-DTD5)
M_DTD0 EQU 0 ; DMA Channel Transfer Done Status 0
M_DTD1 EQU 1 ; DMA Channel Transfer Done Status 1
M_DTD2 EQU 2 ; DMA Channel Transfer Done Status 2
M_DTD3 EQU 3 ; DMA Channel Transfer Done Status 3
M_DTD4 EQU 4 ; DMA Channel Transfer Done Status 4
M_DTD5 EQU 5 ; DMA Channel Transfer Done Status 5
M_DACT EQU 8 ; DMA Active State
M_DCH EQU $E00 ; DMA Active Channel Mask (DCH0-DCH2)
M_DCH0 EQU 9 ; DMA Active Channel 1
M_DCH1 EQU 10 ; DMA Active Channel 1
M_DCH2 EQU 11 ; DMA Active Channel 2
 ;-----
 ;
            EQUATES for Phase Locked Loop (PLL)
 ;
 ;------
             Register Addresses Of PLL
 ;
 M_PCTL EQU $FFFFFD ; PLL Control Register
 ; PLL Control Register
M_MF EQU $FFF: Multiplication Factor Bits Mask (MF0-MF11)M_DF EQU $7000; Division Factor Bits Mask (DF0-DF2)
M_XTLR EQU 15
                               ; XTAL Range select bit
M_XTLD EQU 16; XTAL Disable BitM_PSTP EQU 17; STOP Processing State BitM_PEN EQU 18; PLL Enable BitM_PCOD EQU 19; PLL Clock Output Disable BitM_PD EQU $F00000; PreDivider Factor Bits Mask (PD0-PD3)
```

```
EQUATES for BIU
;
;
; Register Addresses Of BIU
M_BCR EQU $FFFFFB ; Bus Control Register
M DCR EQU $FFFFFA ; DRAM Control Register
M_AAR0 EQU $FFFFF9 ; Address Attribute Register 0
M_AAR1 EQU $FFFFF8 ; Address Attribute Register 1
M_AAR2 EQU $FFFFF7 ; Address Attribute Register 2
M_AAR3 EQU $FFFFF6 ; Address Attribute Register 3
M_IDR EQU $FFFFF5 ; ID Register
      Bus Control Register
;
M_BAUW EQU $1F ; Area 0 Wait Control Mask (BA0W0-BA0W4)
M_BAIW EQU $3E0 ; Area 1 Wait Control Mach (File)
M_BA2W EQU $1C00 ; Area 2 Wait Control Mask (BA2W0-BA2W2)
M_BA3W EQU $E000 ; Area 3 Wait Control Mask (BA3W0-BA3W3)
M_BDFW EQU $1F0000 ; Default Area Wait Control Mask (BDFW0-BDFW4)
M_BBS EQU 21 ; Bus State
                  ; Bus Lock Hold
M BLH EQU 22
M BRH EQU 23
                  ; Bus Request Hold
; DRAM Control Register
                 ; In Page Wait States Bits Mask (BCW0-BCW1)
M BCW EOU $3
M_BRW EQU $C
                  ; Out Of Page Wait States Bits Mask (BRW0-BRW1)
M_BPS EQU $300
                  ; DRAM Page Size Bits Mask (BPS0-BPS1)
M_BPLE EQU 11
                  ; Page Logic Enable
                  ; Mastership Enable
M_BME EQU 12
M_BRE EQU 13
                   ; Refresh Enable
M_BSTR EQU 14
                  ; Software Triggered Refresh
M_BRF EQU $7F8000 ; Refresh Rate Bits Mask (BRF0-BRF7)
M BRP EOU 23 ; Refresh prescaler
;
       Address Attribute Registers
M_BAT EQU $3
                  ; Ext. Access Type and Pin Def. Bits Mask (BAT0-BAT1)
M_BAAP EQU 2
                  ; Address Attribute Pin Polarity
M_BPEN EQU 3
                  ; Program Space Enable
M_BXEN EQU 4
                  ; X Data Space Enable
M_BYEN EQU 5
                   ; Y Data Space Enable
                  ; Address Muxing
M BAM EOU 6
M_BPAC EQU 7 ; Packing Enable
M_BNC EQU $F00 ; Number of Address Bits to Compare Mask (BNC0-BNC3)
M_BAC EQU $FFF000 ; Address to Compare Bits Mask (BAC0-BAC11)
```

; control and status bits in SR M CP EQU \$c00000 ; mask for CORE-DMA priority bits in SR M_CA EQU 0 ; Carry M V EQU 1 ; Overflow M Z EQU 2 ; Zero ; Negative M_N EQU 3 m u equ 4 ; Unnormalized M E EQU 5 ; Extension / Scaling Bit
/ Scaling Bit
/ Interupt Mask Bit 0
/ Interupt Mask Bit 1
/ Scaling Mode Bit 0
/ Scaling Mode Time M_L EQU 6 ; Limit M S EQU 7 M_IO EQU 8 M_I1 EQU 9 M_S1 EQU 11 ; Scaling Mode Bit 1 M_SC EQU 13 ; Sixteen_Bit Compatibility ; Double Precision Multiply
; DO-Loop Flag
; DO-Forever Flag
; Sixteen-Bit Arithmetic
; Instruction Cache Enable M DM EQU 14 M_LF EQU 15 M_FV EQU 16 M SA EQU 17 M_CE EQU 19 M_SM EQU 20 ; Arithmetic Saturation M RM EQU 21 ; Rounding Mode M_CP0 EQU 22 ; bit 0 of priority bits in SR M_CP1 EQU 23 ; bit 1 of priority bits in SR control and status bits in OMR ; M_CDP EQU \$300 ; mask for CORE-DMA priority bits in OMR M_MAequ0; Operating Mode AM_MBequ1; Operating Mode BM_MCequ2; Operating Mode CM_MDequ3; Operating Mode D ; Operating Mode D M_MD equ3 M_EBD EQU 4 ; External Bus Disable bit in OMR M_SD EQU 6 ; Stop Delay M_MS EQU 7 ; Memory Switch bit in OMR M_CDP0 EQU 8 ; bit 0 of priority bits in OMR M_CDP1 EQU 9 ; bit 1 of priority bits in OMR M_BEN EQU 10 ; Burst Enable M_TAS EQU 11 ; TA Synchronize Select M_BRT EQU 12 ; Bus Release Timing M_ATE EQU 15 ; Address Tracing Enable bit in OMR. M_EUN EQU 16 ; Stack Extension space select bit in OMR. M_EOV EQU 18 ; Extended stack OVerflow flag in OMR. M_WRP EQU 19 ; Extended WRAP flag in OMR. M_SEN EQU 20 ; Stack Extension Enable bit in OMR. M_EBD EQU 4 ; External Bus Disable bit in OMR

```
;
   EQUATES for DSP56304 interrupts
;
;
;
   Last update: June 11 1995
132,55,0,0,0
     page
     opt
          mex
intequ ident 1,0
     if @DEF(I_VEC)
     ;leave user definition as is.
     else
I_VEC EQU $0
     endif
;-----
; Non-Maskable interrupts
I_RESET EQU I_VEC+$00 ; Hardware RESET
I_STACK EQU I_VEC+$02 ; Stack Error
I_ILL EQU I_VEC+$04
                ; Illegal Instruction
I DBG EOU I VEC+$06
                ; Debug Request
                ; Trap
I_TRAP EQU I_VEC+$08
I_NMI EQU I_VEC+$0A
                 ; Non Maskable Interrupt
; Interrupt Request Pins
;-----
               ; IRQA
; IRQB
I_IRQA EQU I_VEC+$10
I_IRQB EQU I_VEC+$12
                ; IRQC
I_IRQC EQU I_VEC+$14
I_IRQD EQU I_VEC+$16
                ; IRQD
;------
; DMA Interrupts
;-----
I_DMA0 EQU I_VEC+$18 ; DMA Channel 0
I_DMA1 EQU I_VEC+$1A
                ; DMA Channel 1
I_DMA2 EQU I_VEC+$1C
                ; DMA Channel 2
I_DMA3 EQU I_VEC+$1E
                ; DMA Channel 3
                ; DMA Channel 4
I_DMA4 EQU I_VEC+$20
                ; DMA Channel 5
I_DMA5 EQU I_VEC+$22
;-----
; Timer Interrupts
;-----
I_TIMOC EQU I_VEC+$24 ; TIMER 0 compare
```

I_TIMOOF EQU I_VEC+\$26 ; TIMER 0 overflow ; TIMER 1 compare I_TIM1C EQU I_VEC+\$28 I_TIMIC EQU I_VEC+\$2A ; TIMER 1 overflow I_TIM2C EQU I_VEC+\$2C ; TIMER 2 compare I_TIM2OF EQU I_VEC+\$2E ; TIMER 2 overflow ;------; ESSI Interrupts ;-----I_SIORD EQU I_VEC+\$30 ; ESSIO Receive Data I SIORDE EQU I VEC+\$32 ; ESSIO Receive Data w/ exception Status I_SIORLS EQU I_VEC+\$34 ; ESSIO Receive last slot ; ESSIO Transmit data I_SIOTD EQU I_VEC+\$36 ______________________LESIO Transmit dataI_SIOTDE EQU I_VEC+\$38; ESSIO Transmit Data w/ exception StatusI_SIOTLS EQU I_VEC+\$3A; ESSIO Transmit last slot ; ESSI1 Transmit data I_SI1TD EQU I_VEC+\$46 I_SIITDE EQU I_VEC+\$48 I_SIITLS EQU I_VEC+\$4A ; ESSI1 Transmit Data w/ exception Status ; ESSI1 Transmit last slot ; SCI Interrupts ;-----I_SCIRD EQU I_VEC+\$50 ; SCI Receive Data I_SCIRDE EQU I_VEC+\$52 ; SCI Receive Data With Exception Status I_SCITD EQU I_VEC+\$54 ; SCI Transmit Data I_SCITD EQU I_VEC+\$54 I_SCIIL EQU I_VEC+\$56 ; SCI Idle Line ; SCI Timer I_SCITM EQU I_VEC+\$58 ; HOST Interrupts ;-----I_HRDF EQU I_VEC+\$60 ; Host Receive Data Full I_HTDE EQU I_VEC+\$62 ; Host Transmit Data Empty I_HC EQU I_VEC+\$64 ; Default Host Command ;-----; INTERRUPT ENDING ADDRESS ;-----I_INTEND EQU I_VEC+\$FF ; last address of interrupt vector space

INDEX

Α

AC electrical characteristics 2-4 address bus 1-1 address, electronic mail ii ALU iii arbitration bus timings 2-54 Arithmetic Logic Unit iii

В

benchmark test algorithm A-1 boundary scan (JTAG) timing diagram 2-78 bus address 1-3 data 1-3 external address 1-7 external data 1-7 multiplexed 1-3 non-multiplexed 1-3 bus acquisition timings 2-56 bus control 1-1 bus release timings 2-57, 2-58

С

Clock 1-6 clock 1-1 external 2-6 operation 2-7 clocks internal 2-4 contents ii crystal oscillator circuits 2-6

D

Data Arithmetic Logic Unit iii data bus 1-1 DC electrical characteristics 2-3 design considerations electrical 4-3, 4-4 PLL 4-5, 4-6 power consumption 4-4 thermal 4-1, 4-2 Direct Memory Access iii DMA iii

document conventions ii Double Data Strobe 1-3 DRAM out of page read access 2-49 Wait states selection guide 2-37 write access 2-50 out of page and refresh timings 11 Wait states 2-43 15 Wait states 2-46 4 Wait states 2-37 8 Wait states 2-40 Page mode read accesses 2-36 Wait states selection guide 2-26 write accesses 2-35 Page mode timings 1 Wait state 2-26 2 Wait states 2-28 3 Wait states 2-30 4 Wait states 2-33 refresh access 2-51 DS 1-3 DSP56300 core features iii DSP56304 block diagram i description i features iii specifications 2-1

Ε

electrical design considerations 4-3, 4-4 Enhanced Synchronous Serial Interface 1-1, 1-20, 1-21, 1-22, 1-23, 1-24, 1-25 ESSI 1-1, 1-3, 1-20, 1-21, 1-22, 1-23, 1-24, 1-25 receiver timing 2-73 timings 2-69 transmitter timing 2-72 External 2-19 external address bus 1-7 external bus control 1-7, 1-9, 1-10

external bus synchronous timings (SRAM access) 2-51 external clock operation 2-6 external data bus 1-7 external interrupt timing (negative edgetriggered) 2-16 external level-sensitive fast interrupt timing 2-16 external memory access (DMA Source) timing 2-18 external memory expansion port 1-7 External Memory Interface (Port A) 2-19

F

functional groups 1-3 functional signal groups 1-1

G

GPIO 1-3, 1-27 Timers 1-3 GPIO timing 2-76 Ground 1-5 PLL 1-5 ground 1-1

Η

helpline electronic mail (email) address ii HI08 1-1, 1-3, 1-13, 1-15, 1-16, 1-18, 1-19 Host Interface 1-1 Host Interface 1-3, 1-13, 1-15, 1-16, 1-18, 1-19 Host Interface timing 2-59 host port configuration 1-14 usage considerations 1-13 Host Request Double 1-3 Single 1-3 HR 1-3

I

internal clocks 2-4 internet address ii interrupt and mode control 1-1, 1-11, 1-12 interrupt control 1-11, 1-12 interrupt timing 2-9 external level-sensitive fast 2-16 external negative edge-triggered 2-16 synchronous from Wait state 2-17

J

JTAG 1-28 JTAG reset timing diagram 2-79 JTAG timing 2-77

Μ

maximum ratings 2-1, 2-2 mode control 1-11, 1-12 Mode select timing 2-9 multiplexed bus 1-3 multiplexed bus timings read 2-64 write 2-65

Ν

non-multiplexed bus 1-3 non-multiplexed bus timings read 2-62 write 2-63

0

OnCE Debug request 2-79 module timing 2-79 OnCE module 1-28 OnCE/JTAG 1-3 OnCE/JTAG port 1-1 operating mode select timing 2-17 ordering information 5-1

Ρ

package PBGA description 3-10, 3-11, 3-12, 3-15, 3-19 TQFP description 3-2, 3-3, 3-4, 3-6, 3-9 144-pin TQFP 3-1 196-pin PBGA 3-1 Patch mode iii **PBGA 3-1** ball grid drawing (bottom) 3-11 ball grid drawing (top) 3-10 ball list by name 3-15 ball list by number 3-12 mechanical drawing 3-19 PCU iii Phase Lock Loop iii, 2-8 PLL iii, 1-1, 1-6, 2-8 Characteristics 2-8 performance issues 4-5

PLL design considerations 4-5, 4-6 PLL performance issues 4-6 Port A 1-1, 1-7, 2-19 Port B 1-1, 1-3, 1-15, 1-16, 1-17, 1-18, 1-19 Port C 1-1, 1-3, 1-20, 1-21, 1-22 Port D 1-1, 1-3, 1-23, 1-24, 1-25 Port E 1-1, 1-26 Power 1-4 power 1-1 power consumption benchmark test A-1 power consumption design considerations 4-4 Program Control Unit iii

R

recovery from Stop state using IRQA 2-17, 2-18 RESET 1-11 Reset timing 2-9, 2-15 synchronous 2-15

S

SCI 1-3, 1-26 Asynchronous mode timing 2-68 Synchronous mode timing 2-68 timing 2-66 Serial Communications Interface 1-26 Serial Communications Interface (SCI) 1-1 signal groupings 1-1 signals 1-1 functional grouping 1-3 Single Data Strobe 1-3 SRAM 2-53 Access 2-51 read access 2-22 read and write accesses 2-19 write access 2-23 **SSRAM** read access 2-25 read and write access 2-23 write access 2-25 Stop state recovery from 2-17, 2-18 Stop timing 2-9 supply voltage 2-2 synchronous bus timings SRAM 2 WS 2-54 SRAM 1 WS (BCR controlled) 2-53 synchronous interrupt from Wait state timing 2-17 synchronous Reset timing 2-15

Т

table of contents ii technical assistance ii Test Access Port timing diagram 2-78 Test Clock (TCLK) input timing diagram 2-77 thermal characteristics 2-2 thermal design considerations 4-1, 4-2 Timer event input restrictions 2-75 interrupt generation 2-75 timing 2-74 Timers 1-1, 1-3, 1-27 timing interrupt 2-9 mode select 2-9 Reset 2-9 Stop 2-9 tqfp 3-1 mechanical drawing 3-9 pin list by name 3-6 pin list by number 3-4 pin-out drawing (bottom) 3-3 pin-out drawing (top) 3-2

Numerics

5 V tolerance 1-1

OnCE and Mfax are trademarks of Motorola, Inc.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (A) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/ Affirmative Action Employer.

How to reach us:

USA/Europe/Locations Not Listed:

Motorola Literature Distribution P.O. Box 5405 Denver, Colorado 80217 1 (800) 441-2447 303-675-2140

Mfax™:

RMFAX0@email.sps.mot.com TOUCHTONE (602) 244-6609

Asia/Pacific:

Motorola Semiconductors H.K. Ltd. 8B Tai Ping Industrial Park 51 Ting Kok Road Tai Po, N.T., Hong Kong 852-2662928

Technical Resource Center: 1 (800) 521-6274

DSP Helpline dsphelp@dsp.sps.mot.com

Japan:

Nippon Motorola Ltd. Tatsumi-SPD-JLDC 6F Seibu-Butsuryu-Center 3-14-2 Tatsumi Koto-Ku Tokyo 135, Japan 03-3521-8315

Internet:

http://www.motorola-dsp.com

