MOTOROLA

Advance Information DSP56302A 24-BIT GENERAL PURPOSE DIGITAL SIGNAL PROCESSOR

The DSP56302A is a member of the DSP56300 core family of programmable CMOS Digital Signal Processors (DSPs). This family uses a high performance, single-clock-cycle-per-instruction engine providing a two-fold performance increase over Motorola's popular DSP56000 core, while retaining code compatibility. Significant architectural enhancements in the DSP56300 family include a barrel shifter, 24-bit addressing, instruction cache, and Direct Memory Access (DMA). The DSP56302A offers 66/80/100 MIPS at 3.0–3.6 V using an internal 66/80/100 MHz clock. The large on-chip memories can support wireless infrastructure and local loop applications and allow the chip to be used for RAM-based emulation of low-cost ROM-based solutions. The DSP56300 core family offers a new level of performance in speed and power provided by its rich instruction set and low power dissipation, enabling a new generation of wireless, telecommunications, and multimedia products.

This document contains information on a new product. Specifications and information herein are subject to change without notice.

TABLE OF CONTENTS

SECTION 1	SIGNAL/CONNECTION DESCRIPTIONS1-1
SECTION 2	SPECIFICATIONS
SECTION 3	PACKAGING
SECTION 4	DESIGN CONSIDERATIONS
SECTION 5	ORDERING INFORMATION
APPENDIX A	POWER CONSUMPTION BENCHMARK A-1
APPENDIX B	BOOTSTRAP PROGRAMS B-1
	INDEX Index-1

FOR TECHNICAL ASSISTANCE:

Telephone:	1-800-521-6274
Email:	dsphelp@dsp.sps.mot.com
Internet:	http://www.motorola-dsp.com

Data Sheet Conventions

This data sheet uses the following conventions:

OVERBAR	Used to indicate a signal that is active when pulled low (For example, the $\overline{\text{RESET}}$ pin is active when low.)				
"asserted"	Means that a high true (active high) signal is high or that a low true (active low) signal is low				
"deasserted"	Means that a high tr signal is high	al is low or that a low t	true (active low)		
Examples:	Signal/Symbol	Logic State	Signal State	Voltage ¹	
	PIN	True	Asserted	V _{IL} /V _{OL}	
	PIN	False	Deasserted	V_{IH}/V_{OH}	
	PIN	True	Asserted	V_{IH}/V_{OH}	
	PIN	False	Deasserted	V_{IL}/V_{OL}	

Note: Values for $V_{IL}, V_{OL}, V_{IH},$ and V_{OH} are defined by individual product specifications.

FEATURES

High Performance DSP56300 Core

- 66/80/100 Million Instructions Per Second (MIPS) with a 66/80/100 MHz clock at 3.0–3.6 V
- Object code compatible with the DSP56000 core
- Highly parallel instruction set
- Data Arithmetic Logic Unit (Data ALU)
 - Fully pipelined 24 x 24-bit parallel Multiplier-Accumulator (MAC)
 - 56-bit parallel barrel shifter (fast shift and normalization; bit stream generation and parsing)
 - Conditional ALU instructions
 - 24-bit or 16-bit arithmetic support under software control
- Program Control Unit (PCU)
 - Position Independent Code (PIC) support
 - Addressing modes optimized for DSP applications (including immediate offsets)
 - On-chip instruction cache controller
 - On-chip memory-expandable hardware stack
 - Nested hardware DO loops
 - Fast auto-return interrupts
 - Direct Memory Access (DMA)
 - Six DMA channels supporting internal and external accesses
 - \int_{-1}^{1} One-, two-, and three-dimensional transfers (including circular buffering)
 - End-of-block-transfer interrupts
 - Triggering from interrupt lines and all peripherals
- Phase Lock Loop (PLL)
 - Allows change of low power Divide Factor (DF) without loss of lock
 - Output clock with skew elimination

- Hardware debugging support
 - On-Chip Emulation (OnCETM) module
 - Joint Action Test Group (JTAG) Test Access Port (TAP)
 - Address Trace mode reflects internal Program RAM accesses at the external port

On-Chip Memories

• Program RAM, Instruction Cache, X data RAM, and Y data RAM size is programmable.

Instruction Cache	Switch Mode	Program RAM Size	Instruction Cache Size	X Data RAM Size	Y Data RAM Size
disabled	disabled	20480×24 -bit	0	7168 imes 24-bit	7168×24 -bit
enabled	disabled	19456×24 -bit	1024 × 24-bit	7168×24-bit	7168×24 -bit
disabled	enabled	24576 × 24-bit	0	5120×24 -bit	5120 imes 24-bit
enabled	enabled	23552×24 -bit	1024 × 24-bit	5120×24 -bit	5120×24 -bit

• 192 x 24-bit bootstrap ROM

Off-Chip Memory Expansion

- Data memory expansion to two 256 K \times 24-bit word memory spaces (or up to two 4 M \times 24-bit word memory spaces by using the Address Attribute AA0-AA3 signals)
- Program memory expansion to one 256 K \times 24-bit words memory space (or up to one 4 M \times 24-bit word memory space by using the Address Attribute AA0-AA3 signals)
- External memory expansion port
- Chip Select Logic for glueless interface to SRAMs
- On-chip DRAM Controller for glueless interface to DRAMs

On-Chip Peripherals

- Enhanced DSP56000-like 8-bit parallel Host Interface (HI08) supports a variety of buses (e.g., ISA) and provides glueless connection to a number of industry standard microcomputers, microprocessors, and DSPs
- Two Enhanced Synchronous Serial Interfaces (ESSI0 and ESSI1), each with one receiver and three transmitters (allows six-channel home theater)
- Serial Communications Interface (SCI) with baud rate generator
- Triple timer module
- Up to thirty-four programmable General Purpose Input/Output (GPIO) pins, depending on which peripherals are enabled

Reduced Power Dissipation

- Very low power CMOS design
- Wait and Stop low power standby modes
- Fully-static logic, operation frequency down to 0 Hz (dc)
- Optimized power management circuitry (instruction-dependent, peripheraldependent, and mode-dependent)

TARGET APPLICATIONS

The DSP56302A is intended for applications requiring a large amount of on-chip memory, such as wireless infrastructure applications. It is also intended as a RAM-based emulation part for low-cost ROM-based solutions

PRODUCT DOCUMENTATION

The three documents listed in the following table are required for a complete description of the DSP56302A and are necessary to design properly with the part. Documentation is available from one of the following locations (see back cover for detailed information):

- A local Motorola distributor
- A Motorola semiconductor sales office
- A Motorola Literature Distribution Center
- The World Wide Web (WWW)

See the **Additional Support** section of the *DSP56300 Family Manual* for detailed information on the multiple support options available to you.

Name	Description	Order Number
DSP56300 Family Manual	Detailed description of the DSP56300 family processor core and instruction set	DSP56300FM/AD
DSP56302 User's Manual	Detailed functional description of the DSP56302 memory configuration, operation, and register programming	DSP56302UM/AD
DSP56302A Technical Data	DSP56302A features list and physical, electrical, timing, and package specifications	DSP56302A/D

Table 1DSP56303 Documentation

dsp

SECTION 1

SIGNAL/CONNECTION DESCRIPTIONS

SIGNAL GROUPINGS

The input and output signals of the DSP56302A are organized into functional groups, as shown in **Table 1-1** and as illustrated in **Figure 1-1**.

Functional Group		Number of Signals	Detailed Description
Power (V _{CC})		20	Table 1-2
Ground (GND)		19	Table 1-3
Clock	$\langle / / \rangle$	2	Table 1-4
PLL		3	Table 1-5
Address Bus	. 1	18	Table 1-6
Data Bus	Port A^1	24	Table 1-7
Bus Control		13	Table 1-8
Interrupt and Mode Control		5	Table 1-9
Host Interface (HI08)	Port B ²	16	Table 1-11
Enhanced Synchronous Serial Interface (ESSI)Ports C and D ³		12	Table 1-12 and Table 1-13
Serial Communication Interface (SCI)	Port E ⁴	3	Table 1-14
Timer		3	Table 1-15
OnCE/JTAG Port	6	Table 1-16	
 Notes: 1. Port A signals define the external memory interface port, including the external address bus, data bus, and control signals. 2. Port B signals are the HI08 port signals multiplexed with the GPIO signals. 3. Port C and D signals are the two ESSI port signals multiplexed with the GPIO signals. 4. Port E signals are the SCI port signals multiplexed with the GPIO signals. 			

 Table 1-1
 DSP56302A
 Functional Signal Groupings

Figure 1-1 is a diagram of DSP56302A signals by functional group.

Signal Groupings

of these modes is possible. These HI08 signals can also be configured alternately as GPIO signals (PB0-PB15). Signals with dual designations (e.g., HAS/HAS) have configurable polarity. 2. The ESSI0, ESSI1, and SCI signals are multiplexed with the Port C GPIO signals (PC0-PC5), Port D GPIO signals

- (PD0-PD5), and Port E GPIO signals (PE0-PE2), respectively. AA0601
- 3. TIO0-TIO2 can be configured as GPIO signals.

Power

POWER

Power Name	Description
V _{CCP}	PLL Power — V_{CCP} is V_{CC} dedicated for Phase Lock Loop (PLL) use. The voltage should be well-regulated and the input should be provided with an extremely low impedance path to the V_{CC} power rail. There is one V_{CCP} input.
V _{CCQL} (3)	Quiet Core (Low) Power — V_{CCQL} is an isolated power for the core processing logic. This input must be isolated externally from all other chip power inputs. The user must provide adequate external decoupling capacitors. There are three V_{CCQ} inputs.
V _{CCQH} (4)	Quiet External (High) Power — V_{CCQH} is a quiet power source for I/O lines. This input must be tied externally to all other chip power inputs, <i>except</i> V_{CCQL} . The user must provide adequate decoupling capacitors. There are four V_{CCQH} inputs.
V _{CCA} (3)	Address Bus Power— V_{CCA} is an isolated power for sections of the address bus I/O drivers. This input must be tied externally to all other chip power inputs, <i>except</i> V_{CCQL} . The user must provide adequate external decoupling capacitors. There are four V_{CCA} inputs.
V _{CCD} (4)	Data Bus Power — V_{CCD} is an isolated power for sections of the data bus I/O drivers. This input must be tied externally to all other chip power inputs. The user must provide adequate external decoupling capacitors. There are four V_{CCD} inputs.
V _{CCC} (2)	Bus Control Power — V_{CCC} is an isolated power for the bus control I/O drivers. This input must be tied externally to all other chip power inputs, <i>except</i> V_{CCQL} . The user must provide adequate external decoupling capacitors. There are two V_{CCC} inputs.
V _{CCH}	Host Power V_{CCH} is an isolated power for the HI08 I/O drivers. This input must be tied externally to all other chip power inputs, <i>except</i> V_{CCQL} . The user must provide adequate external decoupling capacitors. There is one V_{CCH} input.
V _{CCS} (2)	ESSI, SCI, and Timer Power — V_{CCS} is an isolated power for the ESSI, SCI, and timer I/O drivers. This input must be tied externally to all other chip power inputs, <i>except</i> V_{CCQL} . The user must provide adequate external decoupling capacitors. There are two V_{CCS} inputs.
other intern	nations are package-dependent. Some packages connect all V _{CC} inputs except V _{CCP} to each hally. On those packages, all power input, except V _{CCP} , are labeled V _{CC} . The numbers of sindicated in this table are minimum values; the total V _{CC} connections are package- dependent.

Ground

GROUND

Ground Name	Description		
GND _P	PLL Ground —GND _P is ground dedicated for PLL use. The connection should be provided with an extremely low-impedance path to ground. V_{CCP} should be bypassed to GND _P by a 0.47 μ F capacitor located as close as possible to the chip package. There is one GND _P connection.		
GND _{P1}	PLL Ground 1 — GND_{P1} is ground dedicated for PLL use. The connection should be provided with an extremely low-impedance path to ground. There is one GND_{P1} connection.		
GND _Q (4)	Quiet Ground — GND_Q is an isolated ground for the internal processing logic. This connection must be tied externally to all other chip ground connections. The user must provide adequate external decoupling capacitors. There are four GND_Q connections.		
GND _A (4)	Address Bus Ground—GND _A is an isolated ground for sections of the address bus I/O drivers. This connection must be tied externally to all other chip ground connections. The user must provide adequate external decoupling capacitors. There are four GND _A connections.		
GND _D (4)	Data Bus Ground —GND _D is an isolated ground for sections of the data bus I/O drivers. This connection must be tied externally to all other chip ground connections. The user must provide adequate external decoupling capacitors. There are four GND _D connections.		
GND _C (2)	Bus Control Ground —GND _C is an isolated ground for the bus control I/O drivers. This connection must be tied externally to all other chip ground connections. The user must provide adequate external decoupling capacitors. There are two GND _C connections.		
GND _H	Host Ground —GND _H is an isolated ground for the HI08 I/O drivers. This connection must be tied externally to all other chip ground connections. The user must provide adequate external decoupling capacitors. There is one GND_{H} connection.		
GND _S (2)	ESSI, SCI, and Timer Ground —GND _S is an isolated ground for the ESSI, SCI, and timer I/O drivers. This connection must be tied externally to all other chip ground connections. The user must provide adequate external decoupling capacitors. There are two GND _S connections.		
GND _{P1} , to e labeled GN	nations are package-dependent. Some packages connect all GND inputs, except GND_P and each other internally. On those packages, all ground connections, except GND_P and GND_{P1} , are D. The numbers of connections indicated in this table are minimum values; the total GND are package-dependent.		

Table 1-3	Grounds
-----------	---------

CLOCK

Signal Name	Туре	State During Reset	Signal Description
EXTAL	Input	Input	External Clock/Crystal Input —EXTAL interfaces the internal crystal oscillator input to an external crystal or an external clock.
XTAL	Output	Chip Driven	Crystal Output —XTAL connects the internal crystal oscillator output to an external crystal. If an external clock is used, leave XTAL unconnected.
PHASE LOCK LOOP (PLL)			

PHASE LOCK LOOP (PLL)

Signal Name	Туре	State During Reset	Signal Description
РСАР	Input	Input	PLL Capacitor —PCAP is an input connecting an off-chip capacitor to the PLL filter. Connect one capacitor terminal to PCAP and the other terminal to V_{CCP} . If the PLL is not used, PCAP may be tied to V_{CC} , GND, or left floating.
CLKOUT	Output	Chip Driven	Clock Output—CLKOUT provides an output clock synchronized to the internal core clock phase. If the PLL is enabled and both the Multiplication and Division Factors equal one, then CLKOUT is also synchronized to EXTAL. If the PLL is disabled, the CLKOUT frequency is half the frequency of EXTAL.
PÍNIT	Input	Input	PLL Initial —During assertion of RESET , the value of PINIT is written into the PLL Enable (PEN) bit of the PLL Control (PCTL) register, determining whether the PLL is enabled or disabled.
NMI	Input		Non-Maskable Interrupt —After RESET deassertion and during normal instruction processing, this Schmitt-trigger input is the negative-edge-triggered Non-Maskable Interrupt (NMI) request internally synchronized to CLKOUT.

 Table 1-5
 Phase Lock Loop Signals

External Memory Expansion Port (Port A)

EXTERNAL MEMORY EXPANSION PORT (PORT A)

Note: When the DSP56302A enters a low-power standby mode (Stop or Wait), it releases bus mastership and tri-states the relevant Port A signals: A0–A17, D0–D23, AA0/RAS0–AA3/RAS3, RD, WR, BB, CAS, BCLK, BCLK.

EXTERNAL ADDRESS BUS

Table 1-6External Address Bus Signals

Signal Name	Туре	State During Reset	Signal Description
A0-A17	Output	Tri-stated	Address Bus—When the DSP is the bus master, A0–A17 are active-high outputs that specify the address for external program and data memory accesses. Otherwise, the signals are tri-stated. To minimize power dissipation, A0–A17 do not change state when external memory spaces are not being accessed.

EXTERNAL DATA BUS

 Table 1-7
 External Data Bus Signals

Signal Name	Туре	State During Reset	Signal Description
D0-D23	Input/	Tri-stated	Data Bus —When the DSP is the bus master, D0–D23 are
	Output		active-high, bidirectional input/outputs that provide the
			bidirectional data bus for external program and data
			memory accesses. Otherwise, D0–D23 are tri-stated.

EXTERNAL BUS CONTROL

 Table 1-8
 External Bus Control Signals

Signal Name	Туре	State During Reset	Signal Description
AA0-AA3	Output	Tri-stated	Address Attribute—When defined as AA, these signals can be used as chip selects or additional address lines.
RASO-RAS3	Output		Row Address Strobe —When defined as RAS, these signals can be used as RAS for Dynamic Random Access Memory (DRAM) interface. These signals are tri-statable outputs with programmable polarity.
RD	Output	Tri-stated	Read Enable —When the DSP is the bus master, \overline{RD} is an active-low output that is asserted to read external memory on the data bus (D0–D23). Otherwise, \overline{RD} is tri-stated.

External Memory Expansion Port (Port A)

Signal Name	Туре	State During Reset	Signal Description
WR	Output	Tri-stated	Write Enable —When the DSP is the bus master, WR is an active-low output that is asserted to write external memory on the data bus (D0–D23). Otherwise, the signals are tri-stated.
TA	Input	Ignored Input	 Transfer Acknowledge—If the DSP56302A is the bus master and there is no external bus activity, or the DSP56302A is not the bus master, the TA input is ignored. The TA input is a Data Transfer Acknowledge (DTACK) function that can extend an external bus cycle indefinitely. Any number of wait states (1, 2,, infinity) may be added to the wait states inserted by the BCR by keeping TA deasserted. In typical operation, TA is deasserted at the start of a bus cycle, is asserted to enable completion of the bus cycle, and is deasserted before the next bus cycle. The current bus cycle completes one clock period after TA is asserted synchronous to CLKOUT. The number of wait states is determined by the TA input or by the Bus Control Register (BCR), whichever is longer. The BCR can be used to set the minimum number of wait states in external bus cycles. In order to use the TA functionality, the BCR must be programmed to at least one wait state. A zero wait state access can not be extended by TA ceassertion, otherwise improper operation may result. TA can operate synchronously or asynchronously depending on the setting of the TAS bit in the Operating Mode Register (OMR). TA functionality may not be used while performing DRAM type accesses, otherwise improper operation may result.
BR	Output	Output (deasserted)	Bus Request — \overline{BR} is an active-low output, never tri-stated. \overline{BR} is asserted when the DSP requests bus mastership. \overline{BR} is deasserted when the DSP no longer needs the bus. \overline{BR} may be asserted or deasserted independent of whether the DSP56302A is a bus master or a bus slave. Bus "parking" allows \overline{BR} to be deasserted even though the DSP56302A is the bus master (see the description of bus "parking" in the \overline{BB} signal description). The Bus Request Hole (BRH) bit in the BCR allows \overline{BR} to be asserted under software control even though the DSP does not need the bus. \overline{BR} is typically sent to an external bus arbitrator that controls the priority, parking and tenure of each master on the same external bus. \overline{BR} is only affected by DSP requests for the external bus, never for the internal bus. During hardware reset, \overline{BR} is deasserted and the arbitration is reset to the Bus Slave state.

External Memory Expansion Port (Port A)

Signal Name	Туре	State During Reset	Signal Description
BG	Input	Ignored Input	Bus Grant — \overline{BG} is an active-low input. \overline{BG} must be asserted/ deasserted synchronous to CLKOUT for proper operation. \overline{BG} is asserted by an external bus arbitration circuit when the DSP56302A becomes the next bus master. When \overline{BG} is asserted, the DSP56302A must wait until \overline{BB} is deasserted before taking bus mastership. When \overline{BG} is deasserted, bus mastership is typically given up at the end of the current bus cycle. This may occur in the middle of an instruction that requires more than one external bus cycle for execution.
BB	Input/ Output	Input	Bus Busy — \overline{BB} is a bidirectional active-low input/output and must be asserted and deasserted synchronous to CLKOUT. \overline{BB} indicates that the bus is active. Only after \overline{BB} is deasserted can the pending bus master become the bus master (and then assert the signal again). The bus master may keep \overline{BB} asserted after ceasing bus activity regardless of whether \overline{BR} is asserted or deasserted. This is called "bus parking" and allows the current bus master to reuse the bus without re-arbitration until another device requires the bus. The deassertion of \overline{BB} is done by an "active pull-up" method (i.e., \overline{BB} is driven high and then released and held high by an external pull-up resistor). \overline{BB} requires an external pull-up resistor.
CAS	Output	Tri-stated	Column Address Strobe —When the DSP is the bus master, CAS is an active-low output used by DRAM to strobe the column address. Otherwise, if the Bus Mastership Enable (BME) bit in the DRAM Control Register is cleared, the signal is tri-stated.
BCLK	Output	Tri-stated	Bus Clock —When the DSP is the bus master, BCLK is an active-high output. BCLK is active as a sampling signal when the program Address Tracing mode is enabled (by setting the ATE bit in the OMR). When BCLK is active and synchronized to CLKOUT by the internal PLL, BCLK precedes CLKOUT by one-fourth of a clock cycle. The BCLK rising edge may be used to sample the internal Program Memory access on the A0–A23 address lines.
BCLK	Output	Tri-stated	Bus Clock Not —When the DSP is the bus master, BCLK is an active-low output and is the inverse of the BCLK signal. Otherwise, the signal is tri-stated.

Table 1-8 External Bus Control Signals (Continued)

Interrupt and Mode Control

INTERRUPT AND MODE CONTROL

The interrupt and mode control signals select the chip's operating mode as it comes out of hardware reset. After **RESET** is deasserted, these inputs are hardware interrupt request lines.

Signal Name	Туре	State During Reset	Signal Description
RESET	Input	Input	Reset — <u>RESET</u> is an active-low, Schmitt-trigger input. Deassertion of <u>RESET</u> is internally synchronized to the clock out (CLKOUT). When asserted, the chip is placed in the Reset state and the internal phase generator is reset. The Schmitt-trigger input allows a slowly rising input (such as a capacitor charging) to reset the chip reliably. If <u>RESET</u> is deasserted synchronous to CLKOUT, exact start-up timing is guaranteed, allowing multiple processors to start synchronously and operate together in "lock-step." When the <u>RESET</u> signal is deasserted, the initial chip operating mode is latched from the MODA, MODB, MODC, and MODD inputs. The <u>RESET</u> signal must be asserted after power up.
MODA	Input	Input	Mode Select A —MODA is an active-low Schmitt-trigger input, internally synchronized to CLKOUT. MODA, MODB, MODC, and MODD select one of sixteen initial chip operating modes, latched into the OMR when the RESET signal is deasserted.
ĪRQA	Input		External Interrupt Request A —After reset, this input becomes a level-sensitive or negative-edge-triggered, maskable interrupt request input during normal instruction processing. If \overline{IRQA} is asserted synchronous to CLKOUT, multiple processors can be re-synchronized using the WAIT instruction and asserting \overline{IRQA} to exit the Wait state. If the processor is in the Stop standby state and \overline{IRQA} is asserted, the processor will exit the Stop state.
		1	·

Table 1-5 Interrupt and mode control	Table 1-9	Interrupt and Mode	Control
---	-----------	--------------------	---------

Interrupt and Mode Control

Signal Name	Туре	State During Reset	Signal Description
MODB	Input	Input	Mode Select B —MODB is an active-low Schmitt-trigger input, internally synchronized to CLKOUT. MODA, MODB, MODC, and MODD select one of sixteen initial chip operating modes, latched into the OMR when the RESET signal is deasserted.
ĪRQB	Input		External Interrupt Request B —After reset, this input becomes a level-sensitive or negative-edge-triggered, maskable interrupt request input during normal instruction processing. If IRQB is asserted synchronous to CLKOUT, multiple processors can be re-synchronized using the WAIT instruction and asserting IRQB to exit the Wait state. If the processor is in the Stop standby state and IRQB is asserted, the processor will exit the Stop state.
MODC	Input	Input	Mode Select C —MODC is an active-low Schmitt-trigger input, internally synchronized to CLKOUT. MODA, MODB, MODC, and MODD select one of sixteen initial chip operating modes, latched into the OMR when the RESET signal is deasserted.
ĪRQC	Input		External Interrupt Request C —After reset, this input becomes a level-sensitive or negative-edge-triggered, maskable interrupt request input during normal instruction processing. If IRQC is asserted synchronous to CLKOUT, multiple processors can be re-synchronized using the WAIT instruction and asserting IRQC to exit the Wait state. If the processor is in the Stop standby state and IRQC is asserted, the processor will exit the Stop state.
MODD	Input	Input	Mode Select D —MODD is an active-low Schmitt-trigger input, internally synchronized to CLKOUT. MODA, MODB, MODC, and MODD select one of sixteen initial chip operating modes, latched into the OMR when the RESET signal is deasserted.
IRQD	Input		External Interrupt Request D —After reset, this input becomes a level-sensitive or negative-edge-triggered, maskable interrupt request input during normal instruction processing. If IRQD is asserted synchronous to CLKOUT, multiple processors can be re-synchronized using the WAIT instruction and asserting IRQD to exit the Wait state. If the processor is in the Stop standby state and IRQD is asserted, the processor will exit the Stop state.

Table 1-9 Interrupt and Mode Control (Continued)

HOST INTERFACE (HI08)

The HI08 provides a fast parallel data to 8-bit port, which may be connected directly to the host bus.

The HI08 supports a variety of standard buses, and can be directly connected to a number of industry standard microcomputers, microprocessors, DSPs, and DMA hardware.

Host Port Usage Considerations

Careful synchronization is required when reading multiple-bit registers that are written by another asynchronous system. This is a common problem when two asynchronous systems are connected (as they are in the Host port). The considerations for proper operation are discussed in the following table:

Action	Description
Asynchronous read of receive byte registers	When reading the receive byte registers, Receive register High (RXH), Receive register Middle (RXM), or Receive register Low (RXL), the host interface programmer should use interrupts or poll the Receive register Data Full (RXDF) flag which indicates that data is available. This assures that the data in the receive byte registers will be valid.
Asynchronous write to transmit byte registers	The host interface programmer should not write to the transmit byte registers, Transmit register High (TXH), Transmit register Middle (TXM), or Transmit register Low (TXL), unless the Transmit register Data Empty (TXDE) bit is set indicating that the transmit byte registers are empty. This guarantees that the transmit byte registers will transfer valid data to the Host Receive (HRX) register.
Asynchronous write to host vector	The host interface programmer should change the Host Vector (HV) register only when the Host Command bit (HC) is clear. This will guarantee that the DSP interrupt control logic will receive a stable vector.

Table 1-10	Host Por	t <mark>Us</mark> age	Co	nsiderations

Host Interface (HI08)

Host Port Configuration

The functions of the signals associated with the HI08 vary according to the programmed configuration of the interface as determined by the 16 bits in the HI08 Port Control Register (HPCR). Refer to the *DSP56302AUser's Manual* for detailed descriptions of this and the other configuration registers used with the HI08.

Signal Name	Туре	State During Reset	Signal Description
H0-H7	Input/ Output	Tri-stated	Host Data—When the HI08 is programmed to interface a non-multiplexed host bus and the HI function is selected, these signals are lines 0–7 of the Data bidirectional, tri-state bus.
HAD0-HAD7	Input∕ Output		Host Address—When HI08 is programmed to interface a multiplexed host bus and the HI function is selected, these signals are lines 0–7 of the Address/Data bidirectional, multiplexed, tri-state bus.
PB0-PB7	Input or Output		Port B 0–7 —When the HI08 is configured as GPIO through the HPCR, these signals are individually programmed as inputs or outputs through the HI08 Data Direction Register (HDDR).
HA0	Input	Input	Host Address Input 0 —When the HI08 is programmed to interface a non-multiplexed host bus and the HI function is selected, this signal is line 0 of the Host Address input bus.
HAS/HAS	Input		Host Address Strobe —When HI08 is programmed to interface a multiplexed host bus and the HI function is selected, this signal is the Host Address Strobe (HAS) Schmitt-trigger input. The polarity of the address strobe is programmable but is configured active-low (HAS) following reset.
PB8	Input or Output		Port B 8 —When the HI08 is configured as GPIO through the HPCR, this signal is individually programmed as an input or output through the HDDR.
	1		

Signal Name	Туре	State During Reset	Signal Description
HA1	Input	Input	Host Address Input 1—When the HI08 is programmed to interface a non-multiplexed host bus and the HI function is selected, this signal is line 1 of the Host Address (HA1) input bus.
HA8	Input		Host Address 8—When HI08 is programmed to interface a multiplexed host bus and the HI function is selected, this signal is line 8 of the Host Address (HA8) input bus.
PB9	Input or Output		Port B 9 —When the HI08 is configured as GPIO through the HPCR, this signal is individually programmed as an input or output through the HDDR.
HA2	Input	Input	Host Address Input 2—When the HI08 is programmed to interface a non-multiplexed host bus and the HI function is selected, this signal is line 2 of the Host Address (HA2) input bus.
HA9	Input	~	Host Address 9 —When HI08 is programmed to interface a multiplexed host bus and the HI function is selected, this signal is line 9 of the Host Address (HA9) input bus.
PB10	Input or Output		Port B 10 —When the HI08 is configured as GPIO through the HPCR, this signal is individually programmed as an input or output through the HDDR.
HRW	Input	Input	Host Read/Write—When HI08 is programmed to interface a single-data-strobe host bus and the HI function is selected, this signal is the Host Read/Write (HRW) input.
HRD/HRD	Input		Host Read Data —When HI08 is programmed to interface a double-data-strobe host bus and the HI function is selected, this signal is the Host Read Data strobe (HRD) Schmitt-trigger input. The polarity of the data strobe is programmable, but is configured as active-low (HRD) after reset.
PB11	Input or Output		Port B 11 —When the HI08 is configured as GPIO through the HPCR, this signal is individually programmed as an input or output through the HDDR.

 Table 1-11
 Host Interface (Continued)

Host Interface (HI08)

Signal Name	Туре	State During Reset	Signal Description
HDS/HDS	Input	Input	Host Data Strobe—When HI08 is programmed to interface a single-data-strobe host bus and the HI function is selected, this signal is the Host Data Strobe (HDS) Schmitt-trigger input. The polarity of the data strobe is programmable, but is configured as active-low (HDS) following reset.
HWR/HWR	Input		Host Write Data —When HI08 is programmed to interface a double-data-strobe host bus and the HI function is selected, this signal is the Host Write Data Strobe (HWR) Schmitt-trigger input. The polarity of the data strobe is programmable, but is configured as active-low (HWR) following reset.
PB12	Input or Output		Port B 12 —When the HI08 is configured as GPIO through the HPCR, this signal is individually programmed as an input or output through the HDDR.
HCS	Input	Input	Host Chip Select —When HI08 is programmed to interface a non-multiplexed host bus and the HI function is selected, this signal is the Host Chip Select (HCS) input. The polarity of the chip select is programmable, but is configured active-low (HCS) after reset.
HA10	Input		Host Address 10 —When HI08 is programmed to interface a multiplexed host bus and the HI function is selected, this signal is line 10 of the Host Address (HA10) input bus.
PB13	Input or Output		Port B 13 —When the HI08 is configured as GPIO through the HPCR, this signal is individually programmed as an input or output through the HDDR.

 Table 1-11
 Host Interface (Continued)

Host Interface (HI08)

Signal Name	Туре	State During Reset	Signal Description
HREQ/HREQ	Output	Input	Host Request —When HI08 is programmed to interface a single host request host bus and the HI function is selected, this signal is the Host Request (HREQ) output. The polarity of the host request is programmable, but is configured as active-low (HREQ) following reset. The host request may be programmed as a driven or open-drain output.
HTRQ/HTRQ	Output		Transmit Host Request —When HI08 is programmed to interface a double host request host bus and the HI function is selected, this signal is the Transmit Host Request (HTRQ) output. The polarity of the host request is programmable, but is configured as active-low (HTRQ) following reset. The host request may be programmed as a driven or open-drain output.
PB14	Input or Output		Port B 14 —When the HI08 is programmed to interface a multiplexed host bus and the signal is configured as GPIO through the HPCR, this signal is individually programmed as an input or output through the HDDR.
HACK/HACK	Input	Input	Host Acknowledge —When HI08 is programmed to interface a single host request host bus and the HI function is selected, this signal is the Host Acknowledge (HACK) Schmitt-trigger input. The polarity of the host acknowledge is programmable, but is configured as active- low (HACK) after reset.
HRRQ/HRRQ	Output		Receive Host Request —When HI08 is programmed to interface a double host request host bus and the HI function is selected, this signal is the Receive Host Request (HRRQ) output. The polarity of the host request is programmable, but is configured as active-low (HRRQ) after reset. The host request may be programmed as a driven or open-drain output.
PB15	Input or Output		Port B 15 —When the HI08 is configured as GPIO through the HPCR, this signal is individually programmed as an input or output through the HDDR.

 Table 1-11
 Host Interface (Continued)

Enhanced Synchronous Serial Interface 0 (ESSI0)

ENHANCED SYNCHRONOUS SERIAL INTERFACE 0 (ESSI0)

There are two synchronous serial interfaces (ESSI0 and ESSI1) that provide a fullduplex serial port for serial communication with a variety of serial devices, including one or more industry-standard codecs, other DSPs, microprocessors, and peripherals which implement the Motorola Serial Peripheral Interface (SPI).

Signal Name	Туре	State During Reset	Signal Description
SC00	Input or Output	Input	Serial Control 0 —The function of SC00 is determined by the selection of either Synchronous or Asynchronous mode. For Asynchronous mode, this signal will be used for the receive clock I/O (Schmitt- trigger input). For Synchronous mode, this signal is used either for Transmitter 1 output or for Serial I/O Flag 0.
PC0			Port C 0 —The default configuration following reset is GPIO input PC0. When configured as PC0, signal direction is controlled through the Port Directions Register (PRR0). The signal can be configured as ESSI signal SC00 through the Port Control Register (PCR0).
SC01	Input/Output	Input	Serial Control 1 —The function of this signal is determined by the selection of either Synchronous or Asynchronous mode. For Asynchronous mode, this signal is the receiver frame sync I/O. For Synchronous mode, this signal is used either for Transmitter 2 output or for Serial I/O Flag 1.
PC1	Input or Output		Port C 1 —The default configuration following reset is GPIO input PC1. When configured as PC1, signal direction is controlled through PRR0. The signal can be configured as an ESSI signal SC01 through PCR0.
$\langle \bigcirc \rangle$	\mathcal{T}		

 Table 1-12
 Enhanced Synchronous Serial Interface 0 (ESSI0)

Enhanced Synchronous Serial Interface 0 (ESSI0)

Signal Name	Туре	State During Reset	Signal Description
SC02	Input/Output	Input	Serial Control Signal 2—SC02 is used for frame sync I/O. SC02 is the frame sync for both the transmitter and receiver in Synchronous mode, and for the transmitter only in Asynchronous mode. When configured as an output, this signal is the internally generated frame sync signal. When configured as an input, this signal receives an external frame sync signal for the transmitter (and the receiver in synchronous operation).
PC2	Input or Output		Port C 2 —The default configuration following reset is GPIO input PC2. When configured as PC2, signal direction is controlled through PRR0. The signal can be configured as an ESSI signal SC02 through PCR0.
SCK0	Input/Output	Input	Serial Clock—SCK0 is a bidirectional Schmitt-trigger input signal providing the serial bit rate clock for the ESSI. The SCK0 is a clock input or output used by both the transmitter and receiver in Synchronous modes, or by the transmitter in Asynchronous modes. Although an external serial clock can be independent of and asynchronous to the DSP system clock, it must
			exceed the minimum clock cycle time of 6T (i.e., the system clock frequency must be at least three times the external ESSI clock frequency). The ESSI needs at least three DSP phases inside each half of the serial clock.
PC3	Input or Output		Port C 3 —The default configuration following reset is GPIO input PC3. When configured as PC3, signal direction is controlled through PRR0. The signal can be configured as an ESSI signal SCK0 through PCR0.
SRD0	Input/Output	Input	Serial Receive Data —SRD0 receives serial data and transfers the data to the ESSI receive shift register. SRD0 is an input when data is being received.
PC4	Input or Output		Port C 4 —The default configuration following reset is GPIO input PC4. When configured as PC4, signal direction is controlled through PRR0. The signal can be configured as an ESSI signal SRD0 through PCR0.

Enhanced Synchronous Serial Interface 0 (ESSI0)

Signal Name	Туре	State During Reset	Signal Description
STD0	Input/Output	Input	Serial Transmit Data—STD0 is used for transmitting data from the serial transmit shift register, STD0 is an output when data is being transmitted,
PC5	Input or Output		Port C 5 —The default configuration following reset is GPIO input PC5. When configured as PC5, signal direction is controlled through PRR0. The signal can be configured as an ESSI signal STD0 through PCR0.

ENHANCED SYNCHRONOUS SERIAL INTERFACE 1 (ESSI1)

Signal Name	Туре	State During Reset	Signal Description
SC10	Input or Output	Input	Serial Control 0 —The function of SC10 is determined by the selection of either Synchronous or Asynchronous mode. For Asynchronous mode, this signal will be used for the receive clock I/O (Schmitt- trigger input). For Synchronous mode, this signal is used either for Transmitter 1 output or for Serial I/O Flag 0.
PD0	Input or Output		Port D 0 —The default configuration following reset is GPIO input PD0. When configured as PD0, signal direction is controlled through the Port Directions Register (PRR1). The signal can be configured as an ESSI signal SC10 through the Port Control Register (PCR1).
SC11	Input/Output	Input	Serial Control 1 —The function of this signal is determined by the selection of either Synchronous or Asynchronous mode. For Asynchronous mode, this signal is the receiver frame sync I/O. For Synchronous mode, this signal is used either for Transmitter 2 output or for Serial I/O Flag 1.
PD1	Input or Output		Port D 1 —The default configuration following reset is GPIO input PD1. When configured as PD1, signal direction is controlled through PRR1. The signal can be configured as an ESSI signal SC11 through PCR1.
SC12	Input/Output	Input	Serial Control Signal 2 —SC12 is used for frame sync I/O. SC12 is the frame sync for both the transmitter and receiver in Synchronous mode, and for the transmitter only in Asynchronous mode. When configured as an output, this signal is the internally generated frame sync signal. When configured as an input, this signal receives an external frame sync signal for the transmitter (and the receiver in Synchronous operation).
PD2	Input or Output		Port D 2 —The default configuration following reset is GPIO input PD2. When configured as PD2, signal direction is controlled through PRR1. The signal can be configured as an ESSI signal SC12 through PCR1.

 Table 1-13
 Enhanced Synchronous Serial Interface 1 (ESSI1)

Enhanced Synchronous Serial Interface 1 (ESSI1)

Signal Name	Туре	State During Reset	Signal Description
SCK1	Input/Output	Input	Serial Clock—SCK1 is a bidirectional Schmitt-trigger input signal providing the serial bit rate clock for the ESSI. The SCK1 is a clock input or output used by both the transmitter and receiver in Synchronous modes, or by the transmitter in Asynchronous modes. Although an external serial clock can be independent
			of and asynchronous to the DSP system clock, it must exceed the minimum clock cycle time of 6T (i.e., the system clock frequency must be at least three times the external ESSI clock frequency). The ESSI needs at least three DSP phases inside each half of the serial clock.
PD3	Input or Output		Port D 3 —The default configuration following reset is GPIO input PD3. When configured as PD3, signal direction is controlled through PRR1. The signal can be configured as an ESSI signal SCK1 through PCR1.
SRD1	Input/Output	Input	Serial Receive Data—SRD1 receives serial data and transfers the data to the ESSI receive shift register. SRD1 is an input when data is being received.
PD4	Input or Output		Port D 4 —The default configuration following reset is GPIO input PD4. When configured as PD4, signal direction is controlled through PRR1. The signal can be configured as an ESSI signal SRD1 through PCR1.
STD1	Input/Output	Input	Serial Transmit Data —STD1 is used for transmitting data from the serial transmit shift register. STD1 is an output when data is being transmitted.
PD5	Input or Output		Port D 5 —The default configuration following reset is GPIO input PD5. When configured as PD5, signal direction is controlled through PRR1. The signal can be configured as an ESSI signal STD1 through PCR1.

SERIAL COMMUNICATION INTERFACE (SCI)

The Serial Communication interface (SCI) provides a full duplex port for serial communication to other DSPs, microprocessors, or peripherals such as modems.

Туре	State During Reset	Signal Description
Input	Input	Serial Receive Data —This input receives byte oriented serial data and transfers it to the SCI receive shift register.
Input or Output		Port E 0 —The default configuration following reset is GPIO input PE0. When configured as PE0, signal direction is controlled through the SCI Port Directions Register (PRR). The signal can be configured as an SCI signal RXD through the SCI Port Control Register (PCR).
Output	Input	Serial Transmit Data —This signal transmits data from SCI transmit data register.
Input or Output		Port E 1 —The default configuration following reset is GPIO input PE1. When configured as PE1, signal direction is controlled through the SCI PRR. The signal can be configured as an SCI signal TXD through the SCI PCR.
Input/Output	Input	Serial Clock —This is the bidirectional Schmitt- trigger input signal providing the input or output clock used by the transmitter and/or the receiver.
Input or Output	V	Port E 2 —The default configuration following reset is GPIO input PE2. When configured as PE2, signal direction is controlled through the SCI PRR. The signal can be configured as an SCI signal SCLK through the SCI PCR.
	Input or Output Output Input or Output Input/Output Input or	Iype Reset Input Input Input or Output Input Output Input Input or Output Input Input/Output Input

 Table 1-14
 Serial Communication Interface (SCI)

TimerS

TIMERS

Three identical and independent timers are implemented in the DSP56302A. Each timer can use internal or external clocking, and can interrupt the DSP56302A after a specified number of events (clocks), or can signal an external device after counting a specific number of internal events.

Signal Name	Туре	State During Reset	Signal Description
TIO0	Input or Output	Input	Timer 0 Schmitt-Trigger Input/Output—When Timer 0 functions as an external event counter or in Measurement mode, TIO0 is used as input. When Timer 0 functions in Watchdog, Timer, or Pulse Modulation mode, TIO0 is used as output. The default mode after reset is GPIO input. This can be changed to output or configured as a Timer Input/Output through the Timer 0 Control/Status Register (TCSR0).
TIO1	Input or Output	Input	Timer 1 Schmitt-Trigger Input/Output—When Timer 1 functions as an external event counter or in Measurement mode, TIO1 is used as input. When Timer 1 functions in Watchdog, Timer, or Pulse Modulation mode, TIO1 is used as output. The default mode after reset is GPIO input. This can be changed to output or configured as a Timer Input/Output through the Timer 1 Control/Status Register (TCSR1).
TIO2	Input or Output	Input	Timer 2 Schmitt-Trigger Input/Output —When Timer 2 functions as an external event counter or in Measurement mode, TIO2 is used as input. When Timer 2 functions in Watchdog, Timer, or Pulse Modulation mode, TIO2 is used as output. The default mode after reset is GPIO input. This can be changed to output or configured as a Timer Input/Output through the Timer 2 Control/Status Register (TCSR2).

OnCE/JTAG INTERFACE

Signal Name	Туре	State During Reset	Signal Description
ТСК	Input	Input	Test Clock —TCK is a test clock input signal used to synchronize the JTAG test logic.
TDI	Input	Input	Test Data Input —TDI is a test data serial input signal used for test instructions and data. TDI is sampled on the rising edge of TCK and has an internal pull-up resistor.
TDO	Output	Tri-stated	Test Data Output —TDO is a test data serial output signal used for test instructions and data. TDO is tri- statable and is actively driven in the shift-IR and shift-DR controller states. TDO changes on the falling edge of TCK.
TMS	Input	Input	Test Mode Select —TMS is an input signal used to sequence the test controller's state machine. TMS is sampled on the rising edge of TCK and has an internal pull-up resistor.
TRST	Input	Input	Test Reset —TRST is an active-low Schmitt-trigger input signal used to asynchronously initialize the test controller. TRST has an internal pull-up resistor. TRST must be asserted after power up.

Table 1-16 OnCE/JTAG Interface

OnCE/JTAG Interface

Signal Name	Туре	State During Reset	Signal Description
DE	Input/Output	Input	Debug Event —DE is an open-drain, bidirectional, active-low signal providing, as an input, a means of entering the Debug mode of operation from an external command controller, and, as an output, a means of acknowledging that the chip has entered the Debug mode. This signal, when asserted as an input, causes the DSP56300 core to finish the current instruction being executed, save the instruction pipeline information, enter the Debug mode, and wait for commands to be entered from the debug serial input line. This signal is asserted as an output for three clock cycles when the chip enters the Debug mode as a result of a debug request or as a result of meeting a breakpoint condition. The DE has an internal pull-up resistor.

 Table 1-16
 OnCE/JTAG Interface (Continued)

SECTION 2

SPECIFICATIONS

INTRODUCTION

The DSP56302A is fabricated in high density CMOS with Transistor-Transistor Logic (TTL) compatible inputs and outputs. The DSP56302A specifications are preliminary and are from design simulations, and may not be fully tested or guaranteed at this early stage of the product life cycle. Finalized specifications will be published after full characterization and device qualifications are complete.

MAXIMUM RATINGS

CAUTION

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, normal precautions should be taken to avoid exceeding maximum voltage ratings. Reliability is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g., either GND or V_{CC}).

Note: In the calculation of timing requirements, adding a maximum value of one specification to a minimum value of another specification does not yield a reasonable sum. A maximum specification is calculated using a worst case variation of process parameter values in one direction. The minimum specification is calculated using the worst case for the same parameters in the opposite direction. Therefore, a "maximum" value for a specification will never occur in the same device that has a "minimum" value for another specification; adding a maximum to a minimum represents a condition that can never exist.

Thermal Characteristics

Rating ¹	Symbol	Value ^{1, 2}	Unit				
Supply Voltage	V _{CC}	-0.3 to +4.0	V				
All input voltages	V _{IN}	GND – 0.3 to V_{CC} + 0.3	V				
Current drain per pin excluding V_{CC} and GND	I	10	mA				
Operating temperature range	T _J	-40 to +100	°C				
Storage temperature	T _{STG}	-55 to +150	°C				
Notes: 1 GND = 0 V V _{CC} = 3.3 V + 0.3 V T _z = -40° C to + 100° C CL = 50 pF							

 Table 2-1
 Maximum Ratings

Notes: GND = 0 V, V_{CC} = 3.3 V ± 0.3 V, T_{J} = -40°C to +100°C, CL = 50 pF 1.

2. Absolute maximum ratings are stress ratings only, and functional operation at the maximum is not guaranteed. Stress beyond the maximum rating may affect device reliability or cause permanent damage to the device.

THERMAL CHARACTERISTICS

Characteristic	Symbol	TQFP Value	PBGA ³ Value	PBGA ⁴ Value	Unit	
Junction-to-ambient thermal resistance ¹	$R_{\theta JA}$ or θ_{JA}	49.3	49.4	28.5	°C/W	
Junction-to-case thermal resistance ²	$R_{\theta JC}$ or θ_{JC}	8.2	12.0		°C/W	
Thermal characterization parameter	Ψ_{JT}	5.5	2.0		°C/W	
 Notes: 1. Junction-to-ambient thermal resistance is based on measurements on a horizontal single-sided Printed Circuit Board per SEMI G38-87 in natural convection. (SEMI is Semiconductor Equipment and Materials International, 805 East Middlefield Rd., Mountain View, CA 94043, (415) 964-5111) Measurements were done with parts mounted on thermal test boards conforming to specification EIA/JESD51-3. 2. Junction-to-case thermal resistance is based on measurements using a cold plate per SEMI G30-88, with the exception that the cold plate temperature is used for the case temperature. 						

 Table 2-2
 Thermal Characteristics

These are simulated values; testing is not complete. See **Note 1** for test board conditions. <u>3</u>.

4. These are simulated values; testing is not complete. The test board has two, 2-ounce signal layers and two 1-ounce solid ground planes internal to the test board.

DSP56302A Technical Data Sheet

DC ELECTRICAL CHARACTERISTICS

Characteristics	Symbol	Min	Тур	Max	Unit
Supply voltage	V _{CC}	3.0	3.3	3.6	V
Input high voltage • D0–D23, BG, BB, TA • MOD ² /IRQ ² , RESET, PINIT/NMI and all JTAG/ESSI/SCI/Timer/HI08 pins • EXTAL ³	V _{IH} V _{IHP} V _{IHX}	$\begin{array}{c} 2.0\\ 2.0\\ 0.8\times V_{CC}\end{array}$	-	V_{CC} $V_{CC} + 0.3$ V_{CC}	V V V
Input low voltage • D0–D23, BG, BB, TA, MOD ² /IRQ ² , RESET, PINIT • All JTAG/ESSI/SCI/Timer/HI08 pins • EXTAL ³	V _{IL} V _{ILP} V _{ILX}	-0.3 -0.3 -0.3		0.8 0.8 $0.2 \times V_{CC}$	V V V
Input leakage current	I _{IN}	-10		10	μA
High impedance (off-state) input current (@ 2.4 V $/$ 0.4 V)	I _{TSI}	-10	_	10	μΑ
Output high voltage • TTL $(I_{OH} = -0.4 \text{ mA})^{4,5}$ • CMOS $(I_{OH} = -10 \mu \text{A})^4$	V _{OH}	V _{CC} - 0.4 V _{CC} - 0.01			V V
Output low voltage • TTL (Port A $I_{OL} = 1.6 \text{ mA}$, non-Port A $I_{OL} = 3.2 \text{ mA}$, open-drain pins $I_{OL} = 6.7 \text{ mA}$) ^{4,5} • CMOS ($I_{OL} = 10 \text{ µA}$) ⁴	VOL	_	_	0.4	V V
Internal supply current ⁶ : • In Normal mode	I _{CCI}		66 MHz: 106 80 MHz: 128 100 MHz: 160		mA mA mA
 In Wait mode⁷ In Stop mode⁸ 	I _{CCW} I _{CCS}		5 100		mA μA
PLL supply current in Stop mode ⁴		_	1	2.5	mA
Input capacitance ⁴	C _{IN}	—	—	10	pF

 Table 2-3
 DC Electrical Characteristics¹

AC Electrical Characteristics

		Table 2-5 DC Electr			(Continueu)		
		Characteristics	Symbol	Min	Тур	Max	Unit
Notes:	1.	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}; T_{I} = -40^{\circ}\text{C} \text{ to} +100^{\circ}\text{C}$	$^{\circ}C, C_{L} = 50$) pF	·	•	•
	2.	Refers to MODA/ \overline{IRQA} , MODB/ \overline{IRQI}	Ē, MODC∕Ī	\overline{RQC} , and MC	DDD/\overline{IRQD} pins		
	3.	Driving EXTAL to the low V_{IHX} or the current). To minimize power consump	otion, the m	inimum V _{IHX}	should be no lov		ion (dc
		$0.9 \times V_{CC}$ and the maximum V_{ILX} show		gher than 0.1	$\times V_{CC}$.		
	4.	Periodically sampled and not 100% te					
	5.	This characteristic does not apply to X					
	6.	Power Consumption Consideration current requirements in Normal mode (i.e., not allowed to float). Measureme Appendix A). The power consumption this benchmark. This reflects typical D $V_{CC} = 3.3$ V at $T_J = 100$ °C. Maximum i dependent.	e. In order to nts are base n numbers i SP applicat	o obtain these ed on synthetic in this specific ions. Typical i	results, all inputs intensive DSP b ation are 90% of nternal supply cu	s must be term enchmarks (se the measured urrent is measu	tinated ee results of tred with
	7.	In order to obtain these results, all inp signals are disabled during Stop state.		e terminated (i	.e., not allowed to	o float). PLL a	nd XTAL
l	8.	In order to obtain these results, all input (i.e., not allowed to float).		re not disconr	ected at Stop mo	de, must be te	rminated

Table 2-3 DC Electrical Characteristics¹ (Continued)

AC ELECTRICAL CHARACTERISTICS

The timing waveforms shown in the ac electrical characteristics section are tested with a V_{IL} maximum of 0.3 V and a V_{IH} minimum of 2.4 V for all pins except EXTAL, which is tested using the input levels shown in **Note 6** of the previous table. AC timing specifications, which are referenced to a device input signal, are measured in production with respect to the 50% point of the respective input signal's transition. DSP56302A output levels are measured with the production test machine V_{OL} and V_{OH} reference levels set at 0.8 V and 2.0 V, respectively.

INTERNAL CLOCKS

Characteristics	Symbol	Expression ^{1, 2}				
Characteristics	Symbol	Min	Тур	Max		
Internal operation frequency and CLKOUT with PLL enabled	f		$(Ef \times MF) / (PDF \times DF)$			
Internal operation frequency and CLKOUT with PLL disabled	f		Ef/2			
 Internal clock and CLKOUT high period With PLL disabled With PLL enabled and MF ≤ 4 With PLL enabled and MF > 4 	T _H	$0.49 \times \text{ET}_{\text{C}} \times$ $PDF \times DF/MF$ $0.47 \times \text{ET}_{\text{C}} \times$ $PDF \times DF/MF$	ET _C	$\begin{array}{c} - \\ 0.51 \times \mathrm{ET}_{\mathrm{C}} \times \\ \mathrm{PDF} \times \mathrm{DF} / \mathrm{MF} \\ 0.53 \times \mathrm{ET}_{\mathrm{C}} \times \\ \mathrm{PDF} \times \mathrm{DF} / \mathrm{MF} \end{array}$		
Internal clock and CLKOUT low period • With PLL disabled • With PLL enabled and $MF \le 4$ • With PLL enabled and $MF > 4$	TL	$0.49 \times ET_C \times$ PDF \times DF/MF 0.47 \times ET _C \times PDF \times DF/MF	ET _C — —	$\begin{array}{c} - \\ 0.51 \times \mathrm{ET}_{\mathrm{C}} \times \\ \mathrm{PDF} \times \mathrm{DF} / \mathrm{MF} \\ 0.53 \times \mathrm{ET}_{\mathrm{C}} \times \\ \mathrm{PDF} \times \mathrm{DF} / \mathrm{MF} \end{array}$		
Internal clock and CLKOUT cycle time with PLL enabled	Tc	_	ET _C ×PDF× DF/MF	_		
Internal clock and CLKOUT cycle time with PLL disabled	T _C		$2 \times \text{ET}_{\text{C}}$	_		
Instruction cycle time	I _{CYC}	_	T _C	_		
PDF = Predivisio T _C = internal cl	requency lock cycle tion Factor n Factor ock cycle	section in the DSP56	5300 Family Manual for a	detailed discussion		

 Table 2-4
 Internal Clocks, CLKOUT

EXTERNAL CLOCK OPERATION

EXTERNAL CLOCK OPERATION

The DSP56302A system clock may be derived from the on–chip crystal oscillator, as shown in **Figure 1** on the cover page, or it may be externally supplied. An externally supplied square wave voltage source should be connected to EXTAL (see **Figure 2-2**), leaving XTAL physically not connected to the board or socket.

Fundamental Frequency Fork Crystal Oscillator

Suggested Component Values:

 $R2 = 200 k\Omega \pm 10\%$

Calculations were done for a 32.768 kHz crystal with the following parameters: a load capacitance (C_L) of 12.5 pF, a shunt capacitance (C_0) of 1.8 pF, a series resistance of 40 k Ω , and a drive level of 1 μ W.

Suggested Component Values:

_	\neg	4 MHz			
R	=	680 kΩ ± 10%	R	=	$680 \text{ k}\Omega \pm 10\%$
Ç	=	56 pF ± 20%	С	=	$22~\text{pF}\pm20\%$

Calculations were done for a 4/20 MHz crystal with the following parameters: a C_Lof 30/20 pF, a C₀ of 7/6 pF, a series resistance of 100/20 Ω , and a drive level of 2 mW.

AA1071

Figure 2-1 Crystal Oscillator Circuits
EXTERNAL CLOCK OPERATION

Figure 2-2 External Clock Timing

Table 2-5	Clock Operation

NI-	Characteristics	C	66 N	1Hz	80 N	/Hz	100 MHz	
No.		Symbol	Min	Max	Min	Max	Min	Max
1	Frequency of EXTAL (EXTAL Pin Frequency) The rise and fall time of this external clock should be 3 ns maximum.	Ef	0	66.0	0	80.0	0	100.0
2	EXTAL input high ^{1, 2} • With PLL disabled (46.7%–53.3% duty cycle ⁶) • With PLL enabled (42.5%–57.5% duty cycle ⁶)	ET _H	7.08 ns 6.44 ns	∞ 157.0 µs	5.84 ns 5.31 ns	∞ 157.0 µs	4.67 ns 4.25 ns	∞ 157.0 µs
3	 EXTAL input low^{1, 2} With PLL disabled (46.7%-53.3% duty cycle⁶) With PLL enabled (42.5%-57.5% duty cycle⁶) 	ETL	7.08 ns 6.44 ns	∞ 157.0 µs	5.84 ns 5.31 ns	∞ 157.0 μs	4.67 ns 4.25 ns	∞ 157.0 µs

EXTERNAL CLOCK OPERATION

NI-		Ch	66 N	IHz	80 N	íHz	100 MHz		
No.	Characteristics	Symbol	Min	Max	Min	Max	Min	Max	
4	EXTAL cycle time ² • With PLL disabled • With PLL enabled	ET _C	15.15 ns 15.15 ns	∞ 273.1 µs	12.50 ns 12.50 ns	∞ 273.1 µs	10.00 ns 10.00 ns	∞ 273.1 μ:	
5	CLKOUT change from EXTAL fall with PLL disabled		4.3 ns	11.0 ns	4.3 ns	11.0 ns	4.3 ns	11.0 ns	
6	CLKOUT rising edge from EXTAL rising edge with PLL enabled (MF = 1, PDF = 1, Ef > 15 MHz) ^{3,5} CLKOUT falling edge from EXTAL rising edge with PLL enabled (MF = 2 or 4, PDF = 1, Ef > 15 MHz) ^{3,5}		0.0 ns	1.8 ns	0.0 ns	1.8 ns	0.0 ns	1.8 ns	
	CLKOUT falling edge from EXTAL falling edge with PLL enabled (MF \leq 4, PDF \neq 1, Ef/PDF > 15 MHz) ^{3,5}		0.0 ns	1.8 ns	0.0 ns	1.8 ns	0.0 ns	1.8 ns	
7	Instruction cycle time = $I_{CYC} = T_C^4$ (see Table 2-4) (46.7%-53.3% duty cycle) • With PLL disabled • With PLL enabled	Ісус	30.3 ns 15.15 ns	∞ 8.53 μs	25.0 ns 12.50 ns	∞ 8.53 μs	20.0 ns 10.00 ns	∞ 8.53 μs	

 Table 2-5
 Clock Operation (Continued)

2. The maximum value for PLL enabled is given for minimum V_{CO} and maximum MF.

3. Periodically sampled and not 100% tested

4. The maximum value for PLL enabled is given for minimum V_{CO} and maximum DF.

5. The skew is not guaranteed for any other MF value.

6. The indicated duty cycle is for the specified maximum frequency for which a part is rated. The minimum clock high or low time required for correction operation, however, remains the same at lower operating frequencies; therefore, when a lower clock frequency is used, the signal symmetry may vary from the specified duty cycle as long as the minimum high time and low time requirements are met.

DSP56302A Technical Data Sheet

PHASE LOCK LOOP (PLL) CHARACTERISTICS

	66 MHz		80 N	/ Hz	100]	.	
Characteristics	Min	Max	Min	Max	Min	Max	Unit
V_{CO} frequency when PLL enabled (MF × E _f × 2/PDF)	30	132	30	160	30	200	MHz
PLL external capacitor (PCAP pin to V_{CCP}) (C_{PCAP}^{1})				<			
	$\frac{(MF \times 425) - }{125}$	(MF × 590) – 175	(MF × 425) – 125	(MF×590) – 175	(MF×425) – 125	(MF × 590) – 175	pF
• @ MF > 4	$\mathrm{MF} imes 520$	MF imes 920	$MF \times 520$	MF × 920	$MF \times 520$	MF × 920	pF

 Table 2-6
 PLL Characteristics

Note: C_{PCAP} is the value of the PLL capacitor (connected between the PCAP pin and V_{CCP}). The recommended value in pF for C_{PCAP} can be computed from one of the following equations: (680 × MF) – 120, for MF < 3, or 1100 × MF, for MF ≥ 3.

RESET, STOP, MODE SELECT, AND INTERRUPT TIMING

N	Characteristics	E	66 N	ИНz	80 N	/Hz	100 N	MHz	T
No.	Characteristics	Expression	Min	Max	Min	Max	Min	Max	Unit
8	Delay from RESET assertion to all pins at reset value ³	_	_	26.0		26.0		26.0	ns
9	Required RESET duration ⁴ • Power on, external	$50 imes \mathrm{ET}_{\mathrm{C}}$	760.0	_	625.0	_	500.0) _	ns
	clock generator, PLL disabled • Power on, external clock generator, PLL enabled	$1000 \times \mathrm{ET}_{\mathrm{C}}$	15.2	$\langle \langle \rangle$	12.5		10.0	_	μs
	Power on, internal oscillator	$75000 \times \mathrm{ET}_{\mathrm{C}}$	1.14		1.0	_	0.75	—	ms
	• During STOP, XTAL disabled (PCTL Bit 16 = 0)	75000 × ET _C	1.14	\rightarrow	1.0	_	0.75	—	ms
	• During STOP, XTAL enabled (PCTL Bit 16 = 1)	$2.5 \times T_{C}$	38.0	_	31.3	_	25.0	—	ns
	 During normal operation 	2.5 × T _C	38.0	_	31.3	_	25.0	_	ns
10	Delay from asynchronous $\overline{\text{RESET}}$ deassertion to first external address output (internal reset deassertion) ⁵								
	• Minimum	66 MHz : 3.25 × T _C + 2.0 80 MHz :	51.0	_	_	_	_	—	ns
		$3.25 \times T_{C} + 2.0$ 100 MHz:	-		42.6		_	_	ns
	• Maximum	$3.25 \times T_{C} + 2.0$ 66 MHz:	-	_	_	_	34.5	_	ns
		20.25 T _C + 11.0 80 MHz :	-	318.0	_	_	_	_	ns
		20.25 T _C + 9.95 100 MHz:	-		_	263.1	_	_	ns
		20.25 T _C + 7.50	_				—	211.5	ns

Table 2-7 Reset, Stop, Mode Select, and Interrupt Timing⁶

		_				-			
No.	Characteristics	Europasian	66 MHz		80 MHz		100 MHz		Unit
10.	Characteristics	Expression	Min	Max	Min	Max	Min	Max	Unit
11	Synchronous reset setup time from RESET deassertion to CLKOUT Transition 1 • Minimum • Maximum	T _C	9.0	 15.2	7.4	 12.5	5.9	10.0	ns ns
12	Synchronous reset deasserted, delay time from the CLKOUT Transition 1 to the first external address output • Minimum • Maximum	$3.25 imes T_{C} + 1.0$ 20.25 T _C + 5.0	50.0	312.0	41.6	258.1	33.5	207.5	ns ns
13	Mode select setup time		30.0	—	30.0	_	30.0	_	ns
14	Mode select hold time	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.0	\rightarrow	0.0		0.0		ns
15	Minimum edge- triggered interrupt request assertion width		10.0	/ _	8.25		6.6		ns
16	Minimum edge- triggered interrupt request deassertion width		10.0		8.25		6.6		ns
17	Delay from IRQA, IRQB, IRQC, IRQD, NMI assertion to external memory access address out valid								
	• Caused by first interrupt instruction fetch	$4.25 \times T_{C} + 2.0$	66.0	_	55.1	_	44.5		ns
	• Caused by first interrupt instruction execution	$7.25 imes T_{C} + 2.0$	112.0		92.6		74.5		ns

 Table 2-7
 Reset, Stop, Mode Select, and Interrupt Timing⁶ (Continued)

N	Characteristics	E	66 N	MHz	80 N	/IHz	100 1	MHz	T
No.		Expression	Min	Max	Min	Max	Min	Max	Unit
18	Delay from IRQA, IRQB, IRQC, IRQD, NMI assertion to general-purpose transfer output valid caused by first interrupt instruction execution	$10 \times T_{C} + 5.0$	157.0		130.0	-	105.0		ns
19	Delay from address output valid caused by first interrupt instruction execute to interrupt request deassertion for level sensitive fast interrupts ¹	66 MHz⁸ : $3.75 \times T_{C} + WS \times T_{C} - 14$ 80 MHz⁸ : $3.75 \times T_{C} + WS \times T_{C} - 12.4$ 100 MHz⁸ : $3.75 \times T_{C} + WS \times T_{C} - 7$	-				_		ns ns
20	Delay from RD assertion to interrupt request deassertion for level sensitive fast interrupts ¹	10.94 66 MHz⁸ : $3.25 \times T_{C} + WS \times T_{C} - 14$ 80 MHz⁸ : $3.25 \times T_{C} + WS \times T_{C} - 12.4$ 100 MHz⁸ :		7					ns ns
		$3.25 \times T_{C} + WS \times T_{C} - 10.94$							ns

Table 2-7	Reset, Stop, Mode Select, and Interrupt Timing ⁶ (Continued)
-----------	---

		66 N	ИНz	80 N	/Hz	100 1	MHz	
Characteristics	Expression	Min	Max	Min	Max	Min	Max	Unit
Delay from WR assertion to interrupt request deassertion for level sensitive fast						2	5	
	00 MIT 8					\frown		$\mathbf{\Sigma}$
• DRAM for all WS	$(WS + 3.5) \times T_C - 14$	_					₽) 2/	ns
	$(WS + 3.5) \times T_{C} - 12.4$							ns
• SRAM WS - 1	$(WS + 3.5) \times T_{C} - 10.94$					- <		ns
• SIAWI WS – 1	$(WS + 3.5) \times T_C - 14$				\geq			ns
	$(WS + 3.5) \times T_C - 12.4$							ns
• SRAM WS = 2. 3	$(WS + 3.5) \times T_{C} - 10.94$		\searrow			_		ns
	$(WS + 3) \times T_{C} - 14$		\geq					ns
	$(WS + 3) \times T_{C} - 12.4$			_				ns
• SRAM WS \geq 4	$(WS + 3) \times T_{C} - 10.94$ 66 MHz ⁸ :					_		ns
	(WS + 2.5) × T _C - 14 80 MHz⁸ :							ns
	(WS + 2.5) × T _C – 12.4 100 MHz ⁸ :			_				ns
	$(WS + 2.5) \times T_C - 10.94$							ns
Synchronous interrupt setup time from IRQA, IRQB, IRQC, IRQD, NMI assertion to the CLKOUT Transition 2		9.0	T _C	7.4	T _C	5.9	T _C	ns
	assertion to interrupt request deassertion for level sensitive fast interrupts ¹ • DRAM for all WS • SRAM WS = 1 • SRAM WS = 2, 3 • SRAM WS ≥ 4 • SRAM WS ≥ 4	$\label{eq:sensitive} \begin{array}{ c c c } \hline \mathbf{V}_{\mathbf{R}} \\ assertion to interrupt \\ request deassertion for \\ level sensitive fast \\ interrupts^1 \\ \bullet DRAM for all WS \\ \hline \mathbf{W}_{\mathbf{S}} + 3.5) \times \mathbf{T}_{\mathbf{C}} - 14 \\ 80 \ \mathbf{MHz}^{8} \\ (WS + 3.5) \times \mathbf{T}_{\mathbf{C}} - 12.4 \\ 100 \ \mathbf{MHz}^{8} \\ (WS + 3.5) \times \mathbf{T}_{\mathbf{C}} - 10.94 \\ 66 \ \mathbf{MHz}^{8} \\ (WS + 3.5) \times \mathbf{T}_{\mathbf{C}} - 14 \\ 80 \ \mathbf{MHz}^{8} \\ (WS + 3.5) \times \mathbf{T}_{\mathbf{C}} - 12.4 \\ 100 \ \mathbf{MHz}^{8} \\ (WS + 3.5) \times \mathbf{T}_{\mathbf{C}} - 12.4 \\ 100 \ \mathbf{MHz}^{8} \\ (WS + 3.5) \times \mathbf{T}_{\mathbf{C}} - 12.4 \\ 100 \ \mathbf{MHz}^{8} \\ (WS + 3.5) \times \mathbf{T}_{\mathbf{C}} - 10.94 \\ 66 \ \mathbf{MHz}^{8} \\ (WS + 3) \times \mathbf{T}_{\mathbf{C}} - 10.94 \\ 66 \ \mathbf{MHz}^{8} \\ (WS + 3) \times \mathbf{T}_{\mathbf{C}} - 10.94 \\ 66 \ \mathbf{MHz}^{8} \\ (WS + 3) \times \mathbf{T}_{\mathbf{C}} - 10.94 \\ 66 \ \mathbf{MHz}^{8} \\ (WS + 3) \times \mathbf{T}_{\mathbf{C}} - 10.94 \\ 66 \ \mathbf{MHz}^{8} \\ (WS + 2.5) \times \mathbf{T}_{\mathbf{C}} - 14 \\ 80 \ \mathbf{MHz}^{8} \\ (WS + 2.5) \times \mathbf{T}_{\mathbf{C}} - 14 \\ 80 \ \mathbf{MHz}^{8} \\ (WS + 2.5) \times \mathbf{T}_{\mathbf{C}} - 12.4 \\ 100 \ \mathbf{MHz}^{8} \\ (WS + 2.5) \times \mathbf{T}_{\mathbf{C}} - 12.4 \\ 100 \ \mathbf{MHz}^{8} \\ (WS + 2.5) \times \mathbf{T}_{\mathbf{C}} - 10.94 \\ 50 \ \mathbf{MHz}^{8} \\ (WS + 2.5) \times \mathbf{T}_{\mathbf{C}} - 10.94 \\ 50 \ \mathbf{MHz}^{8} \\ (WS + 2.5) \times \mathbf{T}_{\mathbf{C}} - 10.94 \\ 50 \ \mathbf{MHz}^{8} \\ (WS + 2.5) \times \mathbf{T}_{\mathbf{C}} - 10.94 \\ 50 \ \mathbf{MHz}^{8} \\ (WS + 2.5) \times \mathbf{T}_{\mathbf{C}} - 10.94 \\ 50 \ \mathbf{MHz}^{8} \\ (WS + 2.5) \times \mathbf{T}_{\mathbf{C}} - 10.94 \\ 50 \ \mathbf{MHz}^{8} \\ (WS + 2.5) \times \mathbf{T}_{\mathbf{C}} - 10.94 \\ 50 \ \mathbf{MHz}^{8} \\ (WS + 2.5) \times \mathbf{T}_{\mathbf{C}} - 10.94 \\ 50 \ \mathbf{MHz}^{8} \\ (WS + 2.5) \times \mathbf{T}_{\mathbf{C}} - 10.94 \\ 50 \ \mathbf{MHz}^{8} \\ (WS + 2.5) \times \mathbf{T}_{\mathbf{C}} - 10.94 \\ 50 \ \mathbf{MHz}^{8} \\ (WS + 2.5) \times \mathbf{T}_{\mathbf{C}} - 10.94 \\ 50 \ \mathbf{MHz}^{8} \\ (WS + 2.5) \times \mathbf{T}_{\mathbf{C}} \\ 50 \ \mathbf{MHz}^{8 \\ 50 \ \mathbf{MHz}^{8} \\ (WS + 2.5) \times \mathbf{T}_{\mathbf{C}} \\ 50 \ \mathbf{MHz}^{8 \\ 50 \ \mathbf{MHz}^{8$	CharacteristicsExpressionMinDelay from \overline{WR} assertion to interrupt request deassertion for level sensitive fast interrupts166 MHz ⁸ : (WS + 3.5) × T _C - 14 (WS + 3.5) × T _C - 12.4 100 MHz ⁸ : (WS + 3.5) × T _C - 10.94 66 MHz ⁸ : (WS + 3.5) × T _C - 10.94 66 MHz ⁸ : (WS + 3.5) × T _C - 10.94 66 MHz ⁸ : (WS + 3.5) × T _C - 10.94 66 MHz ⁸ : (WS + 3.5) × T _C - 14 80 MHz ⁸ : (WS + 3.5) × T _C - 10.94 66 MHz ⁸ : (WS + 3.5) × T _C - 10.94 66 MHz ⁸ : (WS + 3.5) × T _C - 10.94 66 MHz ⁸ : (WS + 3) × T _C - 12.4 100 MHz ⁸ : (WS + 3) × T _C - 10.94 66 MHz ⁸ : (WS + 3) × T _C - 10.94 66 MHz ⁸ : (WS + 3) × T _C - 10.94 66 MHz ⁸ : (WS + 2.5) × T _C - 10.94 66 MHz ⁸ : (WS + 2.5) × T _C - 10.94 9.0• SRAM WS ≥ 49.0	$\begin{tabular}{ c c c c c }\hline & & & & & & & & & & & & & & & & & & &$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c } \hline Characteristics} & \hline Expression & \hline Min & Max & Min & Max & Min & Max \\ \hline \hline Min & Max & Min & Max & Min & Max \\ \hline \hline Delay from \overline{WR} \\ assertion to interrupt request deassertion for level sensitive fast interrupts^1 & DRAM for all WS & 66 MHz^8 & (WS + 3.5) \times T_C - 14 & 00 MHz^8 & (WS + 3.5) \times T_C - 12.4 & 00 MHz^8 & (WS + 3.5) \times T_C - 12.4 & 00 MHz^8 & (WS + 3.5) \times T_C - 12.4 & 00 MHz^8 & (WS + 3.5) \times T_C - 12.4 & 00 MHz^8 & (WS + 3.5) \times T_C - 12.4 & 00 MHz^8 & (WS + 3.5) \times T_C - 12.4 & 00 MHz^8 & (WS + 3.5) \times T_C - 12.4 & 00 MHz^8 & (WS + 3.5) \times T_C - 12.4 & 00 MHz^8 & (WS + 3.5) \times T_C - 12.4 & 00 MHz^8 & (WS + 3.5) \times T_C - 14 & 00 MHz^8 & (WS + 3.5) \times T_C - 14 & 00 MHz^8 & (WS + 3.5) \times T_C - 14 & 00 MHz^8 & (WS + 3.5) \times T_C - 14 & 00 MHz^8 & (WS + 3.5) \times T_C - 14 & 00 MHz^8 & (WS + 3.5) \times T_C - 12.4 & 00 MHz^8 & (WS + 3.5) \times T_C - 12.4 & 00 MHz^8 & (WS + 2.5) \times T_C - 10.94 & 00 MHz^8 & (WS + 2.5) \times T_C - 10.94 & 00 MHz^8 & (WS + 2.5) \times T_C - 10.94 & 00 MHz^8 & (WS + 2.5) \times T_C - 10.94 & 00 MHz^8 & (WS + 2.5) \times T_C - 10.94 & 00 MHz^8 & (WS + 2.5) \times T_C - 10.94 & 00 MHz^8 & (WS + 2.5) \times T_C - 10.94 & 00 MHz^8 & (WS + 2.5) \times T_C - 10.94 & 00 MHz^8 & (WS + 2.5) \times T_C - 10.94 & 00 MHz^8 & (WS + 2.5) \times T_C - 10.94 & 00 MHz^8 & (WS + 2.5) \times T_C - 10.94 & 00 MHz^8 & (WS + 2.5) \times T_C - 10.94 & 00 MHz^8 & (WS + 2.5) \times T_C - 10.94 & 00 MHz^8 & (WS + 2.5) \times T_C - 10.94 & 00 MHz^8 & (WS + 2.5) \times T_C - 10.94 & 00 MHz^8 & (WS + 2.5) \times T_C - 10.94 & 00 MHz^8 & (WS + 2.5) \times T_C - 10.94 & 00 MHz^8 & (WS + 2.5) \times T_C - 10.94 & 00 MHz^8 & (WS + 2.5) \times T_C - 10.94 & (WS + 2.5) \times T_C -$

 Table 2-7
 Reset, Stop, Mode Select, and Interrupt Timing⁶ (Continued)

NT		F	66 N	MHz	80 N	/Hz	100 MHz		.
No.	Characteristics	Expression	Min	Max	Min	Max	Min	Max	Unit
23	Synchronous interrupt delay time from the CLKOUT Transition 2 to the first external address output valid caused by the first instruction fetch after coming out of Wait Processing state • Minimum • Maximum	$9.25 \times T_{C} + 1.0$ 24.75 × $T_{C} + 5.0$	141.0	380.0	116.6	314.4	93.5	252.5	ns
24	Duration for IRQA assertion to recover from Stop state		9.0	Â	7.4		5.9		ns
25	 Delay from IRQA assertion to fetch of first instruction (when exiting Stop)^{2, 3} PLL is not active during Stop (PCTL Bit 17 = 0) and Stop delay is enabled (OMR Bit 6 = 0) 	PLC × ET _C × PDF + (128 K – PLC/2) × T _C	2.0	64.1	1.6	17.0	1.3	13.6	ms
	 PLL is not active during Stop (PCTL Bit 17 = 0) and Stop delay is not enabled (OMR Bit 6 = 1) PLL is active during Stop (PCTL Bit 17 = 1) (Implies No Stop Delay) 	PLC × ET _C × PDF + (23.75 ± 0.5) × T _C (8.25 ± 0.5) × T _C	352.3 ns 117.4	62.1 ms 132.6	290.6 ns 96.9	15.4 ms 109.4	232.5 ns 77.5	12.3 ms 87.5	ns

Table 2-7	Reset, Stop, Mode Select	, and Interrupt Timing ⁶ (Continued)
-----------	--------------------------	---

DSP56302A Technical Data Sheet

No.	Characteristics	Expression	66 MHz		80 MHz		100 MHz		Unit
110.	Characteristics	Expression	Min	Max	Min	Max	Min	Max	Unit
26	Duration of level sensitive IRQA assertion to ensure interrupt service (when exiting Stop) ^{2, 3} • PLL is not active	$PLC \times ET_C \times PDF +$	64.1		17.0		13.6		ms
	during Stop (PCTL Bit 17 = 0) and Stop delay is enabled (OMR Bit 6 = 0) • PLL is not active	$(128K - PLC/2) \times T_C$ $PLC \times ET_C \times PDF +$	62.1	_	15.4		12.3) _	ms
	during Stop (PCTL Bit 17 = 0) and Stop delay is not enabled (OMR Bit 6 = 1)	$(20.5\pm0.5)\times\mathrm{T_{C}}$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			7 7			
	• PLL is active during Stop (PCTL Bit 17 = 1) (implies no Stop delay)	5.5 × T _C	83.4	>>	68.8		55.0		ns
27	Interrupt Requests Rate • HI08, ESSI, SCI,	12T _C	<u> </u>	181.8	_	150.0		120.0	ns
	Timer • DMA • IRQ, NMI (edge trigger)	8T _C 8T _C	_	121.2 121.2		100.0 100.0		80.0 80.0	ns ns
	• IRQ, NMI (level trigger)	12T _C	_	181.8	_	150.0		120.0	ns
28	DMA Requests Rate • Data read from HI08, ESSI, SCI	6T _C	_	90.9	_	75.0	_	60.0	ns
	• Data write to HI08, ESSI, SCI	7T _C	_	106.1	_	87.5		70.0	ns
	• Timer • IRQ, NMI (edge trigger)	2T _C 3T _C	_	30.3 45.5	_	25.0 37.5		20.0 30.0	ns ns

 Table 2-7
 Reset, Stop, Mode Select, and Interrupt Timing⁶ (Continued)

			CC N		00 N	/II	100 1		
No.	Characteristics	Expression	00 1	MHz	80 N	/IHz	1001	MHz	Unit
			Min	Max	Min	Max	Min	Max	
29	Delay from IRQA, IRQB, IRQC, IRQD, NMI assertion to external memory (DMA source) access address out valid	$4.25 \times T_{C} + 2.0$	66.0		55.1	_	44.0		ns
Note	through 21 apply t deasserted Edge-tr recommended whe 2. This timing depend For PLL disable, us disabled during St before executing p proper delay. Whil do not guarantee ti For PLL disable, us	terrupts and \overline{IRQA} , \overline{IRQB} , i o prevent multiple interrup iggered mode is recommer en using Level-sensitive mo ds on several settings: sing internal oscillator (PLI op (PCTL Bit 17 = 0), a stab rograms. In that case, reset le it is possible to set OMR imings for that case. sing internal oscillator (PC ization delay is required ar	L Control ilization Bit 6 = 1, FL Bit 16	e. To avo en using I Register delay is Stop dela it is not = 0) and	id these fast inte r (PCTL) required recomm oscillato	timing re rrupts. L Bit $16 =$ to assur Bit $6 = 0$ ended an or enable	estriction ong inte 0) and o e the osc) will pr nd these d during	s, the rrupts ar scillator illator is ovide the specifica g Stop (P	re stable e itions CTL
	ignored). For PLL disable, us time will be define For PLL enable, if I the PLL to get lock 0 to 1000 cycles. Th end when the last o procedure complet PLC value for PLL The maximum valu 66 MHz it is 4096/0 and their width ma	sing external clock (PCTL) d by the PCTL Bit 17 and C PCTL Bit 17 is 0, the PLL is ed. The PLL lock procedure is procedure occurs in par of these two events occurs. ion.	Bit 16 = 1) DMR Bit (shutdov e duratio allel with The stop m MF) d e stabiliz), no stab 6 setting vn durin n, PLL L n the stop delay co ivided b ation per	vilization s. g Stop. R ock Cycle o delay c ounter co y the des	delay is Recoverir es (PLC) ounter, a ompletes	required ng from S may be nd stop count of rnal freq	l and rec Stop requ in the ra recovery PLL loc uency (i.	overy uires nge of v will kk .e., for

Table 2-7 Res	t, Stop, Mode Sel	ect, and Interrupt Ti	ming ⁶ (Continued)
---------------	-------------------	-----------------------	-------------------------------

Na		Characteristics Expression	66 I	MHz	80 N	ИНz	100 MHz		Unit	
No.		naracteristics	Expression	Min	Max	Min	Max	Min	Max	Unit
	4. 5.	asserted, V_{CC} is value For internal oscillate V_{CC} is valid. The sp number is affected oscillator and reflect When the V_{CC} is value not been yet met, the power consumption If PLL does not lose		is active a asured de crystal c of the cry ed RESET in an uni ould min	and valid uring the scillator ystal and duration nitialized	l. stabiliza other co n" condi d state th	which \overline{R} tion time omponen tions (as	ESET is a e after po its conne specified esult in si	asserted ower-up cted to t d above) ignifican	and This he have t
	6.	$V_{CC} = 3.3 V \pm 0.3 V$								
	7.		ait states (measured in clo	CK CYCles	, number	$C $ of Γ_{C}				
	8.	8. Use expression to compute maximum value.								

Table 2-7	Reset, Stop,	Mode Select,	and Interrup	t Timing ⁶	(Continued)
-----------	--------------	--------------	--------------	-----------------------	-------------

EXTERNAL MEMORY INTERFACE (PORT A)

SRAM Timing

	r								\neg	
No	Characteristics	Symbol	5 • 1	66 N	/Hz	80 N	/Hz	100 MHz		Unit
No.	Characteristics	Symbol	Expression ¹	Min	Max	Min	Max	Min	Max	
100	Address valid and AA assertion	t _{RC} , t _{WC}	$(WS + 1) \times T_C - 4.0$ $[1 \le WS \le 3]$	26.3	—	21.0		16.0		ns
	pulse width		$[1 \le WS \le 3]$ (WS + 2) × T _C - 4.0 [4 ≤ WS ≤ 7]	86.9	_	71.0		56.0	—	ns
			$(WS + 3) \times T_C - 4.0$ [WS \ge 8]	162.7	-	133.5		106.0	—	ns
101	Address and AA valid to WR assertion	t _{AS}	66 MHz: 0.25 × T _C - 3.7 [WS = 1]	0.1		>	_			ns
			80 MHz: $0.25 \times T_{C} - 3.0$ [WS = 1]		_	0.1	—	_	—	ns
			100 MHz: $0.25 \times T_{C} - 2.4$ [WS = 1]	_	_	—	—	0.1	—	ns
			All frequencies: $0.75 \times T_{C} - 4.0$ $[2 \le WS \le 3]$	7.4	_	5.4	—	3.5	—	ns
			$[125 \times T_{\rm C} - 4.0]$ [WS ≥ 4]	14.9	_	11.6	—	8.5	—	ns
102	WR assertion pulse width	t _{WP}	$1.5 \times T_{C} - 4.5$ [WS = 1]	18.2	_	14.3		10.5		ns
			$\frac{WS \times T_C - 4.0}{[2 \le WS \le 3]}$	26.3	_	21.0	_	16.0		ns
			$(WS - 0.5) \times T_C - 4.0$ [WS \ge 4]	49.0	_	39.8	_	31.0		ns

Table 2-8SRAM Read and Write Accesses

Specifications

External Memory Interface (Port A)

			1	66 N	/Hz	80 N	/Hz	100	MHz	
No.	Characteristics	Symbol	Expression ¹	Min	Max	Min	Max	Min	Max	Unit
103	WR deassertion to address not valid	t _{WR}	66 MHz: $0.25 \times T_{C} - 3.8$ $[1 \le WS \le 3]$ 80 MHz:	0.1				-		ns
			$0.25 \times T_{C} - 3.0$ [1 ≤ WS ≤ 3] 100 MHz:	_	_	0.1				ns
			$0.25 \times T_{C} - 2.4$ [1 ≤ WS ≤ 3] All frequencies:	_	_	_		0.1		ns
			$1.25 \times T_{\rm C} - 4.0$ [4 ≤ WS ≤ 7]	14.9	$\frac{1}{2}$	11.6		8.5	_	ns
			$\begin{array}{l} 2.25 \times T_C - 4.0 \\ [WS \ge 8] \end{array}$	30.1	\sum	24.1		18.5		ns
104	Address and AA valid to input data valid	t _{AA} , t _{AC}	66 MHz: (WS + 0.75) × T _C − 11.0 [WS ≥ 1] 80 MHz:		15.5	> _	_	_	_	ns
			$\begin{array}{l} \textbf{WS112.} \\ (WS + 0.75) \times T_{C} - 9.5 \\ [WS \geq 1] \\ \textbf{100 MHz:} \\ (WS + 0.75) \times T_{C} - 8.0 \\ [WS \geq 1] \end{array}$	\Z _			12.4		 9.5	ns ns
105	RD assertion to input data valid	t _{OE}	66 MHz: (WS + 0.25) × T _C − 11.0 [WS ≥ 1] 80 MHz:	_	7.9					ns
			$(WS + 0.25) \times T_C - 9.5$ $[WS \ge 1]$ 100 MHz:	_	_	_	6.1	_	_	ns
			$(WS + 0.25) \times T_C - 8.0$ $[WS \ge 1]$	_	_	_	_	_	4.5	ns
106	RD deassertion to data not valid (data hold time)	t _{OHZ}		0.0	_	0.0	_	0.0	_	ns
107	Address valid to WR deassertion	t _{AW}	$\begin{array}{l} (WS+0.75)\times T_C-4.0\\ [WS\geq 1] \end{array}$	22.5		17.9		13.5		ns

Table 2-8 SRAM Read and Write Accesses (Continued)

N T		a 1 1	1	66 N	/IHz	80 N	/IHz	100 MHz		Unit
No.	Characteristics	Symbol	Expression ¹	Min	Max	Min	Max	Min	Max	Unit
108	Data valid to WR deassertion (data setup time)	t _{DS} (t _{DW})	66 MHz: (WS – 0.25) × T _C – 3.9 [WS ≥ 1] 80 MHz:	7.5					Ĵ	ns
			$\begin{array}{l} (WS - 0.25) \times T_{C} - 3.3 \\ [WS \geq 1] \\ \textbf{100 MHz:} \end{array}$	_	_	6.1				ns
			$\begin{array}{l} (WS-0.25)\times T_C-2.75\\ [WS\geq 1] \end{array}$	_	-	_		4.8	_	ns
109	Data hold time from WR deassertion	t _{DH}	66 MHz: $0.25 \times T_{C} - 3.7$ $[1 \le WS \le 3]$ 80 MHz:	0.1	<\		Š	_		ns
			$\begin{array}{c} \textbf{00 MHZ:} \\ 0.25 \times T_{C} - 3.0 \\ [1 \le WS \le 3] \\ \textbf{100 MHZ:} \end{array}$			0.1	_	_		ns
			$0.25 \times T_C - 2.4$ [1 \leq WS \leq 3] All frequencies:		>-	_	_	0.1		ns
			$1.25 \times T_{C} - 3.8$ $[4 \le WS \le 7]$ $2.25 \times T_{C} - 3.8$ $[WS \ge 8]$	15.2 30.4	_	11.8 24.3	_	8.7 18.7		ns ns
110	$\overline{\mathrm{WR}}$ assertion to data active	$\overline{\mathbf{A}}$	$0.75 \times T_{C} - 3.7$ [WS = 1]	7.7		5.7		3.8	_	ns
		$\langle \rangle$	$0.25 \times T_{C} - 3.7$ [2 \leq WS \leq 3]	0.1	_	-0.6	_	-1.2	_	ns
		$\langle \rangle \rangle$	$-0.25 \times T_{C} - 3.7$ [WS ≥ 4]	-7.5	_	-6.8	_	-6.2	_	ns
111	WR deassertion to data high		$0.25 \times T_{C} + 0.2$ [1 ≤ WS ≤ 3]	_	4.0	_	3.3	_	2.7	ns
	impedance		$\begin{array}{l} 1.25 \times T_C + 0.2 \\ [4 \leq WS \leq 7] \end{array}$	—	19.1	_	15.8	_	12.7	ns
\langle			$\begin{array}{l} 2.25 \times T_{C} + 0.2 \\ [WS \geq 8] \end{array}$	_	34.3	_	28.3	_	22.7	ns
112	Previous RD deassertion to		$1.25 \times T_{C} - 4.0$ [1 ≤ WS ≤ 3]	14.9		11.6		8.5		ns
	data active (write)		$\begin{array}{l} 2.25 \times T_C - 4.0 \\ [4 \leq WS \leq 7] \end{array}$	30.1		24.1		18.5	-	ns
			$\begin{array}{l} 3.25 \times T_C - 4.0 \\ [WS \geq 8] \end{array}$	45.2		36.6		28.5	-	ns

N		a 1 1	1	66 N	ΛHz	80 N	/IHz	100 I	MHz	
No.	Characteristics	Symbol	Expression ¹	Min	Max	Min	Max	Min	Max	Unit
113	RD deassertion time		$\begin{array}{c} 0.75 \times T_C - 4.0 \\ [1 \leq WS \leq 3] \end{array}$	7.4	_	5.4	_	3.5	5	ns
			$\begin{array}{l} 1.75 \times T_C - 4.0 \\ [4 \leq WS \leq 7] \end{array}$	22.5	_	17.9	_	13.5	JL	ns
			$\begin{array}{l} 2.75 \times T_C - 4.0 \\ [WS \ge 8] \end{array}$	37.7	_	30.4		23.5		ns
114	WR deassertion time		$0.5 \times T_{C} - 3.5$ [WS = 1]	4.1	_	2.8 🗸		1.5) —	ns
			$T_{C} - 3.5$ [2 ≤ WS ≤ 3]	11.7		9.0	_	6.5	_	ns
			$2.5 \times T_C - 3.5$ [4 ≤ WS ≤ 7]	34.4	2 - '	27.8		21.5	_	ns
			[12, 0, 0, 2, 1] $3.5 \times T_{\rm C} - 3.5$ $[WS \ge 8]$	49.5	Z	40.3	_	31.5	_	ns
115	Address valid to $\overline{\text{RD}}$ assertion		$0.5 \times T_C - 4$	3.5	—	2.3		1.0	_	ns
116	RD assertion pulse width		$(WS + 0.25) \times T_C - 3.8$	15.1	_	11.8		8.7		ns
117	$\overline{\text{RD}}$ deassertion to address not		$0.25 \times T_{\rm C} - 3.0$ $[1 \le {\rm WS} \le 3]$	0.7	_	0.1	_	0.0	_	ns
	valid		$125 \times T_{C} = 3.0$ [4 \leq WS \leq 7]	15.9	_	12.6	_	9.5	_	ns
			$[4 \le W3 \le 7]$ 2.25 × T _C - 3.0 [WS ≥ 8]	31.0	_	25.1	_	19.5	_	ns
Note			ait states specified in the BCI = -40°C to +100 °C, C _L = 50 p							

Table 2-8 SRAM Read and Write Accesses (Continued)

DRAM Timing

The selection guides provided in **Figure 2-14** and **Figure 2-17** on page 2-37 should be used for primary selection only. Final selection should be based on the timing provided in the following tables. As an example, the selection guide suggests that 4 wait states must be used for 100 MHz operation when using Page Mode DRAM. However, by using the information in the appropriate table, a designer may choose to evaluate whether fewer wait states might be used by determining which timing prevents operation at 100 MHz, running the chip at a slightly lower frequency (e.g., 95 MHz), using faster DRAM (if it becomes available), and control factors such as capacitive and resistive load to improve overall system performance.

No.	Characteristics	Symbol	Expression	20 M	(Hz ⁶	30 M	lHz ⁶	Unit
190.	Characteristics	Symbol	Expression	Min	Max	Min	Max	Unit
131	Page mode cycle time	t _{PC}	$1.25 \times T_{C}$	62.5	_	41.7	$\overline{\langle}$	ns
132	CASassertion to data valid(read)	t _{CAC}	T _C – 7.5	_	42.5		25.8	ns
133	Column address valid to data valid (read)	t _{AA}	$1.5 \times T_{C} - 7.5$	_	67.5	$\overline{\bigcirc}$	42.5	ns
134	CASdeassertion to data notvalid (read hold time)	t _{OFF}		0.0		0.0		ns
135	Last \overline{CAS} assertion to \overline{RAS} deassertion	t _{RSH}	$0.75 imes T_{C} - 4.0$	33.5		21.0		ns
136	$\frac{Previous \overline{CAS} \text{ deassertion to}}{\overline{RAS} \text{ deassertion}}$	t _{RHCP}	$2 \times T_{C} - 4.0$	96.0	1 1 1	62.7	_	ns
137	CAS assertion pulse width	t _{CAS}	$0.75 \times T_{C} - 4.0$	33.5		21.0		ns
138	Last \overline{CAS} deassertion to \overline{RAS} deassertion ⁴ • BRW[1:0] = 00 • BRW[1:0] = 01	t _{CRP}	$1.75 \times T_{C} - 6.0$ $3.25 \times T_{C} - 6.0$	81.5 156.5		52.3 102.2		ns ns
	• BRW[1:0] = 10 • BRW[1:0] = 11		$4.25 \times T_{C} - 6.0$ $6.25 \times T_{C} - 6.0$	206.5 306.5	_	135.5 202.1	_	ns ns
139	CAS deassertion pulse width	t _{CP}	$0.5 imes T_{C} - 4.0$	21.0	_	12.7	_	ns
140	Column address valid to CAS assertion	tASC	$0.5 imes T_C - 4.0$	21.0	_	12.7		ns
141	CAS assertion to column address not valid	t _{CAH}	$0.75 imes T_{C} - 4.0$	33.5	_	21.0		ns
142	Last column address valid to RAS deassertion	t _{RAL}	$2 \times T_C - 4.0$	96.0		62.7		ns
143	WR deassertion to CAS assertion	t _{RCS}	$0.75 imes T_{C} - 3.8$	33.7		21.2		ns
144	CAS deassertion to WR assertion	t _{RCH}	$0.25 \times T_{C} - 3.7$	8.8		4.6		ns
145	CAS assertion to WR deassertion	t _{WCH}	$0.5 imes T_C - 4.2$	20.8	_	12.5		ns
146	WR assertion pulse width	t _{WP}	$1.5 imes T_{C} - 4.5$	70.5		45.5		ns
147	Last \overline{WR} assertion to \overline{RAS} deassertion	t _{RWL}	$1.75 \times T_{C} - 4.3$	83.2	_	54.0	_	ns

Table 2-9	DRAM Page Mode Timings	s, One Wait State (Low-Power	Applications) ^{1, 2, 3}
	0 0		11 /

	8	0 /						
No.	Characteristics	Symbol	Expression	20 M	Hz ⁶	30 M	Hz ⁶	Unit
110.		Symbol	LAPICSSION	Min	Max	Min	Max	OIII
148	WR assertion to CAS deassertion	t _{CWL}	$1.75 \times T_{C} - 4.3$	83.2		54.0	2	ns
149	Data valid to <u>CAS</u> assertion (Write)	t _{DS}	$0.25 \times T_C - 4.0$	8.5		4.3	$\sum_{i=1}^{n}$	ns
150	CAS assertion to data not valid (write)	t _{DH}	$0.75\times T_C-4.0$	33.5		21.0	 	ns
151	$\overline{\text{WR}}$ assertion to $\overline{\text{CAS}}$ assertion	t _{WCS}	$T_{C} - 4.3$	45.7	1	29.0		ns
152	Last \overline{RD} assertion to \overline{RAS} deassertion	t _{ROH}	$1.5 \times T_C - 4.0$	71.0		46.0		ns
153	$\overline{\text{RD}}$ assertion to data valid	t _{GA}	T _C – 7.5	\mathcal{H}	42.5		25.8	ns
154	$\overline{\text{RD}}$ deassertion to data not valid ⁵	t _{GZ}		0.0		0.0		ns
155	$\overline{\mathrm{WR}}$ assertion to data active		$0.75 \times T_{\rm C} - 0.3$	37.2		24.7		ns
156	WR deassertion to data high impedance	$\left \begin{array}{c} \\ \\ \end{array} \right $	$0.25 \times T_C$		12.5		8.3	ns

Table 2-9	DRAM Page Mode	Timings, One Wait State	(Low-Power Applications) ^{1, 2, 3}
-----------	-----------------------	-------------------------	---

Notes: 1. The number of wait states for Page mode access is specified in the DCR.

2. The refresh period is specified in the DCR.

3. All the timings are calculated for the worst case. Some of the timings are better for specific cases (e.g., t_{PC} equals 2 × T_C for read-after-read or write-after-write sequences).

4. BRW[1:0] (DRAM control register bits) defines the number of wait states that should be inserted in each DRAM out-of-page access.

- 5. $\overline{\text{RD}}$ deassertion will always occur after $\overline{\text{CAS}}$ deassertion; therefore, the restricted timing is t_{OFF} and not t_{GZ}.
- 6. Reduced DSP clock speed allows use of Page Mode DRAM with one wait state (see Figure 2-14).

				66 N	/IHz	80 N	/ Hz	Linit
No.	Characteristics	Symbol	Expression	Min	Max	Min	Max	Unit
131	Page mode cycle time	t _{PC}	$2.75 \times T_{C}$	41.7		34.4	$\overline{\lambda}$	ns
132	CAS assertion to data valid (read)	t _{CAC}	66 MHz: $1.5 \times T_{C} - 7.5$ 80 MHz: $1.5 \times T_{C} - 6.5$	_	15.2	~	12.3	ns ns
133	Column address valid to data valid (read)	t _{AA}	66 MHz: $2.5 \times T_{C} - 7.5$ 80 MHz: $2.5 \times T_{C} - 6.5$		30.4		24.8	ns ns
134	CASdeassertion to data notvalid (read hold time)	t _{OFF}		0.0		0.0		ns
135	Last \overline{CAS} assertion to \overline{RAS} deassertion	t _{RSH}	$1.75 \times T_{C} - 4.0$	22.5	<u> </u>	17.9		ns
136	Previous CAS deassertion to RAS deassertion	t _{RHCP}	$3.25 \times T_C - 4.0$	45.2		36.6		ns
137	\overline{CAS} assertion pulse width	t _{CAS}	$1.5 \times T_{C} - 4.0$	18.7		14.8	_	ns
138	Last \overline{CAS} deassertion to \overline{RAS} deassertion ⁵ • BRW[1:0] = 00 • BRW[1:0] = 01 • BRW[1:0] = 10 • BRW[1:0] = 11	t _{CRP}	$2.0 \times T_{C} - 6.0$ $3.5 \times T_{C} - 6.0$ $4.5 \times T_{C} - 6.0$ $6.5 \times T_{C} - 6.0$	24.4 47.2 62.4 92.8	 	19.0 37.8 50.3 75.3		ns ns ns ns
139	CAS deassertion pulse width	t _{CP}	$1.25 \times T_C - 4.0$	14.9	_	11.6		ns
140	Column address valid to CAS assertion	t _{ASC}	T _C – 4.0	11.2	_	8.5		ns
141	CAS assertion to column address not valid	t _{CAH}	$1.75 \times T_{C} - 4.0$	22.5	_	17.9	_	ns
142	Last column address valid to RAS deassertion	t _{RAL}	$3 \times T_C - 4.0$	41.5	_	33.5	_	ns
143	$\overline{\text{WR}}$ deassertion to $\overline{\text{CAS}}$ assertion	t _{RCS}	$1.25 \times T_{C} - 3.8$	15.1	_	11.8		ns
144	\overline{CAS} deassertion to \overline{WR} assertion	t _{RCH}	$0.5 imes T_{C} - 3.7$	3.9		2.6		ns
145	\overline{CAS} assertion to \overline{WR} deassertion	t _{WCH}	$1.5 \times T_{C} - 4.2$	18.5		14.6		ns
146	$\overline{\mathrm{WR}}$ assertion pulse width	t _{WP}	$2.5 imes T_C - 4.5$	33.4		26.8		ns

Table 2-10DRAM Page Mode Timings, Two Wait States1, 2, 3, 7

NI-	Characteristics	Cb J	E	66 N	1Hz	80 N	1Hz	T T • 4
No.	Characteristics	Symbol	Expression	Min	Max	Min	Max	Unit
147	Last \overline{WR} assertion to \overline{RAS} deassertion	t _{RWL}	$2.75 \times T_{C} - 4.3$	37.4	_	30.1	3	ns
148	$\overline{\text{WR}}$ assertion to $\overline{\text{CAS}}$ deassertion	t _{CWL}	$2.5 \times T_{C} - 4.3$	33.6	_	27.0		ns
149	Data valid to <u>CAS</u> assertion (write)	t _{DS}	66 MHz: $0.25 \times T_{C} - 3.7$ 80 MHz: $0.25 \times T_{C} - 3.0$	0.1		0.1	J_S	ns ns
150	CAS assertion to data not valid (write)	t _{DH}	$1.75 \times T_{\rm C} - 4.0$	22.5		17.9	_	ns
151	$\overline{\text{WR}}$ assertion to $\overline{\text{CAS}}$ assertion	t _{WCS}	T _C -4.3	10.9		8.2	—	ns
152	Last \overline{RD} assertion to \overline{RAS} deassertion	t _{ROH}	$2.5 \times T_{C} - 4.0$	33.9	_	27.3	—	ns
153	RD assertion to data valid	t _{GA}	66 MHz: $1.75 \times T_{C} - 7.5$ 80 MHz: $1.75 \times T_{C} - 6.5$	_	19.0	_	— 15.4	ns ns
154	RD deassertion to data not valid ⁶	t _{GZ}		0.0		0.0	_	ns
155	WR assertion to data active	//	$0.75 imes T_{C} - 0.3$	11.1	_	9.1	_	ns
156	WR deassertion to data high impedance	\sum	$0.25 \times T_{C}$		3.8	—	3.1	ns

Table 2-10	DRAM Page Mode Timings, Two Wait States ^{1, 2, 3, 7}	(Continued)
------------	---	-------------

- The refresh period is specified in the DCR. 2.
- The asynchronous delays specified in the expressions are valid for DSP56302A. 3.

4. All the timings are calculated for the worst case. Some of the timings are better for specific cases (e.g., t_{PC} equals $3 \times T_{C}$ for read-after-read or write-after-write sequences).

BRW[1:0] (DRAM Control Register bits) defines the number of wait states that should be inserted in 5. each DRAM out-of-page access.

- \overline{RD} deassertion will always occur after \overline{CAS} deassertion; therefore, the restricted timing is t_{OFF} and not 6. t_{GZ}.
- There are no DRAMs fast enough to meet the specifications for two wait state Page mode @ 100MHz 7. (see Figure 2-14).

N T.		C III	E	66 N	/Hz	80 N	/Hz	100 I	MHz	
No.	Characteristics	Symbol	Expression	Min	Max	Min	Max	Min	Max	Unit
131	Page mode cycle time	t _{PC}	$3.5 \times T_{C}$	53.0		43.8	_	35.0		ns
132	TAS assertion to data valid (read)	t _{CAC}	66 MHz: $2 \times T_{C} - 7.5$ 80 MHz: $2 \times T_{C} - 6.5$	_	22.8		— 18.5			ns ns
			100 MHz : $2 \times T_{C} - 5.7$	_	_			\leq	14.3	ns
133	Column address valid to data valid (read)	t _{AA}	66 MHz : 3 × T _C – 7.5 80 MHz :		37.9			_		ns
			$3 \times T_{C} - 6.5$ 100 MHz : $3 \times T_{C} - 5.7$		/		31.0		 24.3	ns ns
134	CAS deassertion to data not valid (read hold time)	t _{OFF}		0.0		0.0		0.0		ns
135	Last \overline{CAS} assertion to \overline{RAS} deassertion	t _{RSH}	$2.5 \times T_{C} - 4.0$	33.9		27.3		21.0		ns
136	Previous CAS deassertion to RAS deassertion	t _{RHCP}	$4.5 \times T_{C} - 4.0$	64.2		52.3	_	41.0		ns
137	CAS assertion pulse width	t _{CAS}	$2 imes T_{C} - 4.0$	26.3	—	21.0	—	16.0	—	ns
138	Last \overline{CAS} deassertion to \overline{RAS} deassertion ⁵ • BRW[1:0] = 00 • BRW[1:0] = 01 • BRW[1:0] = 10 • BRW[1:0] = 11	tCRP	$2.25 \times T_{C} - 6.0$ $3.75 \times T_{C} - 6.0$ $4.75 \times T_{C} - 6.0$ $6.75 \times T_{C} - 6.0$	28.2 51.0 66.2 96.6	 	22.2 40.9 53.4 78.4		16.5 31.5 41.5 61.5	 	ns ns ns ns
139	CAS deassertion pulse width	t _{CP}	$1.5\times T_C-4.0$	18.7		14.8	_	11.0	_	ns
140	Column address valid to CAS assertion	t _{ASC}	$T_{C} - 4.0$	11.2		8.5		6.0		ns
141	CAS assertion to column address not valid	t _{CAH}	$2.5\times T_C-4.0$	33.9		27.3		21.0		ns
142	Last column address valid to RAS deassertion	t _{RAL}	$4 \times T_C - 4.0$	56.6		46.0		36.0		ns
143	$\overline{\text{WR}}$ deassertion to $\overline{\text{CAS}}$ assertion	t _{RCS}	$1.25 \times T_{C} - 3.8$	15.1		11.8		8.7		ns
144	CAS deassertion to WR assertion	t _{RCH}	$0.75 \times T_{C} - 3.7$	7.7		5.7		3.8		ns

 Table 2-11
 DRAM Page Mode Timings, Three Wait States^{1, 2, 3}

NT .		c l l	.	66 MHz		80 N	/IHz	100 MHz		.
No.	Characteristics	Symbol	Expression	Min	Max	Min	Max	Min	Max	Uni
145	CAS assertion to WR deassertion	t _{WCH}	$2.25 \times T_{C} - 4.2$	29.9		23.9		18.3		ns
146	$\overline{\mathrm{WR}}$ assertion pulse width	t _{WP}	$3.5 imes T_C - 4.5$	48.5		39.3		30.5	4	ns
147	Last \overline{WR} assertion to \overline{RAS} deassertion	t _{RWL}	$3.75 \times T_{C} - 4.3$	52.5		42.6		33.2	\sim	ns
148	$\overline{\text{WR}}$ assertion to $\overline{\text{CAS}}$ deassertion	t _{CWL}	$3.25 \times T_{C} - 4.3$	44.9		36.3		28.2		ns
149	Data valid to CAS assertion (write)	t _{DS}	$0.5 imes T_C - 4.0$	3.6		2.3	->	1.0		ns
150	CAS assertion to data not valid (write)	t _{DH}	$2.5 imes T_C - 4.0$	33.9	_	27.3	_	21.0		ns
151	$\overline{\mathrm{WR}}$ assertion to $\overline{\mathrm{CAS}}$ assertion	t _{WCS}	$1.25 \times T_{C} - 4.3$	14.6		11.3		8.2		ns
152	Last \overline{RD} assertion to \overline{RAS} deassertion	t _{ROH}	$3.5 \times T_{C} - 4.0$	49.0		39.8		31.0		ns
153	RD assertion to data valid	t _{GA}	66 MHz: 2.5 \times T _C = 7.5 80 MHz: 2.5 \times T _C = 6.5	> 	30.4	_	 24.8	_		ns ns
	<u> </u>		100 MHz : 2.5 × T _C – 5.7	_			_		19.3	ns
154	RD deassertion to data not valid ⁶	t _{GZ}	~	0.0		0.0		0.0		ns
155	WR assertion to data active	\sum	$0.75 imes T_{C} - 0.3$	11.1		9.1		7.2		ns
156	WR deassertion to data high impedance		$0.25 \times T_{C}$		3.8	_	3.1		2.5	ns

 Table 2-11
 DRAM Page Mode Timings, Three Wait States^{1, 2, 3} (Continued)

All the timings are calculated for the worst case. Some of the timings are better for specific cases (e.g., 4. t_{PC} equals $4 \times T_C$ for read-after-read or write-after-write sequences).

5. BRW[1:0] (DRAM control register bits) defines the number of wait states that should be inserted in each DRAM out-of page-access.

6. $\overline{\text{RD}}$ deassertion will always occur after $\overline{\text{CAS}}$ deassertion; therefore, the restricted timing is t_{OFF} and not t_{GZ}.

				66 N	ИНz	80 N	/Hz	100 1	MHz	
No.	Characteristics	Symbol	Expression	Min	Max	Min	Max	Min	Max	Unit
131	Page mode cycle time	t _{PC}	$4.5 imes T_{C}$	68.2		56.3		45.0	~-	ns
132	CAS assertion to data valid (read)	t _{CAC}	66 MHz : 2.75 × T_C – 7.5 80 MHz : 2.75 × T_C – 6.5 100 MHz :		34.2	_	 27.9			ns ns
			$2.75 \times T_{\rm C} - 5.7$		_		\searrow	\geq	21.8	ns
133	Column address valid to data valid (read)	t _{AA}	66 MHz: 3.75 × T _C − 7.5 80 MHz:	_	49.3			2		ns
			$3.75 \times T_{C} - 6.5$ 100 MHz : $3.75 \times T_{C} - 5.7$	\leq	\ 		40.4	_	31.8	ns ns
134	CAS deassertion to data not valid (read hold time)	t _{OFF}		0.0		0.0		0.0		ns
135	Last \overline{CAS} assertion to \overline{RAS} deassertion	t _{RSH}	$3.5 \times T_{C} - 4.0$	49.0		39.8		31.0		ns
136	Previous CAS deassertion to RAS deassertion	t _{RHCP}	$6 \times T_C - 4.0$	86.9	_	71.0		56.0		ns
137	CAS assertion pulse width	t _{CAS}	$2.5 imes T_{C} - 4.0$	33.9	—	27.3		21.0	_	ns
138	Last \overline{CAS} deassertion to \overline{RAS} deassertion ⁵ • BRW[1:0] = 00 • BRW[1:0] = 01 • BRW[1:0] = 10 • BRW[4:0] = 11	t _{CRP}	$2.75 \times T_{C} - 6.0$ $4.25 \times T_{C} - 6.0$ $5.25 \times T_{C} - 6.0$ $6.25 \times T_{C} - 6.0$	35.8 58.6 73.8 89.0		28.4 47.2 59.7 72.2		21.5 36.5 46.5 56.5		ns ns ns ns
139	CAS deassertion pulse width	t _{CP}	$2 \times T_C - 4.0$	26.3	_	21.0		16.0		ns
140	Column address valid to CAS assertion	t _{ASC}	$T_{C} - 4.0$	11.2	_	8.5	_	6.0		ns
141	CAS assertion to column address not valid	t _{CAH}	$3.5\times T_C-4.0$	49.0	_	39.8		31.0		ns
142	Last column address valid to RAS deassertion	t _{RAL}	$5 imes T_C - 4.0$	71.8		58.5		46.0		ns
143	$\overline{\text{WR}}$ deassertion to $\overline{\text{CAS}}$ assertion	t _{RCS}	$1.25 \times T_{C} - 3.8$	15.1		11.8		8.7		ns
144	\overline{CAS} deassertion to \overline{WR} assertion	t _{RCH}	$1.25 \times T_{C} - 3.7$	15.2		11.9		8.8		ns

 Table 2-12
 DRAM Page Mode Timings, Four Wait States^{1, 2, 3}

	Characteristics		66 N	ИHz	80 N	ΛHz	2 100 MHz			
No.	Characteristics	Symbol	Expression	Min	Max	Min	Max	Min	Max	Unit
145	CAS assertion to WR deassertion	t _{WCH}	$3.25 \times T_{C} - 4.2$	45.0		36.4		28.3		ns
146	$\overline{\mathrm{WR}}$ assertion pulse width	t _{WP}	$4.5\times T_{C}-4.5$	63.7	_	51.8	—	40.5	H	ns
147	Last \overline{WR} assertion to \overline{RAS} deassertion	t _{RWL}	$4.75 \times T_{\rm C} - 4.3$	67.7	_	55.1		43.2		ns
148	$\overline{\text{WR}}$ assertion to $\overline{\text{CAS}}$ deassertion	t _{CWL}	$3.75 \times T_{\rm C} - 4.3$	52.5	_	42.6		33.2		ns
149	Data valid to CAS assertion (write)	t _{DS}	$0.5 imes T_C - 4.0$	3.6	$\langle \downarrow \uparrow$	2.3		1.0		ns
150	CAS assertion to data not valid (write)	t _{DH}	$3.5 \times T_{C} - 4.0$	49.0	_ \	39.8	<u>~_</u>	31.0		ns
151	$\overline{\text{WR}}$ assertion to $\overline{\text{CAS}}$ assertion	t _{WCS}	$1.25 \times T_{C} - 4.3$	14.6		11.3		8.2		ns
152	Last $\overline{\text{RD}}$ assertion to $\overline{\text{RAS}}$ deassertion	t _{ROH}	$4.5 \times T_{\rm C} - 4.0$	64.2	_	52.3		41.0		ns
153	RD assertion to data valid	t _{GA}	66 MHz : 3.25 × T _C – 7.5 80 MHz :	_	41.7	_	_	_		ns
			3.25 × T _C – 6.5 100 MHz:	-	_	_	34.1	_	_	ns
	<u>Λ</u>		$3.25 \times T_{C} - 5.7$		—				26.8	ns
154	RD deassertion to data not valid ⁶	t _{GZ}		0.0	_	0.0		0.0		ns
155	$\overline{\mathrm{WR}}$ assertion to data active		$0.75\times T_{C}-0.3$	11.1		9.1	_	7.2	_	ns
156	WR deassertion to data high impedance		$0.25 imes T_{C}$	_	3.8		3.1		2.5	ns
Notes:	 The number of wait state The refresh period is special The asynchronous delays All the timings are calcul t_{PC} equals 3 × T_C for read BRW[1:0] (DRAM control 	cified in the specified is ated for the l-after-read	e DCR. in the expressions a e worst case. Some o or write-after-write	re valic of the ti e seque	l for DS imings nces).	SP5630 are bet	ter for :	-		0

 Table 2-12
 DRAM Page Mode Timings, Four Wait States^{1, 2, 3} (Continued)

BRW[1:0] (DRAM control register bits) defines the number of wait states that should be inserted in each DRAM out-of-page access.
 RD deassertion will always occur after CAS deassertion; therefore, the restricted timing is t_{OFF} and not

t_{GZ}.

Figure 2-17 DRAM Out-of-Page Wait States Selection Guide

Table 2-13	DRAM Out-o	of-Page and Refresh	n Timings, Four Wait States ^{1, 2}
------------	------------	---------------------	---

No.	Characteristics ³	Symbol	Expression	20 MHz ⁴		30 MHz ⁴		Unit	
	Characteristics	Byinbor	Lapression	Min	Max	Min	Max		
157	Random read or write cycle time	t _{RC}	$5 \times T_{C}$	250.0		166.7		ns	
158	RAS assertion to data valid (read)	t _{RAC}	$2.75 imes T_{C} - 7.5$		130.0		84.2	ns	
159	CAS assertion to data valid (read)	t _{CAC}	$1.25 imes T_{C} - 7.5$	_	55.0	_	34.2	ns	
160	Column address valid to data valid (read)	t _{AA}	$1.5 imes T_{C} - 7.5$	_	67.5	_	42.5	ns	
161	CAS deassertion to data not valid (read hold time)	t _{OFF}		0.0		0.0		ns	

No.	Characteristics ³	Symbol	Expression	20 N	1Hz ⁴	30 M	IHz ⁴	Unit
INU.	Characteristics	Symbol	Expression	Min	Max	Min	Max	
162	\overline{RAS} deassertion to \overline{RAS} assertion	t _{RP}	$1.75 \times T_{C} - 4.0$	83.5	-	54.3		ns
163	RAS assertion pulse width	t _{RAS}	$3.25 \times T_{C} - 4.0$	158.5	_	104.3		ns
164	\overline{CAS} assertion to \overline{RAS} deassertion	t _{RSH}	$1.75 \times T_{C} - 4.0$	83.5		54.3	— ,	ns
165	\overline{RAS} assertion to \overline{CAS} deassertion	t _{CSH}	$2.75 imes T_{C} - 4.0$	133.5	_	87.7	2	ns
166	CAS assertion pulse width	t _{CAS}	$1.25 \times T_{C} - 4.0$	58.5		37.7		ns
167	\overline{RAS} assertion to \overline{CAS} assertion	t _{RCD}	$1.5 imes T_C \pm 2$	73.0	77.0	48.0	52.0	ns
168	\overline{RAS} assertion to column address valid	t _{RAD}	$1.25 \times T_C \pm 2$	60.5	64.5	39.7	43.7	ns
169	\overline{CAS} deassertion to \overline{RAS} assertion	t _{CRP}	$2.25 \times T_{C} - 4.0$	108.5	_	71.0	_	ns
170	CAS deassertion pulse width	t _{CP}	$1.75 \times T_{C} - 4.0$	83.5	_	54.3	_	ns
171	Row address valid to RAS assertion	tASR	$1.75 \times T_{\rm C} - 4.0$	83.5	_	54.3	_	ns
172	RAS assertion to row address not valid	t _{RAH}	$1.25 \times T_{\rm C} - 4.0$	58.5	_	37.7	_	ns
173	Column address valid to CAS assertion	tASC	$0.25 imes T_{C} - 4.0$	8.5	-	4.3	_	ns
174	CAS assertion to column address not valid	t _{CAH}	$1.75 \times T_{C} - 4.0$	83.5	_	54.3	_	ns
175	RAS assertion to column address not valid	t _{AR}	$3.25 \times T_{C} - 4.0$	158.5	_	104.3	_	ns
176	Column address valid to RAS deassertion	t _{RAL}	$2 \times T_C - 4.0$	96.0	-	62.7	_	ns
177	WR deassertion to CAS assertion	t _{RCS}	$1.5 \times T_{C} - 3.8$	71.2	-	46.2	_	ns
178	\overrightarrow{CAS} deassertion to \overrightarrow{WR} assertion	t _{RCH}	$0.75 imes T_{C} - 3.7$	33.8	-	21.3		ns
179	\overline{RAS} deassertion to \overline{WR} assertion	t _{RRH}	$0.25 \times T_{C} - 3.7$	8.8	-	4.6		ns

Table 2-13	DRAM Out-of-Page and Re	fresh Timings, Four Wai	t States ^{1, 2} (Continued)

No.	Characteristics ³	Symbol Expression	20 N	1Hz ⁴	30 M	Unit		
110.			Expression	Min	Max	Min	Max	Unit
180	\overline{CAS} assertion to \overline{WR} deassertion	t _{WCH}	$1.5\times T_C-4.2$	70.8	_	45.8	5	ns
181	\overline{RAS} assertion to \overline{WR} deassertion	t _{WCR}	$3 \times T_{C} - 4.2$	145.8	_	95.8		ns
182	$\overline{\text{WR}}$ assertion pulse width	t _{WP}	$4.5\times T_C-4.5$	220.5		145.5	— `, _л	ns
183	\overline{WR} assertion to \overline{RAS} deassertion	t _{RWL}	$4.75 \times T_{C} - 4.3$	233.2	_	154.0	2	ns
184	$\overline{\text{WR}}$ assertion to $\overline{\text{CAS}}$ deassertion	t _{CWL}	$4.25 \times T_{C} - 4.3$	208.2		137.4	_	ns
185	Data valid to CAS assertion (write)	t _{DS}	$2.25 \times T_{C} - 4.0$	108.5	<u> </u>	71.0	_	ns
186	CAS assertion to data not valid (write)	t _{DH}	$1.75 \times T_{C} - 4.0$	83.5	_	54.3	—	ns
187	RAS assertion to data not valid (write)	t _{DHR}	$3.25 \times T_{C} - 4.0$	158.5	_	104.3	_	ns
188	\overline{WR} assertion to \overline{CAS} assertion	t _{WCS}	$3 \times T_{C} - 4.3$	145.7	_	95.7	_	ns
189	\overline{CAS} assertion to \overline{RAS} assertion (refresh)	t _{CSR}	$0.5 imes T_{C} - 4.0$	21.0	_	12.7	_	ns
190	\overline{RAS} deassertion to \overline{CAS} assertion (refresh)	t _{RPC}	$1.25 \times T_{C} - 4.0$	58.5	_	37.7	_	ns
191	RD assertion to RAS deassertion	t _{roh}	$4.5\times T_C-4.0$	221.0	_	146.0	_	ns
192	RD assertion to data valid	t _{GA}	$4 \times T_C - 7.5$	_	192.5	_	125.8	ns
193	\overline{RD} deassertion to data not valid ³	t _{GZ}		0.0	_	0.0	_	ns
194	WR assertion to data active		$0.75 imes T_{C} - 0.3$	37.2		24.7		ns
195	WR deassertion to data high impedance		$0.25 imes T_{C}$		12.5	—	8.3	ns
Notes:		pecified in the	DCR.			icted timi	ng is t _{OFF}	and n

Table 2-15 Divant Out-of-1 age and iteness from wait states (Continueu)	Table 2-13	DRAM Out-of-Page and Refresh Timings, Four W	/ait States ^{1, 2} (Continued)
--	------------	--	---

4. Reduced DSP clock speed allows use of DRAM out-of-page access with four wait states (see Figure 2-17).

	Characteristics ⁴	Symbol	Expression ³	66 MHz		80 MHz		100 MHz		
No.				Min	Max	Min	Max	Min	Max	Unit
157	Random read or write cycle time	t _{RC}	$9 \times T_C$	136.4		112.5		90.0		ns
158	RAS assertion to data valid (read)	t _{RAC}	66 MHz: $4.75 \times T_{C} - 7.5$ 80 MHz: $4.75 \times T_{C} - 6.5$	_	64.5	_				ns ns
			100 MHz : 4.75 × T _C – 5.7	_	—	_			41.8	ns
159	TAS assertion to data valid (read)	t _{CAC}	66 MHz : $2.25 \times T_{C} - 7.5$ 80 MHz :		26.6			_	_	ns
			$2.25 \times T_{C} - 6.5$ 100 MHz : $2.25 \times T_{C} - 5.7$				21.6	_	 16.8	ns ns
160	Column address valid to data valid (read)	t _{AA}	66 MHz: 3×T _C −7.5 80 MHz:		40.0		_			ns
			$3 \times T_{C} - 6.5$ 100 MHz: $3 \times T_{C} - 5.7$	_	_	_	31.0	_	 24.3	ns ns
161	CAS deassertion to data not valid (read hold time)	t _{OFF}		0.0		0.0		0.0		ns
162	RAS deassertion to RAS assertion	t _{RP}	$3.25 \times T_{\rm C} - 4.0$	45.2	_	36.6		28.5	_	ns
163	RAS assertion pulse width	t _{RAS}	$5.75\times T_C-4.0$	83.1		67.9	_	53.5		ns
164	CAS assertion to RAS deassertion	t _{RSH}	$3.25 \times T_C - 4.0$	45.2	_	36.6	_	28.5	_	ns
165	RAS assertion to CAS deassertion	t _{CSH}	$4.75 \times T_{C} - 4.0$	68.0	_	55.4	_	43.5	_	ns
166	CAS assertion pulse width	t _{CAS}	$2.25\times T_C-4.0$	30.1	_	24.1		18.5		ns
167	RAS assertion to CAS assertion	t _{RCD}	$2.5 imes T_{C} \pm 2$	35.9	39.9	29.3	33.3	23.0	27.0	ns
168	RAS assertion to column address valid	t _{RAD}	$1.75 \times T_{C} \pm 2$	24.5	28.5	19.9	23.9	15.5	19.5	ns
169	CAS deassertion to RAS assertion	t _{CRP}	$4.25 \times T_C - 4.0$	59.8		49.1		38.5	_	ns
170	CAS deassertion pulse width	t _{CP}	$2.75 \times T_C - 4.0$	37.7		30.4		23.5		ns

 Table 2-14
 DRAM Out-of-Page and Refresh Timings, Eight Wait States^{1, 2}

				66 MHz		80 MHz		100 MHz		
No.	Characteristics ⁴	Symbol	Expression ³	Min	Max	Min	Max		Max	Unit
171	Row address valid to \overline{RAS} assertion	t _{ASR}	$3.25 \times T_{C} - 4.0$	45.2		36.6		28.5		ns
172	RAS assertion to row address not valid	t _{RAH}	$1.75 \times T_{C} - 4.0$	22.5		17.9		13.5	4	ns
173	Column address valid to CAS assertion	t _{ASC}	$0.75 \times T_{C} - 4.0$	7.4		5.4	\bigcirc	3.5	\rightarrow	ns
174	CAS assertion to column address not valid	t _{CAH}	$3.25 \times T_{C} - 4.0$	45.2	_	36.6		28.5	_	ns
175	RAS assertion to column address not valid	t _{AR}	$5.75 \times T_{C} - 4.0$	83.1		67.9		53.5	_	ns
176	Column address valid to RAS deassertion	t _{RAL}	$4 \times T_{C} - 4.0$	56.6	2_	46.0	_	36.0	_	ns
177	$\overline{\text{WR}}$ deassertion to $\overline{\text{CAS}}$ assertion	t _{RCS}	$2 \times T_{C} - 3.8$	26.5	_	21.2	_	16.2	_	ns
178	$\overline{\text{CAS}}$ deassertion to $\overline{\text{WR}}^5$ assertion	t _{RCH}	$1.25 \times T_{C} - 3.7$	15.2	_	11.9	_	8.8	_	ns
179	$\overline{\text{RAS}}$ deassertion to $\overline{\text{WR}}^5$ assertion	t _{RRH}	66 MHz : 0.25 × T _C - 3.7 80 MHz :	0.1						ns
	\sim	$\left(\right)$	0.25 × T _C – 3.0 100 MHz:	_	_	0.1	_	-	_	ns
180	CAS assertion to WR deassertion	twch	$0.25 \times T_{\rm C} - 2.4$ $3 \times T_{\rm C} - 4.2$	41.3	_	33.3		0.1 25.8	_	ns ns
181	RAS assertion to WR deassertion	t _{WCR}	$5.5 imes T_{C} - 4.2$	79.1		64.6		50.8		ns
182	WR assertion pulse width	t _{WP}	$8.5 imes T_C - 4.5$	124.3		101.8		80.5		ns
183	WR assertion to RAS deassertion	t _{RWL}	$8.75 \times T_{\rm C} - 4.3$	128.3	_	105.1	_	83.2	_	ns
184	WR assertion to CAS deassertion	t _{CWL}	$7.75 \times T_{\rm C} - 4.3$	113.1	_	92.6	_	73.2	_	ns
185	Data valid to CAS assertion (write)	t _{DS}	$4.75 \times T_{\rm C} - 4.0$	68.0	_	55.4	_	43.5	_	ns
186	CAS assertion to data not valid (write)	t _{DH}	$3.25 \times T_{C} - 4.0$	45.2	_	36.6	_	28.5	_	ns
187	RAS assertion to data not valid (write)	t _{DHR}	$5.75 imes T_{C} - 4.0$	83.1		67.9		53.5		ns

	1.0
Table 2-14 DRAM Out-of-Page and Refresh Timings, Eight Wait States	s ^{1, 2} (Continued)

		-								
NT	Characteristics ⁴	Symbol	Expression ³	66 MHz		80 MHz		100 MHz		.
No.				Min	Max	Min	Max	Min	Max	Unit
188	$\overline{\text{WR}}$ assertion to $\overline{\text{CAS}}$ assertion	t _{WCS}	$5.5 imes T_{C} - 4.3$	79.0		64.5		50.7		ns
189	\overline{CAS} assertion to \overline{RAS} assertion (refresh)	t _{CSR}	$1.5 \times T_{C} - 4.0$	18.7		14.8	_	11.0		ns
190	RAS deassertion to CAS assertion (refresh)	t _{RPC}	$1.75 \times T_{C} - 4.0$	22.5		17.9	\bigcirc	13.5	\rightarrow	ns
191	RD assertion to RAS deassertion	t _{ROH}	$8.5 imes T_{C} - 4.0$	124.8		102.3		81.0		ns
192	RD assertion to data valid	t _{GA}	66 MHz : $7.5 \times T_{C} - 7.5$ 80 MHz : $7.5 \times T_{C} - 6.5$	$\overline{\langle}$	106.1		87.3	_		ns
			$1.5 \times T_{\rm C} = 0.3$ 100 MHz: $7.5 \times T_{\rm C} = 5.7$			_		_	69.3	ns ns
193	$\overline{\mathrm{RD}}$ deassertion to data not valid ⁴	t _{GZ}	0.0	0.0		0.0	_	0.0		ns
194	$\overline{\mathrm{WR}}$ assertion to data active		$0.75 \times T_{\rm C} - 0.3$	11.1		9.1	_	7.2		ns
195	WR deassertion to data high impedance		$0.25 \times T_{C}$	_	3.8		3.1	_	2.5	ns

Table 2-14	DRAM Out-of-Page and Refi	resh Timings, Eight Wait St	ates ^{1, 2} (Continued)
	0	0,0	

Notes: 1. The number of wait states for out-of-page access is specified in the DCR.

2. The refresh period is specified in the DCR.

3. The asynchronous delays specified in the expressions are valid for DSP56302A.

4. $\overline{\text{RD}}$ deassertion will always occur after $\overline{\text{CAS}}$ deassertion; therefore, the restricted timing is t_{OFF} and not t_{GZ}.

5. t_{GZ} . Either t_{RCH} or t_{RRH} must be satisfied for read cycles.
| | | G 1 1 | 2 | 66 N | /Hz | 80 N | 1Hz | 100 I | MHz | . |
|-----|--|------------------|--|-------|-----------|-------|------|-------|----------------------|----------|
| No. | Characteristics ⁴ | Symbol | Expression ³ | Min | Max | Min | Max | Min | Max | Unit |
| 157 | Random read or write cycle
time | t _{RC} | $12 \times T_{C}$ | 181.8 | _ | 150.0 | | 120.0 | $\overline{\langle}$ | ns |
| 158 | RAS assertion to data valid (read) | t _{RAC} | 66 MHz:
$6.25 \times T_{C} - 7.5$
80 MHz:
$6.25 \times T_{C} - 6.5$ | _ | 87.2
— | | | | | ns
ns |
| | | | 100 MHz :
6.25 × T _C – 5.7 | _ | _ | _ | | | 56.8 | ns |
| 159 | CAS assertion to data valid
(read) | t _{CAC} | 66 MHz :
3.75 × T _C − 7.5
80 MHz : | | 49.3 | | | _ | _ | ns |
| | | | $\begin{array}{c} 3.75 \times T_{C} - 6.5 \\ \textbf{100 MHz:} \\ 3.75 \times T_{C} - 5.7 \end{array}$ | | | | 40.4 | _ | | ns
ns |
| 160 | Column address valid to
data valid (read) | t _{AA} | 66 MHz:
4.5 × T _C - 7.5
80 MHz : | | 60.7 | | | | | ns |
| | | | 4.5 × T _C – 6.5
100 MHz: | _ | — | _ | 49.8 | _ |
39.3 | ns |
| 161 | CAS deassertion to data not valid (read hold time) | t _{OFF} | $4.5 \times T_{\rm C} - 5.7$ | 0.0 | | 0.0 | | 0.0 | | ns
ns |
| 162 | RAS deassertion to RAS assertion | t _{RP} | $4.25 \times T_{\rm C} - 4.0$ | 60.4 | | 49.1 | | 38.5 | | ns |
| 163 | RAS assertion pulse width | t _{RAS} | $7.75 	imes T_{C} - 4.0$ | 113.4 | | 92.9 | | 73.5 | _ | ns |
| 164 | CAS assertion to RAS deassertion | t _{RSH} | $5.25\times T_C-4.0$ | 75.5 | _ | 61.6 | _ | 48.5 | _ | ns |
| 165 | RAS assertion to CAS deassertion | t _{CSH} | $6.25 \times T_{C} - 4.0$ | 90.7 | _ | 74.1 | | 58.5 | | ns |
| 166 | CAS assertion pulse width | t _{CAS} | $3.75\times T_C-4.0$ | 52.8 | _ | 42.9 | | 33.5 | _ | ns |
| 167 | RAS assertion to CAS assertion | t _{RCD} | $2.5 	imes T_C \pm 2$ | 35.9 | 39.9 | 29.3 | 33.3 | 23.0 | 27.0 | ns |
| 168 | RAS assertion to column address valid | t _{RAD} | $1.75 \times T_{C} \pm 2$ | 24.5 | 28.5 | 19.9 | 23.9 | 15.5 | 19.5 | ns |
| 169 | CAS deassertion to RAS assertion | t _{CRP} | $5.75 	imes T_{C} - 4.0$ | 83.1 | | 67.9 | | 53.5 | | ns |
| 170 | CAS deassertion pulse width | t _{CP} | $4.25 \times T_C - 4.0$ | 60.4 | | 49.1 | | 38.5 | | ns |

Table 2-15DRAM Out-of-Page and Refresh Timings, Eleven Wait States^{1, 2}

		-						`		
No.	Characteristics ⁴	Symbol	Expression ³	66 N	/Hz	80 N	/Hz	100 MHz		Unit
110.	Characteristics	Symbol	Expression	Min	Max	Min	Max	Min	Max	om
171	Row address valid to \overline{RAS} assertion	t _{ASR}	$4.25 \times T_{C} - 4.0$	60.4		49.1		38.5	5	ns
172	RAS assertion to row address not valid	t _{RAH}	$1.75 \times T_{\rm C} - 4.0$	22.5		17.9	_	13.5		ns
173	Column address valid to CAS assertion	t _{ASC}	$0.75 \times T_C - 4.0$	7.4		5.4		3.5		ns
174	CAS assertion to column address not valid	t _{CAH}	$5.25\times T_{C}-4.0$	75.5		61.6		48.5		ns
175	RAS assertion to column address not valid	t _{AR}	$7.75 imes T_{\rm C} - 4.0$	113.4	_/_	92.9	\sum	73.5	_	ns
176	Column address valid to RAS deassertion	t _{RAL}	$6 \times T_{C} - 4.0$	86.9	M	71.0		56.0	_	ns
177	$\overline{\text{WR}}$ deassertion to $\overline{\text{CAS}}$ assertion	t _{RCS}	$3.0 \times T_{\rm C} - 3.8$	41.7		33.7		26.2		ns
178	$\overline{\text{CAS}}$ deassertion to $\overline{\text{WR}}^5$ assertion	t _{RCH}	$1.75 \times T_{C} - 3.7$	22.8		18.2		13.8		ns
179	\overline{RAS} deassertion to \overline{WR}^5 assertion	t _{RRH}	66 MHz : 0.25 × T _C - 3.7 80 MHz :	0.1				_		ns
	۲ ۲		$0.25 \times T_{C} - 3.0$ 100 MHz : $0.25 \times T_{C} - 2.4$	_	_	0.1	_	0.1	_	ns ns
180	CAS assertion to WR deassertion	twcH	$5 \times T_C - 4.2$	71.6		58.3		45.8		ns
181	RAS assertion to WR deassertion	t _{WCR}	$7.5 imes T_{C} - 4.2$	109.4		89.6	_	70.8	_	ns
182	WR assertion pulse width	t _{WP}	$11.5 \times T_{C} - 4.5$	169.7	_	139.3		110.5		ns
183	WR assertion to RAS deassertion	t _{RWL}	$11.75 \times T_{C} - 4.3$	173.7	_	142.7		113.2	_	ns
184	WR assertion to CAS deassertion	t _{CWL}	$10.25\times T_C-4.3$	151.0	_	130.1	_	103.2	_	ns
185	Data valid to CAS assertion (write)	t _{DS}	$5.75 imes T_{C} - 4.0$	83.1	_	67.9	_	53.5	_	ns
186	CAS assertion to data not valid (write)	t _{DH}	$5.25 \times T_{C} - 4.0$	75.5	_	61.6	_	48.5	_	ns
187	RAS assertion to data not valid (write)	t _{DHR}	$7.75 imes T_{C} - 4.0$	113.4	_	92.9	_	73.5	_	ns

Na		Crowb - 1	.	66 N	/IHz	80 N	1Hz	100 N	MHz	T Insta
No.	Characteristics ⁴	Symbol	Expression ³	Min	Max	Min	Max	Min	Max	Unit
188	$\overline{\text{WR}}$ assertion to $\overline{\text{CAS}}$ assertion	t _{WCS}	$6.5 imes T_{C} - 4.3$	94.2		77.0		60.7		ns
189	CAS assertion to RAS assertion (refresh)	t _{CSR}	$1.5 \times T_{C} - 4.0$	18.7	_	14.8	_	11.0	±+	ns
190	RAS deassertion to CAS assertion (refresh)	t _{RPC}	$2.75 imes T_{C} - 4.0$	37.7	_	30.4	\bigcirc	23.5	\rightarrow	ns
191	RD assertion to RAS deassertion	t _{ROH}	$11.5 \times T_{C} - 4.0$	170.2	_	139.8		111.0	_	ns
192	RD assertion to data valid	t _{GA}	66 MHz: $10 \times T_{C} - 7.5$ 80 MHz: $10 \times T_{C} - 6.5$ 100 MHz:		144.0	K V	118.5		_	ns ns
			$10 \times T_{\rm C} - 5.7$		_	_	—	—	94.3	ns
193	$\overline{\mathrm{RD}}$ deassertion to data not valid ⁴	t _{GZ}		0.0		0.0		0.0		ns
194	$\overline{\mathrm{WR}}$ assertion to data active		$0.75 \times T_{\rm C} - 0.3$	11.1		9.1		7.2		ns
195	WR deassertion to data high impedance		$0.25 \times T_C$		3.8		3.1	—	2.5	ns

Table 2-13 DRAW Out-of-1 age and Reficient Timings, Eleven Walt States (Continued	Table 2-15	DRAM Out-of-Page and Refresh	n Timings, Eleven Wait States ^{1,}	² (Continued)
--	------------	------------------------------	---	--------------------------

Notes: 1. The number of wait states for out-of-page access is specified in the DCR.

2. The refresh period is specified in the DCR.

- 3. The asynchronous delays specified in the expressions are valid for DSP56302A.
- $\overline{\text{RD}}$ deassertion will always occur after $\overline{\text{CAS}}$ deassertion; therefore, the restricted timing is t_{OFF} and not 4. t_{GZ} . Either t_{RCH} or t_{RRH} must be satisfied for read cycles.
- 5.

	_			66 N	/IHz	80 N	/Hz	100 I	z 100 MHz	
No.	Characteristics ³	Symbol	Expression	Min	Max	Min	Max	Min	Max	Unit
157	Random read or write cycle time	t _{RC}	$16 \times T_C$	242.4		200.0		160.0	$\overline{\langle }$	ns
158	RAS assertion to data valid (read)	t _{RAC}	66 MHz: $8.25 \times T_{C} - 7.5$ 80 MHz: $8.25 \times T_{C} - 6.5$ 100 MHz: $8.25 \times T = 5.7$	_	117.5	_	96.6		76.0	ns ns
159	CAS assertion to data valid (read)	t _{CAC}	$\begin{array}{c} \textbf{8.25} \times T_{C} - 5.7 \\ \textbf{66 MHz:} \\ \textbf{4.75} \times T_{C} - 7.5 \\ \textbf{80 MHz:} \\ \textbf{4.75} \times T_{C} - \textbf{6.5} \\ \textbf{100 MHz:} \\ \textbf{4.75} \times T_{C} - \textbf{5.7} \end{array}$	-	64.5		52.9		76.8 — — 41.8	ns ns ns
160	Column address valid to data valid (read)	t _{AA}	$\begin{array}{c} \textbf{66 MHz:} \\ 5.5 \times T_{\rm C} - 7.5 \\ \textbf{80 MHz:} \\ 5.5 \times T_{\rm C} - 6.5 \\ \textbf{100 MHz:} \\ 5.5 \times T_{\rm C} - 5.7 \end{array}$	-	75.8 —		62.3	_	 49.3	ns ns ns
161	CAS deassertion to data not valid (read hold time)	toff	0.0	0.0	_	0.0		0.0	_	ns
162	RAS deassertion to RAS assertion	t _{RP}	$6.25 imes T_{C} - 4.0$	90.7	_	74.1	_	58.5	_	ns
163	RAS assertion pulse width	t _{RAS}	$9.75 imes T_C - 4.0$	143.7		117.9	_	93.5		ns
164	CAS assertion to RAS deassertion	t _{RSH}	$6.25 imes T_{C} - 4.0$	90.7	_	74.1		58.5	_	ns
165	RAS assertion to CAS deassertion	t _{CSH}	$8.25 \times T_{C} - 4.0$	121.0	_	99.1		78.5		ns
166	CAS assertion pulse width	t _{CAS}	$4.75 \times T_C - 4.0$	68.0		55.4	_	43.5	_	ns
167	RAS assertion to CAS assertion	t _{RCD}	$3.5 imes T_C \pm 2$	51.0	55.0	41.8	45.8	33.0	37.0	ns
168	RAS assertion to column address valid	t _{RAD}	$2.75 imes T_{C} \pm 2$	39.7	43.7	32.4	36.4	25.5	29.5	ns
169	CAS deassertion to RAS assertion	t _{CRP}	$7.75 imes T_{C} - 4.0$	113.4		92.9		73.5		ns
170	$\overline{\text{CAS}}$ deassertion pulse width	t _{CP}	$6.25 imes T_{C}-4.0$	90.7		74.1	_	58.5		ns

Table 2-16	DRAM Out-of-Page and Refresh Timings, Fifteen Wait States ^{1, 2}

			0							,
No.	Characteristics ³	Symbol	Expression	66 N	/Hz	80 N	/Hz	100 I	MHz	Unit
110.	Characteristics	Symbol		Min	Max	Min	Max	Min	Max	om
171	Row address valid to \overline{RAS} assertion	t _{ASR}	$6.25 \times T_{C} - 4.0$	90.7		74.1		58.5		ns
172	RAS assertion to row address not valid	t _{RAH}	$2.75 \times T_{C} - 4.0$	37.7	_	30.4	_	23.5		ns
173	Column address valid to \overline{CAS} assertion	t _{ASC}	$0.75 imes T_{C} - 4.0$	7.4	_	5.4	\bigcirc	3.5	\rightarrow	ns
174	CAS assertion to column address not valid	t _{CAH}	$6.25 \times T_{C} - 4.0$	90.7	_	74.1		58.5		ns
175	RAS assertion to column address not valid	t _{AR}	$9.75 \times T_{C} - 4.0$	143.7		117.9	\nearrow	93.5		ns
176	Column address valid to RAS deassertion	t _{RAL}	$7 \times T_{C} - 4.0$	102.1		83.5	_	66.0	_	ns
177	$\overline{\text{WR}}$ deassertion to $\overline{\text{CAS}}$ assertion	t _{RCS}	$5 \times T_{C} - 3.8$	72.0	_	58.7	_	46.2	_	ns
178	$\overline{\text{CAS}}$ deassertion to $\overline{\text{WR}}^5$ assertion	t _{RCH}	$1.75 \times T_{\rm C} - 3.7$	22.8	_	18.2	_	13.8	_	ns
179	\overline{RAS} deassertion to \overline{WR}^5 assertion	t _{RRH}	66 MHz : 0.25 × T _C − 3.7 80 MHz :	0.1	_		_	_	_	ns
			$0.25 \times T_{C} - 3.0$ 100 MHz: $0.25 \times T_{C} - 2.4$	_	_	0.1	_	0.1	_	ns ns
180	CAS assertion to WR deassertion	twch	$6 \times T_{\rm C} - 4.2$	86.7		70.8		55.8		ns
181	RAS assertion to WR deassertion	t _{WCR}	$9.5 imes T_{C} - 4.2$	139.7		114.6		90.8		ns
182	WR assertion pulse width	t _{WP}	$15.5 imes T_C - 4.5$	230.3	_	189.3	_	150.5	_	ns
183	WR assertion to RAS deassertion	t _{RWL}	$15.75 \times T_{C} - 4.3$	234.3	_	192.6	_	153.2	_	ns
184	WR assertion to CAS deassertion	t _{CWL}	66–80 MHz: 14.25 × T_C – 4.3 100 MHz: 14.75 × T_C – 4.3	211.6	_	180.1				ns ns
185	Data valid to \overline{CAS} assertion (write)	t _{DS}	$8.75 \times T_{\rm C} - 4.0$	128.6		105.4		83.5		ns
186	CAS assertion to data not valid (write)	t _{DH}	$6.25 \times T_{C} - 4.0$	90.7	_	74.1		58.5		ns

Table 2-16	DRAM Out-of-Page and Refresh Timings, Fifteen Wait States ^{1, 2} (Continued)

N .T	~ ?			66 N	/Hz	80 N	/Hz	100 I	MHz	.
No.	Characteristics ³	Symbol	Expression	Min	Max	Min	Max	Min	Max	Unit
187	RAS assertion to data not valid (write)	t _{DHR}	$9.75 imes T_{C} - 4.0$	143.7		117.9		93.5	<u></u>	ns
188	$\overline{\text{WR}}$ assertion to $\overline{\text{CAS}}$ assertion	t _{WCS}	$9.5 imes T_C - 4.3$	139.6		114.5		90.7	H	ns
189	CASassertion to RASassertion (refresh)	t _{CSR}	$1.5 imes T_C - 4.0$	18.7		14.8	\bigcirc	11.0	\rightarrow	ns
190	RAS deassertion to CAS assertion (refresh)	t _{RPC}	$4.75 imes T_{C} - 4.0$	68.0		55.4		43.5		ns
191	$\overline{\text{RD}}$ assertion to $\overline{\text{RAS}}$ deassertion	t _{ROH}	$15.5 \times T_{C} - 4.0$	230.8		189.8	\sum	151.0		ns
192	RD assertion to data valid	t _{GA}	66 MHz: $14 \times T_{C} - 7.5$ 80 MHz: $14 \times T_{C} - 6.5$ 100 MHz: $14 \times T_{C} - 5.7$		204.6		 168.5	_	 	ns ns ns
193	$\overline{\text{RD}}$ deassertion to data not valid ³	t _{GZ}		0.0		0.0		0.0		ns
194	$\overline{\mathrm{WR}}$ assertion to data active	$\sqrt{2}$	$0.75 \times T_{\rm C} - 0.3$	11.1	_	9.1	_	7.2	_	ns
195	WR deassertion to data high / impedance		$0.25 \times T_{C}$		3.8		3.1		2.5	ns

Table 2-16	DRAM Out-of-Page and Refres	sh Timings, Fifteen Wait States ¹	^{, 2} (Continued)
------------	-----------------------------	--	----------------------------

Notes: 1. The number of wait states for out-of-page access is specified in the DCR.

2. The refresh period is specified in the DCR.

3. RD deassertion will always occur after CAS deassertion; therefore, the restricted timing is t_{OFF} and not t_{GZ} .

4. Either t_{RCH} or t_{RRH} must be satisfied for read cycles.

DSP56302A Technical Data Sheet

Synchronous Timings (SRAM)

		1.0	66 N	ИНz	80 N	/IHz	100 1	MHz	
No.	Characteristics	Expression ^{1, 2}	Min	Max	Min	Max	Min	Max	Unit
198	CLKOUT high to address, and AA valid ⁵	66 MHz : 0.25 × T _C + 5.0 80 MHz :		8.8		-			ns
		$\begin{array}{c} 0.25 \times T_{C} + 4.5 \\ \textbf{100 MHz:} \\ 0.25 \times T_{C} + 4.0 \end{array}$	_	_		7.6		6.5	ns ns
199	CLKOUT high to address, and AA invalid ⁵	$0.25 \times T_C$	3.8		3.1		2.5		ns
200	TA valid to CLKOUT high (setup time)		6.0		5.0	~	4.0		ns
201	CLKOUT high to \overline{TA} invalid (hold time)		0.0		0.0	_	0.0	_	ns
202	CLKOUT high to data out active	$0.25 \times T_{C}$	3.8		3.1		2.5		ns
203	CLKOUT high to data out valid	66 MHz: 0.25 × T _C + 5.0 80 MHz :	4.8	8.8		_	_	_	ns
		0.25 × T _C + 4.5 100 MHz:	_	_	4.1	7.6	3.3	— 6.5	ns
204	CLKOUT high to data out invalid	$0.25 \times T_{C} + 4.0$ $0.25 \times T_{C}$	3.8		3.1		2.5	0.5	ns ns
205		66 MHz : 0.25 × T _C + 1.0 80 MHz :	_	4.8	_		_		ns
		$0.25 \times T_{C} + 0.5$ 100 MHz : $0.25 \times T_{C}$	_	_	_	3.6	_	 2.5	ns ns
206	Data in valid to CLKOUT high (setup)		6.0		5.0		4.0		ns
207	CLKOUT high to data in invalid (hold)		0.0		0.0		0.0		ns
208	CLKOUT high to RD assertion	66 MHz : $0.75 \times T_{C} + 5.0$ 80 MHz :	12.4	16.4					ns
		0.75 × T _C + 4.5 100 MHz:	_	-	10.4	13.9	-		ns
		$0.75 \times T_{\rm C} + 4.0$					8.2	11.5	ns
209	CLKOUT high to \overline{RD} deassertion		0.0	5.0	0.0	4.5	0.0	4.0	ns

 Table 2-17
 External Bus Synchronous Timings (SRAM Access)⁴

NL	Characteristics	5 . 19	66 N	/Hz	80 N	1 Hz	100 I	MHz	Unit			
No.	Characteristics	Expression ^{1, 2}	Min	Max	Min	Max	Min	Max	Unit			
210	CLKOUT high to $\overline{\rm WR}$ assertion ³	66 MHz:										
	0	$0.5 \times T_{C} + 5.3$	8.9	12.9	—	_	<	K (ns			
		$[WS = 1 \text{ or } WS \ge$					λ					
		4]						-1				
		80 MHz:						\sim $^{\prime}$	>			
		$0.5 \times T_{C} + 4.8$		—	7.6	11.1		$ \rightarrow$	ns			
		[WS = 1 or]				$>$ $)$						
		$WS \ge 4$]				\searrow						
		100 MHz:		~								
		$0.5 \times T_{C} + 4.3$		$ $ \neq $]$		$ -\rangle$	6.3	9.3	ns			
		[WS = 1 or]		7/		\searrow						
		$WS \ge 4$]	\wedge		\bigvee	\sim						
		All frequencies:			\backslash							
		$[2 \le WS \le 3]$	1.3	5.3	1.3	4.8	1.3	4.3	ns			
211	CLKOUT high to $\overline{\mathrm{WR}}$ deassertion		0.0	4.8	0.0	4.3	0.0	3.8	ns			
Note	Notes: 1. WS is the number of wait states specified in the BCR.											

Table 2-17	External Bus Syr	chronous Timings	(SRAM Access) ⁴	(Continued)
------------	------------------	------------------	----------------------------	-------------

2. The asynchronous delays specified in the expressions are valid for DSP56302A.

3. If WS > 1, $\overline{\text{WR}}$ assertion refers to the next rising edge of CLKOUT.

4. External bus synchronous timings should be used only for reference to the clock and *not* for relative timings.

5. T198 and T199 are valid for Address Trace mode if the ATE bit in the OMR is set. Use the status of BR (See T212) to determine whether the access referenced by A0–A23 is internal or external, when this mode is enabled.

Arbitration Timings

Characteristics	Expression	66 MHz					Unit		
CLKOUT high to \overline{BR} assertion/	CLKOUT high to \overline{BR} assertion/		Min	Max	Min	Max	Min	Max	Uni
CLKOUT high to BR assertion/ deassertion ²		1.0	5.0	1.0	4.5	1.0	4.0	ns	
BG asserted/deasserted to CLKOUT high (setup)		6.0		5.0		4.0	\rightarrow	ns	
CLKOUT high to \overline{BG} deasserted/ asserted (hold)		0.0	\rangle $ $	0.0		0.0		ns	
BB deassertion to CLKOUT high (input setup)		6.0		5.0		4.0	_	ns	
CLKOUT high to BB assertion (input hold)		0.0		0.0		0.0		ns	
CLKOUT high to \overline{BB} assertion (output)		1.0	5.0	1.0	4.5	1.0	4.0	ns	
CLKOUT high to BB deassertion (output)		1.0	5.0	1.0	4.5	1.0	4.0	ns	
BB high to BB high impedance (output)		<u> </u>	6.8	_	5.6	—	4.5	ns	
CLKOUT high to address and controls active	$0.25 \times T_{\rm C}$	3.8		3.1		2.5		ns	
CLKOUT high to address and controls high impedance	66 MHz: 0.25 × T _C + 1.0 80 MHz:		4.8					ns	
	$0.25 \times T_{C} + 0.5$ 100 MHz : $0.25 \times T_{C}$	_	_	_	3.6	_	2	ns ns	
CLKOUT high to AA active	-	3.8		3.1		2.5		ns	
CLKOUT high to AA deassertion	66 MHz : 0.25 × T _C + 5.0	4.8	8.8					ns	
$\sum \sum $	$0.25 \times T_{\rm C}$ + 4.5 100 MHz:	—	—	4.1	7.6	_	_	ns	
		_	_	_		3.2	6.5	ns	
JLKOUT high to AA high impedance	66 MHz: 0.75 × T _C + 1.0 80 MHz:	_	12.4	_	—	_	—	ns	
	$0.75 \times T_{C} + 0.5$ 100 MHz : $0.75 \times T_{C}$	_			9.9	_	— 7.5	ns ns	
	BG asserted/deasserted to CLKOUT high (setup) CLKOUT high to BG deasserted/asserted (hold) BB deassertion to CLKOUT high input setup) CLKOUT high to BB assertion (input hold) CLKOUT high to BB assertion (output) CLKOUT high to BB assertion (output) CLKOUT high to BB deassertion output) BB high to BB high impedance output) CLKOUT high to address and controls active CLKOUT high to address and controls high impedance CLKOUT high to address and controls high impedance	\overline{SG} asserted/deasserted to CLKOUT nigh (setup) \overline{SG} deasserted/ seserted (hold) \overline{SE} deassertion to CLKOUT high input setup) \overline{SE} deassertion to CLKOUT high input setup) \overline{CLKOUT} high to \overline{BB} assertion (output) \overline{CLKOUT} high to \overline{BB} deassertion output) \overline{SE} high to \overline{BB} high impedance output) \overline{SE} high to \overline{BB} high impedance \overline{OUT} high to address and controls $\overline{O.25 \times T_C}$ \overline{CLKOUT} high to address and controls $\overline{O.25 \times T_C} + 1.0$ \overline{SO} MHZ: $O.25 \times T_C$ \overline{CLKOUT} high to AA active $\overline{O.25 \times T_C} + 0.5$ \overline{OO} MHZ: $O.25 \times T_C + 1.0$ \overline{SO} MHZ: $O.25 \times T_C + 0.5$ \overline{OO} MHZ: $O.25 \times T_C + 1.0$ \overline{SO} MHZ: $O.25 \times T_C + 4.5$ \overline{OO} MHZ: $O.25 \times T_C + 4.0$ \overline{SO} MHZ: $O.25 \times T_C + 1.0$ \overline{SO} MHZ: $O.25 \times T_C + 4.5$ \overline{OO} MHZ: $O.25 \times T_C + 1.0$ \overline{SO} MHZ: $O.75 \times T_C + 0.5$ \overline{OO} MHZ: O	$\overline{3G}$ asserted/deasserted to CLKOUT tigh (setup)6.0CLKOUT high to \overline{BG} deasserted/ asserted (hold)0.0 $\overline{3B}$ deassertion to CLKOUT high input setup)6.0CLKOUT high to \overline{BB} assertion (input hold)0.0CLKOUT high to \overline{BB} assertion (output)1.0CLKOUT high to \overline{BB} deassertion output)1.0CLKOUT high to \overline{BB} deassertion output)1.0CLKOUT high to \overline{BB} deassertion output)1.0CLKOUT high to address and controls nigh impedance0.25 × T_CCLKOUT high to address and controls output)0.25 × T_C + 1.0CLKOUT high to address and controls nigh impedance0.25 × T_C + 1.00.25 × T_C + 0.5-100 MHz: 0.25 × T_C + 4.5-0.100 MHz: 0.25 × T_C + 4.5-0.25 × T_C + 4.5-0.25 × T_C + 4.5-100 MHz: 0.25 × T_C + 4.0-CLKOUT high to AA deassertion66 MHz: 0.25 × T_C + 4.50.25 × T_C + 4.5-100 MHz: 0.25 × T_C + 1.0-80 MHz: 0.25 × T_C + 4.0-CLKOUT high to AA high impedance66 MHz: 0.75 × T_C + 1.00.75 × T_C + 0.5-100 MHz: 0.75 × T_C + 0.5- <td>\overline{BG} asserted/deasserted to CLKOUT nigh (setup)6.0-CLKOUT high to \overline{BG} deasserted/ sserted (hold)0.0-\overline{BB} deassertion to CLKOUT high input setup)6.0-CLKOUT high to \overline{BB} assertion (input nold)0.0-CLKOUT high to \overline{BB} assertion (output)1.05.0CLKOUT high to \overline{BB} deassertion output)1.05.0CLKOUT high to \overline{BB} deassertion output)1.05.0CLKOUT high to \overline{BB} deassertion output)1.05.0CLKOUT high to address and controls nigh impedance0.25 × T_C3.8CLKOUT high to address and controls output)0.25 × T_C3.8CLKOUT high to Address and controls output)0.25 × T_C-CLKOUT high to Address and controls output)0.25 × T_CCLKOUT high to Address and controls output0.25 × T_CCLKOUT high to AA deassertion output0.25 × T_C3.8-CLKOUT high to AA deassertion output0.25 × T_C + 1.0 outputCLKOUT high to AA deassertion66 MHz: output0.25 × T_C + 4.5 output0.25 × T_C + 4.5 output12.480 MHZ: output0.75 × T_C + 1.0 output0.00 MHz: output12.480 MHZ: output0.75 × T_C + 0.5 output0.00 MHz: output</td> <td>\overline{BG} asserted / deasserted to CLKOUT igh (setup)6.0-5.0\overline{CLKOUT} high to \overline{BG} deasserted/ sserted (hold)0.0-0.0\overline{BE} deassertion to CLKOUT high input setup)6.0-5.0\overline{LKOUT} high to \overline{BB} assertion (input hold)0.0-0.0\overline{CLKOUT} high to \overline{BB} assertion (output)1.05.01.0\overline{CLKOUT} high to \overline{BB} deassertion output)1.05.01.0\overline{LKOUT} high to \overline{BB} deassertion output)1.05.01.0\overline{CLKOUT} high to address and controls$0.25 \times T_C$$3.8$-$3.1$$\overline{CLKOUT}$ high to address and controls$0.25 \times T_C + 1.0$ $0.25 \times T_C + 0.5$ $0.25 \times T_C + 0.5$$\overline{OO}$ MHz: $0.25 \times T_C + 5.0$$3.8$-$3.1$$\overline{CLKOUT}$ high to AA deassertion66 MHz: $0.25 \times T_C + 5.0$ 80 MHz: $0.25 \times T_C + 4.5$$\overline{OU}$ Migh to AA deassertion66 MHz: $0.25 \times T_C + 4.5$$\overline{OU}$ Migh to AA deassertion66 MHz: $0.25 \times T_C + 4.5$4.1-\overline{OU} High to AA high impedance66 MHz: $0.75 \times T_C + 1.0$-12.4-\overline{OU} MHz: $0.75 \times T_C + 0.5$$\overline{OU}$ MHz: $0.75 \times T_C + 0.5$$\overline{OU}$ MHz: $0.75 \times T_C + 0.5$$\overline{OU}$ MHz: $0.75 \times T_C + 0.5$<t< td=""><td>\overline{Gc} asserted/deasserted to CLKOUT 6.0 - 5.0 igh (setup) \overline{BG} deasserted/ 0.0 - 0.0 \overline{BG} deassertion to CLKOUT high input setup) 6.0 - 5.0 - \overline{BG} deassertion to CLKOUT high input setup) 0.0 - 0.0 - \overline{CLKOUT} high to \overline{BB} assertion (input old) 0.0 - 0.0 - \overline{CLKOUT} high to \overline{BB} assertion (output) 1.0 5.0 1.0 4.5 \overline{CLKOUT} high to \overline{BB} assertion (output) 1.0 5.0 1.0 4.5 \overline{CLKOUT} high to \overline{BB} deassertion output) 1.0 5.0 1.0 4.5 \overline{CLKOUT} high to address and controls $0.25 \times T_C$ 3.8 - 3.1 - \overline{CLKOUT} high to address and controls $0.25 \times T_C + 1.0$ - 4.8 - - \overline{OD} $0.25 \times T_C + 1.0$ - 4.8 - - - \overline{OD} $0.25 \times T_C + 5.0$ 4.8 8.8 - - - \overline{OD} $0.25 \times T_C + 5.0$ 4.8 8.8 - -<td>\overline{Gc} asserted/deasserted to CLKOUT high (setup) 6.0 - 5.0 4.0 \overline{CLKOUT} high to \overline{BG} deasserted/ usserted (hold) 0.0 - 0.0 - 0.0 \overline{BB} deassertion to CLKOUT high input setup) 6.0 - 5.0 - 4.0 \overline{CLKOUT} high to \overline{BB} assertion (input old) 0.0 - 0.0 - 0.0 \overline{CLKOUT} high to \overline{BB} assertion (output) 1.0 5.0 1.0 4.5 1.0 \overline{CLKOUT} high to \overline{BB} assertion (output) 1.0 5.0 1.0 4.5 1.0 \overline{CLKOUT} high to \overline{BB} deassertion output) 1.0 5.0 1.0 4.5 1.0 \overline{CLKOUT} high to \overline{BB} deassertion output) 0.25 × T_C 3.8 - 5.6 - \overline{CLKOUT} high to address and controls 0.25 × T_C 3.8 - 3.1 - 2.5 \overline{CLKOUT} high to Address and controls 66 MHz: 0.25 × T_C + 0.5 - - - - - $\overline{0.25 \times T_C}$ 3.8 - 3.1 - 2.5 - - - - - - -</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td></td></t<></td>	\overline{BG} asserted/deasserted to CLKOUT nigh (setup)6.0-CLKOUT high to \overline{BG} deasserted/ sserted (hold)0.0- \overline{BB} deassertion to CLKOUT high input setup)6.0-CLKOUT high to \overline{BB} assertion (input nold)0.0-CLKOUT high to \overline{BB} assertion (output)1.05.0CLKOUT high to \overline{BB} deassertion output)1.05.0CLKOUT high to \overline{BB} deassertion output)1.05.0CLKOUT high to \overline{BB} deassertion output)1.05.0CLKOUT high to address and controls nigh impedance0.25 × T_C3.8CLKOUT high to address and controls output)0.25 × T_C3.8CLKOUT high to Address and controls output)0.25 × T_C-CLKOUT high to Address and controls output)0.25 × T_CCLKOUT high to Address and controls output0.25 × T_CCLKOUT high to AA deassertion output0.25 × T_C3.8-CLKOUT high to AA deassertion output0.25 × T_C + 1.0 outputCLKOUT high to AA deassertion66 MHz: output0.25 × T_C + 4.5 output0.25 × T_C + 4.5 output12.480 MHZ: output0.75 × T_C + 1.0 output0.00 MHz: output12.480 MHZ: output0.75 × T_C + 0.5 output0.00 MHz: output	\overline{BG} asserted / deasserted to CLKOUT igh (setup)6.0-5.0 \overline{CLKOUT} high to \overline{BG} deasserted/ sserted (hold)0.0-0.0 \overline{BE} deassertion to CLKOUT high input setup)6.0-5.0 \overline{LKOUT} high to \overline{BB} assertion (input hold)0.0-0.0 \overline{CLKOUT} high to \overline{BB} assertion (output)1.05.01.0 \overline{CLKOUT} high to \overline{BB} deassertion output)1.05.01.0 \overline{LKOUT} high to \overline{BB} deassertion output)1.05.01.0 \overline{CLKOUT} high to address and controls $0.25 \times T_C$ 3.8 - 3.1 \overline{CLKOUT} high to address and controls $0.25 \times T_C + 1.0$ $0.25 \times T_C + 0.5$ $0.25 \times T_C + 0.5$ \overline{OO} MHz: $0.25 \times T_C + 5.0$ 3.8 - 3.1 \overline{CLKOUT} high to AA deassertion 66 MHz: $0.25 \times T_C + 5.0$ 80 MHz: $0.25 \times T_C + 4.5$ \overline{OU} Migh to AA deassertion 66 MHz: $0.25 \times T_C + 4.5$ \overline{OU} Migh to AA deassertion 66 MHz: $0.25 \times T_C + 4.5$ 4.1- \overline{OU} High to AA high impedance 66 MHz: $0.75 \times T_C + 1.0$ -12.4- \overline{OU} MHz: $0.75 \times T_C + 0.5$ <t< td=""><td>\overline{Gc} asserted/deasserted to CLKOUT 6.0 - 5.0 igh (setup) \overline{BG} deasserted/ 0.0 - 0.0 \overline{BG} deassertion to CLKOUT high input setup) 6.0 - 5.0 - \overline{BG} deassertion to CLKOUT high input setup) 0.0 - 0.0 - \overline{CLKOUT} high to \overline{BB} assertion (input old) 0.0 - 0.0 - \overline{CLKOUT} high to \overline{BB} assertion (output) 1.0 5.0 1.0 4.5 \overline{CLKOUT} high to \overline{BB} assertion (output) 1.0 5.0 1.0 4.5 \overline{CLKOUT} high to \overline{BB} deassertion output) 1.0 5.0 1.0 4.5 \overline{CLKOUT} high to address and controls $0.25 \times T_C$ 3.8 - 3.1 - \overline{CLKOUT} high to address and controls $0.25 \times T_C + 1.0$ - 4.8 - - \overline{OD} $0.25 \times T_C + 1.0$ - 4.8 - - - \overline{OD} $0.25 \times T_C + 5.0$ 4.8 8.8 - - - \overline{OD} $0.25 \times T_C + 5.0$ 4.8 8.8 - -<td>\overline{Gc} asserted/deasserted to CLKOUT high (setup) 6.0 - 5.0 4.0 \overline{CLKOUT} high to \overline{BG} deasserted/ usserted (hold) 0.0 - 0.0 - 0.0 \overline{BB} deassertion to CLKOUT high input setup) 6.0 - 5.0 - 4.0 \overline{CLKOUT} high to \overline{BB} assertion (input old) 0.0 - 0.0 - 0.0 \overline{CLKOUT} high to \overline{BB} assertion (output) 1.0 5.0 1.0 4.5 1.0 \overline{CLKOUT} high to \overline{BB} assertion (output) 1.0 5.0 1.0 4.5 1.0 \overline{CLKOUT} high to \overline{BB} deassertion output) 1.0 5.0 1.0 4.5 1.0 \overline{CLKOUT} high to \overline{BB} deassertion output) 0.25 × T_C 3.8 - 5.6 - \overline{CLKOUT} high to address and controls 0.25 × T_C 3.8 - 3.1 - 2.5 \overline{CLKOUT} high to Address and controls 66 MHz: 0.25 × T_C + 0.5 - - - - - $\overline{0.25 \times T_C}$ 3.8 - 3.1 - 2.5 - - - - - - -</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td></td></t<>	\overline{Gc} asserted/deasserted to CLKOUT 6.0 - 5.0 igh (setup) \overline{BG} deasserted/ 0.0 - 0.0 \overline{BG} deassertion to CLKOUT high input setup) 6.0 - 5.0 - \overline{BG} deassertion to CLKOUT high input setup) 0.0 - 0.0 - \overline{CLKOUT} high to \overline{BB} assertion (input old) 0.0 - 0.0 - \overline{CLKOUT} high to \overline{BB} assertion (output) 1.0 5.0 1.0 4.5 \overline{CLKOUT} high to \overline{BB} assertion (output) 1.0 5.0 1.0 4.5 \overline{CLKOUT} high to \overline{BB} deassertion output) 1.0 5.0 1.0 4.5 \overline{CLKOUT} high to address and controls $0.25 \times T_C$ 3.8 - 3.1 - \overline{CLKOUT} high to address and controls $0.25 \times T_C + 1.0$ - 4.8 - - \overline{OD} $0.25 \times T_C + 1.0$ - 4.8 - - - \overline{OD} $0.25 \times T_C + 5.0$ 4.8 8.8 - - - \overline{OD} $0.25 \times T_C + 5.0$ 4.8 8.8 - - <td>\overline{Gc} asserted/deasserted to CLKOUT high (setup) 6.0 - 5.0 4.0 \overline{CLKOUT} high to \overline{BG} deasserted/ usserted (hold) 0.0 - 0.0 - 0.0 \overline{BB} deassertion to CLKOUT high input setup) 6.0 - 5.0 - 4.0 \overline{CLKOUT} high to \overline{BB} assertion (input old) 0.0 - 0.0 - 0.0 \overline{CLKOUT} high to \overline{BB} assertion (output) 1.0 5.0 1.0 4.5 1.0 \overline{CLKOUT} high to \overline{BB} assertion (output) 1.0 5.0 1.0 4.5 1.0 \overline{CLKOUT} high to \overline{BB} deassertion output) 1.0 5.0 1.0 4.5 1.0 \overline{CLKOUT} high to \overline{BB} deassertion output) 0.25 × T_C 3.8 - 5.6 - \overline{CLKOUT} high to address and controls 0.25 × T_C 3.8 - 3.1 - 2.5 \overline{CLKOUT} high to Address and controls 66 MHz: 0.25 × T_C + 0.5 - - - - - $\overline{0.25 \times T_C}$ 3.8 - 3.1 - 2.5 - - - - - - -</td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td>	\overline{Gc} asserted/deasserted to CLKOUT high (setup) 6.0 - 5.0 4.0 \overline{CLKOUT} high to \overline{BG} deasserted/ usserted (hold) 0.0 - 0.0 - 0.0 \overline{BB} deassertion to CLKOUT high input setup) 6.0 - 5.0 - 4.0 \overline{CLKOUT} high to \overline{BB} assertion (input old) 0.0 - 0.0 - 0.0 \overline{CLKOUT} high to \overline{BB} assertion (output) 1.0 5.0 1.0 4.5 1.0 \overline{CLKOUT} high to \overline{BB} assertion (output) 1.0 5.0 1.0 4.5 1.0 \overline{CLKOUT} high to \overline{BB} deassertion output) 1.0 5.0 1.0 4.5 1.0 \overline{CLKOUT} high to \overline{BB} deassertion output) 0.25 × T_C 3.8 - 5.6 - \overline{CLKOUT} high to address and controls 0.25 × T_C 3.8 - 3.1 - 2.5 \overline{CLKOUT} high to Address and controls 66 MHz: 0.25 × T_C + 0.5 - - - - - $\overline{0.25 \times T_C}$ 3.8 - 3.1 - 2.5 - - - - - - -	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	

 Table 2-18
 Arbitration Bus Timings¹

accesses and asserted for external accesses.

DSP56302A Technical Data Sheet

HOST INTERFACE TIMING

N	cr 10	. .	66 N	ИHz	80 N	/Hz	100	MHz	
No.	Characteristic ¹⁰	Expression	Min	Max	Min	Max	Min	Max	Unit
317	Read data strobe assertion width ⁵ HACK assertion width	$\begin{array}{c} \textbf{66 MHz:} \\ T_{C} + 15.0 \\ \textbf{80 MHz:} \\ T_{C} + 12.4 \\ \textbf{100 MHz:} \\ T_{C} + 9.0 \end{array}$	30.2		_ 24.9		19.9		ns ns ns
318	Read data strobe deassertion width ⁵ HACK deassertion width	10+3.0	15.0		12.4		9.9		ns
319	Read data strobe deassertion width ⁵ after "Last Data Register" reads ^{8,11} , or between two consecutive CVR, ICR, or ISR reads ³ HACK deassertion width after "Last Data Register" reads ^{8,11}	66 MHz: 2.5 × T_{C} + 10.0 80 MHz: 2.5 × T_{C} + 8.3 100 MHz: 2.5 × T_{C} + 6.6	47.9		39.5 	_ 	 	_	ns ns ns
320	Write data strobe assertion width ⁶		20.0		16.5		13.2		ns
321	Write data strobe deassertion width ⁶	66 MHz: 2.5 × T_{C} + 10.0 80 MHz: 2.5 × T_{C} + 8.3 100 MHz: 2.5 × T_{C} + 6.6	47.9				 		ns ns ns
322	HAS assertion width	$2.3 \times 1C + 0.0$	15.0		12.4		9.9		ns
	HAS deassertion to data strobe assertion ⁴		0.0		0.0		0.0		ns
324	Host data input setup time before write data strobe deassertion ⁶		15.0		12.4		9.9		ns
325	Host data input hold time after write data strobe deassertion ⁶		5.0	_	4.1	_	3.3	_	ns
326	Read data strobe assertion to output data active from high impedance ⁵ HACK assertion to output data active from high impedance		5.0		4.1		3.3		ns
327	Read data strobe assertion to output data valid ⁵ HACK assertion to output data valid			30.0		26.68		23.54	ns

 Table 2-19
 Host Interface Timing^{1, 2}

			66 N	ИНz	80 N	ИНz	100 1	MHz	
No.	Characteristic ¹⁰	Expression	Min	Max	Min	Max	Min	Max	Unit
328	Read data strobe deassertion to output data high impedance ⁵ HACK deassertion to output data high impedance			15.0		12.4	-	9.9	ns
329	Output data hold time after read data strobe deassertion ⁵ Output data hold time after HACK deassertion		5.0		4.1		4.1	\rightarrow	ns
330	HCS assertion to read data strobe deassertion ⁵	66 MHz: T _C + 15.0 80 MHz: T _C + 12.4 100 MHz: T _C + 9.9	30.2		24.9		 19.9	_	ns ns ns
331	HCS assertion to write data strobe deassertion ⁶		15.0	_	12.4		9.9		ns
332	HCS assertion to output data valid		2—	25.0		20.6		16.5	ns
333	HCS hold time after data strobe deassertion ⁴		0.0		0.0		0.0		ns
334	Address (AD7-AD0) setup time before HAS deassertion (HMUX=1)		7.0		5.8		4.7		ns
335	Address (AD7–AD0) hold time after HAS deassertion (HMUX=1)	~	5.0		4.1		3.3		ns
336	A10-A8 (HMUX=1), A2-A0 (HMUX=0), HR/W setup time before data strobe assertion ⁴ • Read • Write		0 7.0		0 5.8		0 4.7		ns ns
337	A10-A8 (HMUX=1), A2-A0 (HMUX=0), HR/ \overline{W} hold time after data strobe deassertion ⁴		5.0		4.1		3.3		ns
338	Delay from read data strobe deassertion to host request assertion for "Last Data Register" read ^{5, 7, 8}	2 × T _C + 25.0 80 MHz :	55.3	_	-	_	_	_	ns
		$\begin{array}{l} 2 \times T_{C} + 20.6 \\ \textbf{100 MHz:} \\ 2 \times T_{C} + 20.6 \end{array}$			45.6 —		 36.5		ns ns

Table 2-19	Host Interface Timing ^{1, 2} (Continued)
------------	---

		10		66 N	MHz	80 N	MHz	100 MHz		
No.		Characteristic ¹⁰	Expression	Min	Max	Min	Max	Min	Max	Unit
339	deasse	from write data strobe ertion to host request assertion for Data Register" write ^{6, 7, 8}	$\begin{array}{c} \textbf{66 MHz:} \\ 1.5 \times T_{C} + 25.0 \\ \textbf{80 MHz:} \\ 1.5 \times T_{C} + 20.6 \\ \textbf{100 MHz:} \\ 1.5 \times T_{C} + 16.5 \end{array}$	47.7	_	 39.4 	-	31.5		ns ns ns
340	reques	from data strobe assertion to host at deassertion for "Last Data er" read or write (HROD=0) ^{4, 7, 8}		_	25.0		22.55	\sum	20.24	ns
341	reques Regist	from data strobe assertion to host st deassertion for "Last Data er" read or write (HROD=1, open host request) ^{4, 7, 8, 9}		-~	300.0		300.0		300.0	ns
Note	2. 3. 4. 5. 6. 7. 8. 9. 10.	See Host Port Usage Consideration In the timing diagrams below, the co- programmable. This timing is applicable only if two The data strobe is Host Read (HRD) of Strobe (HDS) in the Single Data Strob The read data strobe is HRD in the D The write data strobe is HRD in the D The write data strobe is HRD in the D The write data strobe is HREQ in the Sing Request mode. The "Last Data Register" is the regist data transfers. This is RXL/TXL in the mode (HBE = 1). In this calculation, the host request si $V_{CC} = 3.3 V \pm 0.3 V$; $T_I = -40^{\circ}C$ to +10 This timing is applicable only if a rea RXL, RXM, or RXH registers without	ntrols pins are dra consecutive reads or Host Write (HW be mode. Jual Data Strobe m Dual Data Strobe m Dual Data Strobe m Jual Data Strobe m Dual	from or R) in th ode and node an ode an which is ode (HE oy a 4.7 Data Rep	The of the ne Dual d HDS is nd HDS d HRR the lass BE = 0, $k\Omega$ res gister"	ese reg Data S in the S in the Q and I t locati or RXH istor in is follo	isters a trobe n Single I Single HTRQ on to b H/TXH the Op wed by	re exec node an Data Sti Data S in the I e read of in the oen-dra v a read	cuted. nd Host robe mo trobe n Double or writt Big En ain mod	ode. node. Host een in dian le. he

 Table 2-19 Host Interface Timing^{1, 2} (Continued)

Figure 2-26 Host Interrupt Vector Register (IVR) Read Timing Diagram

Figure 2-27 Read Timing Diagram, Non-Multiplexed Bus

Preliminary Data

AA0484

SCI Timing

SCI TIMING

N	<i>a</i> 1	C III	F	66 N	1Hz	80 N	1Hz	100 N	ИНz	
No.	Characteristics ¹	Symbol	Expression	Min	Max	Min	Max	Min	Max	Unit
400	Synchronous clock cycle	t _{SCC} ²	$8 \times T_C$	121.0		100.0		80.0	7	ns
401	Clock low period		$t_{SCC}/2-10.0$	50.5		40.0		30.0		ns
402	Clock high period		$t_{SCC}/2 - 10.0$	50.5	_	40.0	\langle	30.0	—	ns
403	Output data setup to clock falling edge (internal clock)		$t_{SCC}/4 + 0.5 \times T_{C} - 17.0$	20.5		14.3		8.0	—	ns
404	Output data hold after clock rising edge (internal clock)		$t_{SCC}/4 - 0.5 \times T_C$	22.5		18.8		15.0		ns
405	Input data setup time before clock rising edge (internal clock)		$t_{SCC}/4 + 0.5 \times T_{C} + 25.0$	63.0		56.3		50.0		ns
406	Input data not valid before clock rising edge (internal clock)		$t_{SCC}/4 + 0.5 \times T_{C} - 5.5$	_	32.0		25.8		19.5	ns
407	Clock falling edge to output data valid (external clock)		\sum_{λ}		32.0	_	32.0		32.0	ns
408	Output data hold after clock rising edge (external clock)		T _C + 8.0	23.0		20.5		18.0		ns
409	Input data setup time before clock rising edge (external clock)			0.0		0.0		0.0		ns
410	Input data hold time after clock rising edge (external clock)			9.0		9.0	_	9.0	_	ns
411	Asynchronous clock cycle	t _{ACC} ³	$64 \times T_C$	969.7		800.0		640.0		ns
412	Clock low period		$t_{ACC}/2 - 10.0$	474.8		390.0	_	310.0	_	ns
413	Clock high period		$t_{ACC} / 2 - 10.0$	474.8		390.0		310.0		ns

Table 2-20 SCI Timing

Specifications

SCI Timing

Na	Characteristics ¹	Symbol	Symbol Expression	66 N	1Hz	80 N	1Hz	100 MHz		T I \$4		
No.			Expression	Min	Max	Min	Max	Min	Max	Unit		
414	Output data setup to clock rising edge (internal clock)		$t_{ACC}/2 - 30.0$	458.8		370.0		290.0		ns		
415	Output data hold after clock rising edge (internal clock)		$t_{ACC}/2 - 30.0$	458.8		370.0	-	290.0		ns		
Note	Notes: 1. $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$: $T_I = -40^{\circ}\text{C}$ to $+100^{\circ}\text{C}$. $C_I = 50 \text{ pF}$											

Table 2-20 SCI Timing (Continued)

 $\begin{array}{l} V_{CC}=3.3~V\pm0.3~V;~T_{J}=-40^{\circ}C~to+100~^{\circ}C,~C_{L}=50~pF\\ t_{SCC}=synchronous~clock~cycle~time~(For~internal~clock,~t_{SCC}~is~determined~by~the~SCI~clock~control~register~and~T_{C}.)\\ t_{ACC}=asynchronous~clock~cycle~time;~value~given~for~1X~Clock~mode~(For~internal~clock,~t_{ACC}~is~determined~by~the~SCI~clock~control~register~and~T_{C}.) \end{array}$ 2.

3.

SCI Timing

Figure 2-32 SCI Asynchronous Mode Timing

ESSI0/ESSI1 TIMING

		haracteristics ^{4, 6, 7} Symbol Expression	66 N	ЛНz	80 N	/Hz	100 I	MHz	Cond-	II*+	
No.	Characteristics ^{4, 6, 7}	Symbol	Expression	Min	Max	Min	Max	Min	Max	ition ⁵	Unit
430	Clock cycle ¹	t _{SSICC}	$\begin{array}{c} 4 \times T_C \\ 3 \times T_C \end{array}$	60.6 45.5		50.0 37.5		40.0 30.0		i ck x ck	ns
431	Clock high period • For internal clock • For external clock		$\begin{array}{c} 2 \times T_C - 10.0 \\ 1.5 \times T_C \end{array}$	20.3 22.7		15.0 18.8		10.0 15.0		5	ns ns
432	Clock low period • For internal clock • For external clock		$\begin{array}{c} 2 \times T_C - 10.0 \\ 1.5 \times T_C \end{array}$	20.3 22.7	Ā	15.0 18.8		10.0 15.0			ns ns
433	RXC rising edge to FSR out (bl) high				37.0 22.0		37.0 22.0		37.0 22.0	x ck i ck a	ns
434	RXC rising edge to FSR out (bl) low				37.0 22.0		37.0 22.0		37.0 22.0	x ck i ck a	ns
435	RXC rising edge to FSR out (wr) high ²			-	39.0 24.0	_	39.0 24.0		39.0 24.0	x ck i ck a	ns
436	RXC rising edge to FSR out (wr) low ²				39.0 24.0	_	39.0 24.0		39.0 24.0	x ck i ck a	ns
437	RXC rising edge to FSR out (wl) high			_	36.0 21.0	_	36.0 21.0		36.0 21.0	x ck i ck a	ns
438	RXC rising edge to FSR out (wl) low	$\langle \rangle$		_	37.0 22.0	_	37.0 22.0		37.0 22.0	x ck i ck a	ns
439	Data in setup time before RXC (SCK in Synchronous mode) falling edge			0.0 19.0		0.0 19.0		0.0 19.0		x ck i ck	ns
440	Data in hold time after RXC falling edge			5.0 3.0		5.0 3.0		5.0 3.0	_	x ck i ck	ns
441	FSR input (bl, wr) high before RXC falling edge ²			23.0 1.0	_	23.0 1.0	_	23.0 1.0	_	x ck i ck a	ns
442				23.0 1.0	_	23.0 1.0		23.0 1.0	_	x ck i ck a	ns
443	FSR input hold time after RXC falling edge			3.0 0.0		3.0 0.0		3.0 0.0	_	x ck i ck a	ns
444	Flags input setup before RXC falling edge			0.0 19.0	_	0.0 19.0		0.0 19.0	_	x ck i ck s	ns

 Table 2-21
 ESSI Timings

				66 N	/Hz	80 N	/Hz	100 I	MHz	Cond-	
No.	Characteristics ^{4, 6, 7}	Symbol	Expression	Min	Max	Min	Max	Min	Max	ition ⁵	Unit
445	Flags input hold time after RXC falling edge			6.0 0.0		6.0 0.0		6.0 0.0	_	x ck i ck s	ns
446	TXC rising edge to FST out (bl) high			_	29.0 15.0	_	29.0 15.0		29.0 15.0	x ck i ck	ns
447	TXC rising edge to FST out (bl) low			_	31.0 17.0	_	31.0 17.0		31.0 17.0	x ck j i ck	ns
448	TXC rising edge to FST out (wr) high ²			_	31.0 17.0	_ ~	31.0 17.0		31.0 17.0	x ck i ck	ns
449	TXC rising edge to FST out (wr) low ²			_	33.0 19.0		33.0 19.0		33.0 19.0	x ck i ck	ns
450	TXC rising edge to FST out (wl) high				30.0 16.0	_	30.0 16.0		30.0 16.0	x ck i ck	ns
451	TXC rising edge to FST out (wl) low				31.0 17.0	_	31.0 17.0		31.0 17.0	x ck i ck	ns
452	TXC rising edge to data out enable from high impedance				31.0 17.0		31.0 17.0		31.0 17.0	x ck i ck	ns
453	TXC rising edge to Transmitter #0 drive enable assertion			_	34.0 20.0	_	34.0 20.0	_	34.0 20.0	x ck i ck	ns
454	TXC rising edge to data out valid		$35 + 0.5 \times T_{C}$ 21.0	_	42.6 21.0	_	41.3 21.0		40.0 21.0	x ck i ck	ns
455	TXC rising edge to data out high impedance ³		2	_	31.0 16.0	_	31.0 16.0		31.0 16.0	x ck i ck	ns
456	TXC rising edge to Transmitter #0 drive enable deassertion ³			_	34.0 20.0		34.0 20.0		34.0 20.0	x ck i ck	ns
457	FST input (bl, wr) setup time before TXC falling edge ²			2.0 21.0		2.0 21.0	_	2.0 21.0	_	x ck i ck	ns
458	FST input (wl) to data out enable from high impedance			_	27.0		27.0		27.0		ns
459	FST input (wl) to Transmitter #0 drive enable assertion			_	31.0		31.0		31.0		ns

 Table 2-21
 ESSI Timings (Continued)

N.		Chl	E	66 N	ИНz	80 N	ИНz	100]	MHz	Cond-	T
No.	Characteristics ^{4, 6, 7}	Symbol	Expression	Min	Max	Min	Max	Min	Max	ition ⁵	Unit
460	FST input (wl) setup time before TXC falling edge			2.0 21.0		2.0 21.0	_	2.0 21.0		x.ck i ck	ns
461	FST input hold time after TXC falling edge			4.0 0.0		4.0 0.0		4.0 0.0	\sim	x ck i ck	ns
462	Flag output valid after TXC rising edge			_	32.0 18.0	_	32.0 18.0		32.0 18.0	x ck i ck	ns
Note	2. The word-relative fr bit-length frame syn Bit Length Frame Syn 3. Periodically sampled 4. $V_{CC} = 3.3 V \pm 0.3 V;$ 5. TXC (SCK Pin) = Tran RXC (SC0 or SCK Pin FST (SC2 Pin) = Tran FSR (SC1 or SC2 Pin 6. i ck = Internal Clock x ck = External Clock i ck a = Internal Clock (Asynchronous i ck s = Internal Cloce	rame sync s ac signal way and signal), d and not 1 $T_J = -40^{\circ}C$ ansmit Clo n) = Receive moment fram b) Receive F k k ck, Asynch implies that	signal waveform re aveform, but spread until the one befor 00% tested to +100 °C, $C_L = 5$ ck we Clock the Sync Frame Sync Frame Sync	elative ids froi re last 0 pF re two	to the m one : bit cloo	clock c serial ck of th	operate clock b ne first	s in th efore f	e same irst bit	e manner clock (sa	

Table 2-21ESSI Timings (Continued)

Timer Timing

TIMER TIMING

No.	Characteristics	Expression	66 MHz		80 MHz		100 MHz		
			Min	Max	Min	Max	Min	Max	Unit
480	TIO Low	$2 \times T_{C} + 2.0$	32.5		27.0		22.0		ns
481	TIO High	$2 \times T_{C} + 2.0$	32.5	_	27.0		22.0		ns
482	Timer setup time from TIO (Input) assertion to CLKOUT rising edge		9.0	15.15	9.0	12.5	9.0	10.0	ns
483	Synchronous timer delay time from CLKOUT rising edge to the external memory access address out valid caused by first interrupt instruction execution	10.25 × T _C + 1.0	156.0		129.1		103.5		ns
484	CLKOUT rising edge to TIO (Output) assertion • Minimum • Maximum	$0.5 \times T_{C} + 3.5$ $0.5 \times T_{C} + 19.8$	11.1		9.8	 26.1	8.5	 24.8	ns ns
485	CLKOUT rising edge to TIO (Output) deassertion • Minimum • Maximum	60.5 × T _C + 3.5 66–80 MHz:	11.1		9.8		8.5		ns
		$0.5 \times T_{C} + 19.8$ 100 MHz : $0.5 \times T_{C} + 19.0$	_	28.1		26.1		 24.8	ns ns

Table 2-22Timer Timing

Note: $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$; $T_{J} = -40^{\circ}\text{C}$ to $+100^{\circ}\text{C}$, $C_{L} = 50 \text{ pF}$

Timer Timing

GPIO Timing

GPIO TIMING

No.	Characteristics	Expression	66 MHz		80 MHz		100 MHz		T 1 *4
			Min	Max	Min	Max	Min	Max	Unit
490	CLKOUT edge to GPIO out valid (GPIO out delay time)		_	31.0		31.0		31.0	ns
491	CLKOUT edge to GPIO out not valid (GPIO out hold time)		3.0	_	3.0		3.0		ns
492	GPIO In valid to CLKOUT edge (GPIO in set-up time)		12.0		12.0		12.0		ns
493	CLKOUT edge to GPIO in not valid (GPIO in hold time)		0.0	_	0.0		0.0		ns
494	Fetch to CLKOUT edge before GPIO change	6.75 × T _C	102.3	\mathcal{H}	84.4		67.5		ns

Table 2-23GPIO Timing

 $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}; T_{J} = -40^{\circ}\text{C} \text{ to } +100^{\circ}\text{C}, C_{L} = 50^{\circ}\text{pK}$ Note:

AA0495

Figure 2-38 GPIO Timing

JTAG Timing

JTAG TIMING

No.	Characteristics	All freq	T T .•4		
10.	Characteristics	Min	Max	Unit	
500	TCK frequency of operation (1/($T_C \times 3$); maximum 22 MHz)	0.0	22.0	MHz	
501	TCK cycle time in Crystal mode	45.0	\rightarrow	ns	
502	TCK clock pulse width measured at 1.5 V	20.0		ns	
503	TCK rise and fall times	0.0	3.0	ns	
504	Boundary scan input data setup time	5.0	> -	ns	
505	Boundary scan input data hold time	24.0	_	ns	
506	TCK low to output data valid	0.0	40.0	ns	
507	TCK low to output high impedance	0.0	40.0	ns	
508	TMS, TDI data setup time	5.0	_	ns	
509	TMS, TDI data hold time	25.0	_	ns	
510	TCK low to TDO data valid	0.0	44.0	ns	
511	TCK low to TDO high impedance	0.0	44.0	ns	
512	TRST assert time	100.0	—	ns	
513	TRST setup time to TCK low	40.0	—	ns	
Notes:	1. $V_{CC} = 3.3 V \pm 0.3 V; T_J = -40^{\circ}C$ to $+100^{\circ}C, C_L = 50 \text{ pF}$				

Table 2-24 JTAG Timing

All timings apply to OnCE module data transfers because it uses the JTAG port as an interface.

Figure 2-39 Test Clock Input Timing Diagram
JTAG Timing

OnCE Module TimIng

OnCE MODULE TIMING

NT-	Characteristics	E	66 MHz		80 MHz		100 MHz		Unit
No.	Characteristics	Expression	Min	Max	Min	Max	Min	Max	Unit
500	TCK frequency of operation	1/(T _C ×3), max 22.0 MHz	0.0	22.0	0.0	22.0	0.0	22.0	MHz
514	DE assertion time in order to enter Debug mode	$1.5 \times T_{\rm C} + 10.0$	32.7		28.8		25.0	_	ns
515	Response time when DSP56302A is executing NOP instructions from internal memory	$5.5 \times T_{C} + 30.0$		113.3		98.8		85.0	ns
516	Debug acknowledge assertion time	$3 \times T_{C} + 10.0$	55.5	—	47.5	—	40.0	—	ns
Note	: $V_{CC} = 3.3 V \pm 0.3 V$; $T_J = -40^{\circ}C$ to +10	0 °C, C _L = 50 pF							

Table 2-25	OnCE Module Timing
------------	--------------------

DE 514 515 516 AA0500 Figure 2-43 OnCE—Debug Request

dsp

SECTION 3

PACKAGING

PIN-OUT AND PACKAGE INFORMATION

This sections provides information about the available packages for this product, including diagrams of the package pinouts and tables describing how the signals described in **Section 1** are allocated for each package.

The DSP56302A is available in two package types:

- 144-pin Thin Quad Flat Pack (TQFP)
- 196-pin Plastic Ball Grid Array (PBGA)

TQFP Package Description

Top and bottom views of the TQFP package are shown in **Figure 3-1** and **Figure 3-2** with their pin-outs.

Note: Because of size constraints in this figure, only one name is shown for multiplexed pins. Refer to **Table 3-1** and **Table 3-2** for detailed information about pin functions and signal names.

AA0301

Figure 3-1 DSP56302A Thin Quad Flat Pack (TQFP), Top View

Figure 3-2 DSP56302A Thin Quad Flat Pack (TQFP), Bottom View

Table 3-1	DSP56302	A TQFP Signa	l Identificatio	n by I	Pin Number	

Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name
1	SRD1 or PD4	26	GND _S	51	AA2/RAS2
2	STD1 or PD5	27	TIO2	52	CAS
3	SC02 or PC2	28	TIO1	53	XTAL
4	SC01 or PC1	29	TIO0	54	GND _Q
5	DE	30	HCS/HCS, HA10, or PB13	55	EXTAL
6	PINIT/NMI	31	HA2, HA9, or PB10	56	V _{CCQL}
7	SRD0 or PC4	32	HA1, HA8, or PB9	57	V _{CCC}
8	V _{CCS}	33	HA0, HAS/HAS, or PB8	58	GND _C
9	GND _S	34	H7, HAD7, or PB7	59	CLKOUT
10	STD0 or PC5	35	H6, HAD6, or PB6	60	BCLK
11	SC10 or PD0	36	H5, HAD5, or PB5	61	BCLK
12	SC00 or PC0	37	H4, HAD4, or PB4	62	TA
13	RXD or PE0	38	V _{CCH}	63	BR
14	TXD or PE1	39	GND _H	64	BB
15	SCLK or PE2	40	H3, HAD3, or PB3	65	V _{CCC}
16	SCK1 or PD3	41	H2, HAD2, or PB2	66	GND _C
17	SCK0 or PC3	42	H1, HAD1, or PB1	67	WR
18	V _{CCQL}	43	H0, HAD0, or PB0	68	RD
19	GND _Q	44	RESET	69	AA1/RAS1
20	V _{CCQH}	45	V _{CCP}	70	AA0/RAS0
21	HDS/HDS, HWR/HWR, or PB12	46	РСАР	71	BG
22	HRW, HRD/HRD, or PB11	47	GND _P	72	A0
23	HACK/HACK, HRRQ/HRRQ, or PB15	48	GND _{P1}	73	A1
24	HREQ/HREQ, HTRQ/HTRQ, or PB14	49	V _{CCQH}	74	V _{CCA}
25	V _{CCS}	50	AA3/RAS3	75	GNDA

Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name		
76	A2	99	A17	122	D16		
77	A3	100	D0	123	D17		
78	A4	101	D1	124	D18		
79	A5	102	D2	125	D19		
80	V _{CCA}	103	V _{CCD}	126	VCCQL		
81	GND _A	104	GND _D	127	GND _Q		
82	A6	105	D3	128	D20		
83	A7	106	D4	129	VCCD		
84	A8	107	D5	130	GND _D		
85	A9	108	D6	131	D21		
86	V _{CCA}	109	D7	132	D22		
87	GND _A	110	D8	133	D23		
88	A10	111	V _{CCD}	134	MODD/IRQD		
89	A11	112	GNDD	135	MODC/IRQC		
90	GND _Q	113	D9	136	MODB/IRQB		
91	V _{CCQL}	114	D10	137	MODA/IRQA		
92	A12	115	DII	138	TRST		
93	A13	116	D12	139	TDO		
94	A14	117	D13	140	TDI		
95	V _{CCQH}	118	D14	141	ТСК		
96	GNDA	119	V _{CCD}	142	TMS		
97	A15	120	GND _D	143	SC12 or PD2		
98	A16	121	D15	144	SC11 or PD1		
Note:	98 A16 121 D15 144 SC11 or PD1 Note: Signal names are based on configured functionality. Most pins supply a single signal. Some pins provide a signal with dual functionality, such as the MODx/IRQx pins that select an operating mode after RESET is deasserted, but act as interrupt lines during operation. Some signals have configurable polarity; these names are shown with and without overbars, such as HAS/HAS. Some pins have two or more configurable functions; names assigned to these pins indicate the						

 Table 3-1
 DSP56302A TQFP Signal Identification by Pin Number (Continued)

Some pins have two or more configurable functions; names assigned to these pins indicate the function for a specific configuration. For example, Pin 34 is data line H7 in Non-multiplexed Bus mode, data/address line HAD7 in Multiplexed Bus mode, or GPIO line PB7 when the GPIO function is enabled for this pin.

Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.
A0	72	BG	71	D7	109
A1	73	BR	63	D8	110
A10	88	CAS	52	D9	113
A11	89	CLKOUT	59	DE	5
A12	92	D0	100	EXTAL	55
A13	93	D1	101	GNDA	75
A14	94	D10	114	GNDA	81
A15	97	D11 <	115	GNDA	87
A16	98	D12	116	GNDA	96
A17	99	D13	117	GND _C	58
A2	76	D14	118	GND _C	66
A3	77	D15	121	GND _D	104
A4	78	D16	122	GND _D	112
A5	79	D17	123	GND _D	120
A6	82	D18	124	GND _D	130
A7	83	D19	125	GND _H	39
A8	84	D2	102	GND _P	47
A9	85	D20	128	GND _{P1}	48
AA0	70	D21	131	GND _Q	19
AA1	69	D22	132	GND _Q	54
AA2	51	D23	133	GND _Q	90
AA3	50	D3	105	GND _Q	127
BB	64	D4	106	GND _S	9
BCLK	60	D5	107	GND _S	26
BCLK	61	D6	108	H0	43

 Table 3-2
 DSP56302A TQFP Signal Identification by Name

DSP56302A Technical Data Sheet

Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.
H1	42	HRD/HRD	22	PB4	37
H2	41	HREQ/HREQ	24	PB5	36
H3	40	HRRQ/HRRQ	23	PB6	35
H4	37	HRW	22	PB7	34
H5	36	HTRQ/HTRQ	24	PB8	33
H6	35	HWR/HWR	21	PB9	32
H7	34	ĪRQĀ	137	PC0	12
HA0	33	ĪRQB	136	PC1	4
HA1	32	IRQC	135	PC2	3
HA10	30	IRQD	134	PC3	17
HA2	31	MODA	137	PC4	7
HA8	32	MODB	136	PC5	10
HA9	31	MODC	135	PCAP	46
HACK/HACK	23	MODD	134	PD0	11
HAD0	43	NMI	6	PD1	144
HAD1	42	РВО	43	PD2	143
HAD2	41	PB1	42	PD3	16
HAD3	40	PB10	31	PD4	1
HAD4	37	PB11	22	PD5	2
HAD5	36	PB12	21	PE0	13
HAD6	35	PB13	30	PE1	14
HAD7	34	PB14	24	PE2	15
HAS	33	PB15	23	PINIT	6
HCS/HCS	30	PB2	41	RASO	70
HDS/HDS	21	PB3	40	RAS1	69
\sim					-

 Table 3-2
 DSP56302A TQFP Signal Identification by Name (Continued)

Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.
RAS2	51	STD1	2	V _{CCD}	111
RAS3	50	TA	62	V _{CCD}	119
RD	68	ТСК	141	V _{CCD}	129
RESET	44	TDI	140	V _{ССН}	38
RXD	13	TDO	139	VCCP	45
SC00	12	TIO0	29	V _{CCQH}	20
SC01	4	TIO1	28	V _{CCQH}	49
SC02	3	TIO2	27	Vccqн	95
SC10	11	TMS	142	V _{CCQL}	18
SC11	144	TRST	138	V _{CCQL}	56
SC12	143	TXD	14	V _{CCQL}	91
SCK0	17	V _{CCA}	74	V _{CCQL}	126
SCK1	16	V _{CCA}	80	V _{CCS}	8
SCLK	15	V _{CCA}	86	V _{CCS}	25
SRD0	7	V _{CCC}	57	WR	67
SRD1	1	Vccc	65	XTAL	53
STD0	10	V _{CCD}	103		

 Table 3-2
 DSP56302A TQFP Signal Identification by Name (Continued)

TQFP Package Mechanical Drawing

Figure 3-3 DSP56302A Mechanical Information, 144-pin TQFP Package

PBGA Package Description

Top and bottom views of the PBGA package are shown in **Figure 3-4** and **Figure 3-5** with their pin-outs.

Figure 3-4 DSP56302A Plastic Ball Grid Array (PBGA), Top View

Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name
A1	Not Connected (NC), reserved	B12	D8	D9	GND
A2	SC11 or PD1	B13	D5	D10	GND
A3	TMS	B14	NC	D11	GND
A4	TDO	C1	SC02 or PC2	D12	Di
A5	MODB/IRQB	C2	STD1 or PD5	D13	D2
A6	D23	C3	ТСК	D14	V _{CCD}
A7	V _{CCD}	C4	MODA/IRQA	E1	STD0 or PC5
A8	D19	C5	MODC/IRQC	E2	V _{CCS}
A9	D16	C6	D22	E3	SRD0 or PC4
A10	D14	C7	V _{CCQL}	E4	GND
A11	D11	C8	D18	E5	GND
A12	D9	C9	V _{CCD}	E6	GND
A13	D7	C10	D12	E7	GND
A14	NC	C11	V _{CCD}	E8	GND
B1	SRD1 or PD4	C12	D6	E9	GND
B2	SC12 or PD2	C13	D3	E10	GND
B3	TDI	C14	D4	E11	GND
B4	TRST	D1	PINIT/NMI	E12	A17
B5	MODD/IRQD	D2	SC01 or PC1	E13	A16
B6	D21	D3	DE	E14	D0
B7	D20	D4	GND	F1	RXD or PE0
B8	D17	D5	GND	F2	SC10 or PD0
B9	D15	D6	GND	F3	SC00 or PC0
B10	D13	D7	GND	F4	GND
B11	D10	D8	GND	F5	GND

 Table 3-3
 DSP56302A PBGA Signal Identification by Pin Number

Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name
F6	GND	H3	SCK0 or PC3	J14	A9
F7	GND	H4	GND	K1	V _{CCS}
F8	GND	H5	GND	K2	HREQ/HREQ, HTRQ/HTRQ, or PB14
F9	GND	H6	GND	K3	TIO2
F10	GND	H7	GND	K4	GND
F11	GND	H8	GND	K5	GND
F12	V _{CCQH}	H9	GND	K6	GND
F13	A14	H10	GND	K7	GND
F14	A15	H11	GND	K8	GND
G1	SCK1 or PD3	H12	V _{CCA}	K9	GND
G2	SCLK or PE2	H13	A10	K10	GND
G3	TXD or PE1	H14	A11	K11	GND
G4	GND	J1	HACK/HACK, HRRQ/HRRQ, or PB15	K12	V _{CCA}
G5	GND	J2	HRW, $\overline{\text{HRD}}$ /HRD, or PB11	K13	A5
G6	GND	J3	HDS/HDS, HWR/HWR, or PB12	K14	A6
G7	GND	J4	GND	L1	$\overline{\text{HCS}}$ /HCS, HA10, or PB13
G8	GND	J5	GND	L2	TIO1
G9	GND	J6	GND	L3	TIO0
G10	GND	J7	GND	L4	GND
G11	GND	J8	GND	L5	GND
G12	A13	J9	GND	L6	GND
G13	VCCQL	J10	GND	L7	GND
G14	A12	J11	GND	L8	GND
H1	V _{CCQH}	J12	A8	L9	GND
H2	V _{CCQL}	J13	A7	L10	GND

Table 3-3	DSP56302A PBGA Signal Identification by Pin Number	(Continued)
	0 5	· /

Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name
L11	GND	M13	A1	P1	NC
L12	V _{CCA}	M14	A2	P2	H5, HAD5, or PB5
L13	A3	N1	H6, HAD6, or PB6	P3	H3, HAD3, or PB3
L14	A4	N2	H7, HAD7, or PB7	P4	H1, HAD1, or PB1
M1	HA1, HA8, or PB9	N3	H4, HAD4, or PB4	P5	РСАР
M2	HA2, HA9, or PB10	N4	H2, HAD2, or PB2	P6	GND _{P1}
M3	HA0, HAS/HAS, or PB8	N5	RESET	P7	AA2/RAS2
M4	V _{CCH}	N6	GND _P	P8	XTAL
M5	H0, HAD0, or PB0	N7	AA3/RAS3	P9	Vccc
M6	V _{CCP}	N8	CAS	P10	TA
M7	V _{CCQH}	N9	V _{CCQL}	P11	BB
M8	EXTAL	N10	BCLK	P12	AA1/RAS1
M9	CLKOUT	N11	BR	P13	BG
M10	BCLK	N12	V _{CCC}	P14	NC
M11	WR	N13	AA0/RAS0		
M12	RD	N14	A0		

Table 3-3 DSP56302A PBGA Signal Identification by Pin Number (C	Continued)
---	------------

Note: Signal names are based on configured functionality. Most connections supply a single signal. Some connections provide a signal with dual functionality, such as the MODx/IRQx pins that select an operating mode after RESET is deasserted, but act as interrupt lines during operation. Some signals have configurable polarity; these names are shown with and without overbars, such as HAS/HAS. Some connections have two or more configurable functions; names assigned to these connections indicate the function for a specific configuration. For example, connection N2 is data line H7 in Non-multiplexed Bus mode, data/address line HAD7 in Multiplexed Bus mode, or GPIO line PB7 when the GPIO function is enabled for this pin. Unlike the TQFP package, most of the GND pins are connected internally in the center of the connection array and act as heat sink for the chip. Therefore, except for GND_P and GND_{P1} that support the PLL, other GND signals do not support individual subsystems in the chip.

Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.
A0	N14	BG	P13	D7	A13
A1	M13	BR	N11	D8	B12
A10	H13	CAS	N8	D9	A12
A11	H14	CLKOUT	M9	DE	D3
A12	G14	D0	E14	EXTAL	M8
A13	G12	D1	D12	GND	D4
A14	F13	D10	B11	GND	D5
A15	F14	D11 <	A11	GND	D6
A16	E13	D12	C10	GND	D7
A17	E12	D13	B10	GND	D8
A2	M14	D14	A10	GND	D9
A3	L13	D15	B9	GND	D10
A4	L14	D16	A9	GND	D11
A5	K13	D17	B8	GND	E4
A6	K14	D18	C8	GND	E5
A7	> J13	D19	A8	GND	E6
A8	J12	D2	D13	GND	E7
A9	J14	D20	B7	GND	E8
AA0	N13	D21	B6	GND	E9
AA1	P12	D22	C6	GND	E10
AA2	P7	D23	A6	GND	E11
AA3	N7	D3	C13	GND	F4
BB	P11	D4	C14	GND	F5
BCLK	M10	D5	B13	GND	F6
BCLK	N10	D6	C12	GND	F7

 Table 3-4
 DSP56302A PBGA Signal Identification by Name

Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.
GND	F8	GND	J9	H4	N3
GND	F9	GND	J10	H5	P2
GND	F10	GND	J11	H6	N1
GND	F11	GND	K4	H7	N2
GND	G4	GND	K5	HA0	M3
GND	G5	GND	K6	HAI	M1
GND	G6	GND	K7	HA10	L1
GND	G7	GND	K8	HA2	M2
GND	G8	GND	K9	HA8	M1
GND	G9	GND	K10	HA9	M2
GND	G10	GND	K11	HACK/HACK	J1
GND	G11	GND	L4	HAD0	M5
GND	H4	GND	L5	HAD1	P4
GND	H5	GND	L6	HAD2	N4
GND	H6	GND	L7	HAD3	P3
GND	H7	GND	L8	HAD4	N3
GND	H8	GND	L9	HAD5	P2
GND	H9	GND	L10	HAD6	N1
GND	H10	GND	L11	HAD7	N2
GND	H11	GND _P	N6	HAS/HAS	M3
GND	J4	GND _{P1}	P6	HCS/HCS	L1
GND	J5	H0	M5	HDS/HDS	J3
GND	J6	H1	P4	HRD/HRD	J2
GND	J7	H2	N4	HREQ/HREQ	K2
GND	J8	H3	P3	HRRQ/HRRQ	J1

 Table 3-4
 DSP56302A PBGA Signal Identification by Name (Continued)

Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.
HRW	J2	PB2	N4	RASO	N13
HTRQ/HTRQ	K2	PB3	P3	RAS1	P12
HWR/HWR	J3	PB4	N3	RAS2	P7
ĪRQĀ	C4	PB5	P2	RAS3	N7
IRQB	A5	PB6	N1	RD	M12
IRQC	C5	PB7	N2	RESET	N5
ĪRQD	B5	PB8	M3	RXD	F1
MODA	C4	PB9	M1	SC00	F3
MODB	A5	PC0 <	F3	SC01	D2
MODC	C5	PC1	D2	SC02	C1
MODD	B5	PC2	C1	SC10	F2
NC	A1	PC3	H3	SC11	A2
NC	A14	PC4	E3	SC12	B2
NC	B14	PC5	E1	SCK0	H3
NC	P1	PCAP	P5	SCK1	G1
NC	P14	PD0	F2	SCLK	G2
NMI	D1	PD1	A2	SRD0	E3
PB0	M5	PD2	B2	SRD1	B1
PB1	P4	PD3	G1	STD0	E1
PB10	M2	PD4	B1	STD1	C2
PB11	J2	PD5	C2	TA	P10
PB12	J3	PE0	F1	ТСК	C3
PB13	L1	PE1	G3	TDI	B3
PB14	K2	PE2	G2	TDO	A4
PB15	J1	PINIT	D1	TIO0	L3

 Table 3-4
 DSP56302A PBGA Signal Identification by Name (Continued)

Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.
TIO1	L2	V _{CCC}	P9	V _{CCQH}	M77
TIO2	K3	V _{CCD}	A7	V _{CCQL}	C7
TMS	A3	V _{CCD}	C9	V _{CCQL}	G13
TRST	B4	V _{CCD}	C11	V _{CCQL}	H2
TXD	G3	V _{CCD}	D14	VccqL	N9
V _{CCA}	H12	V _{CCH}	M4	Vccs	E2
V _{CCA}	K12	V _{CCP}	M6	V _{CCS}	K1
V _{CCA}	L12	V _{CCQH}	F12	ŴR	M11
V _{CCC}	N12	V _{CCQH}	H1	XTAL	P8

 Table 3-4
 DSP56302A PBGA Signal Identification by Name (Continued)

PBGA Package Mechanical Drawing

ORDERING DRAWINGS

Complete mechanical information regarding DSP56302A packaging is available by facsimile through Motorola's Mfax system. Call the following number to obtain information by facsimile:

(602) 244-6609

The Mfax automated system requests the following information:

- The receiving facsimile telephone number including area code or country code
- The caller's Personal Identification Number (PIN)
- **Note:** For first time callers, the system provides instructions for setting up a PIN, which requires entry of a name and telephone number.
 - The type of information requested:
 - Instructions for using the system
 - A literature order form
 - Specific part technical information or data sheets
 - Other information described by the system messages

A total of three documents may be ordered per call.

The DSP56302A 144-pin TQFP package mechanical drawing is referenced as 918-03. The reference number for the 196-pin PBGA package is 1128-01.

dsp

SECTION 4

DESIGN CONSIDERATIONS

THERMAL DESIGN CONSIDERATIONS

An estimation of the chip junction temperature, T_J, in °C can be obtained from the equation:

Equation 1: $T_J = T_A + (P_D \times R_{\theta JA})$

Where:

T _A		ambient temperature °C
$R_{\theta JA}$	=	package junction-to-ambient thermal resistance °C/W
P _D	=	power dissipation in package

Historically, thermal resistance has been expressed as the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance:

Equation 2: $R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$

Where:

R _{0JA}	4	package ju	nction-to-ambient thermal resista	ance °C/W

- $R_{\theta JC}$ = package junction-to-case thermal resistance °C/W
- $\mathbf{R}_{\theta CA}$ = package case-to-ambient thermal resistance °C/W

 $R_{\theta JC}$ is device-related and cannot be influenced by the user. The user controls the thermal environment to change the case-to-ambient thermal resistance, $R_{\theta CA}$. For example, the user can change the air flow around the device, add a heat sink, change the mounting arrangement on the Printed Circuit Board (PCB), or otherwise change the thermal dissipation capability of the area surrounding the device on a PCB. This model is most useful for ceramic packages with heat sinks; some 90% of the heat flow is dissipated through the case to the heat sink and out to the ambient environment. For ceramic packages, in situations where the heat flow is split between a path to the case and an alternate path through the PCB, analysis of the device thermal performance may need the additional modeling capability of a system level thermal simulation tool.

Thermal Design Considerations

The thermal performance of plastic packages is more dependent on the temperature of the PCB to which the package is mounted. Again, if the estimations obtained from $R_{\theta JA}$ do not satisfactorily answer whether the thermal performance is adequate, a system level model may be appropriate.

A complicating factor is the existence of three common ways for determining the junction-to-case thermal resistance in plastic packages:

- To minimize temperature variation across the surface, the thermal resistance is measured from the junction to the outside surface of the package (case) closest to the chip mounting area when that surface has a proper heat sink.
- To define a value approximately equal to a junction-to-board thermal resistance, the thermal resistance is measured from the junction to where the leads are attached to the case.
- If the temperature of the package case (T_T) is determined by a thermocouple, the thermal resistance is computed using the value obtained by the equation $(T_J T_T)/P_D$.

As noted above, the junction-to-case thermal resistances quoted in this data sheet are determined using the first definition. From a practical standpoint, that value is also suitable for determining the junction temperature from a case thermocouple reading in forced convection environments. In natural convection, using the junction-to-case thermal resistance to estimate junction temperature from a thermocouple reading on the case of the package will estimate a junction temperature slightly hotter than actual temperature. Hence, the new thermal metric, Thermal Characterization Parameter or Ψ_{JT} , has been defined to be $(T_J - T_T)/P_D$. This value gives a better estimate of the junction temperature in natural convection when using the surface temperature of the package. Remember that surface temperature readings of packages are subject to significant errors caused by inadequate attachment of the sensor to the surface and to errors caused by heat loss to the sensor. The recommended technique is to attach a 40-gauge thermocouple wire and bead to the top center of the package with thermally conductive epoxy.

Electrical Design Considerations

ELECTRICAL DESIGN CONSIDERATIONS

CAUTION

This device contains protective circuitry to guard against damage due to high static voltage or electrical fields. However, normal precautions are advised to avoid application of any voltages higher than maximum rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g., either GND or V_{CC}).

Use the following list of recommendations to assure correct DSP operation:

- Provide a low-impedance path from the board power supply to each V_{CC} pin on the DSP, and from the board ground to each GND pin.
- Use at least six 0.01–0.1 μF bypass capacitors positioned as close as possible to the four sides of the package to connect the V_{CC} power source to GND.
- Ensure that capacitor leads and associated printed circuit traces that connect to the chip V_{CC} and GND pins are less than 0.5 in per capacitor lead.
- Use at least a four-layer PCB with two inner layers for V_{CC} and GND.
- Because the DSP output signals have fast rise and fall times, PCB trace lengths should be minimal. This recommendation particularly applies to the address and data buses as well as the IRQA, IRQB, IRQC, IRQD, TA, and BG pins. Maximum PCB trace lengths on the order of 6 inches are recommended.

Consider all device loads and parasitic capacitance due to PCB traces when calculating capacitance. This is especially critical in systems with higher capacitive loads that could create higher transient currents in the V_{CC} and GND circuits.

- All inputs must be terminated (i.e., not allowed to float) using CMOS levels, except for the three pins with internal pull-up resistors (TRST, TMS, DE).
- Take special care to minimize noise levels on V_{CCP} , GND_P , and GND_{P1} pins.
- The following pins must be asserted after power-up: RESET and TRST.
- If multiple DSP56302A devices are on the same board, check for cross-talk or excessive spikes on the supplies due to synchronous operation of the devices.

Power Consumption Considerations

• RESET must be asserted when the chip is powered up. A stable EXTAL signal should be supplied before deassertion of RESET.

POWER CONSUMPTION CONSIDERATIONS

Power dissipation is a key issue in portable DSP applications. Some of the factors which affect current consumption are described in this section. Most of the current consumed by CMOS devices is alternating current (ac), which is charging and discharging the capacitances of the pins and internal nodes.

Current consumption is described by the formula:

Equation 3: $I = C \times V \times f$

where: C = node/pin capacitanceV = voltage swing

= frequency of node/pin toggle

Example 4-1 Current Consumption

For a Port A address pin loaded with 50 pF capacitance, operating at 3.3 V, and with a 66 MHz clock, toggling at its maximum possible rate (33 MHz), the current consumption is:

Equation 4: I = $50 \times 10^{-12} \times 3.3 \times 33 \times 10^{6} = 5.48$ mA

The Maximum Internal Current (I_{CCI} max) value reflects the typical possible switching of the internal buses on best-case operation conditions, which is not necessarily a real application case. The Typical Internal Current (I_{CCItyp}) value reflects the average switching of the internal buses on typical operating conditions.

For applications that require very low current consumption:

- Set the EBD bit when not accessing external memory.
- Minimize external memory accesses, and use internal memory accesses.
- Minimize the number of pins that are switching.
- Minimize the capacitive load on the pins.
- Connect the unused inputs to pull-up or pull-down resistors.
- Disable unused peripherals.
- Disable unused pin activity (e.g., CLKOUT, XTAL).

One way to evaluate power consumption is to use a current per MIPS measurement methodology to minimize specific board effects (i.e., to compensate for measured board current not caused by the DSP). A benchmark power consumption test algorithm is listed in **Appendix A**. Use the test algorithm, specific test current measurements, and the following equation to derive the current per MIPS value:

Equation 5: $I/MIPS = I/MHz = (I_{tvpF2} - I_{tvpF1})/(F2 - F1)$

where:	I _{typF2}	=	current at F2
			current at F1
	F2	=	high frequency (any specified operating frequency)
	F1	=	low frequency (any specified operating frequency less than F2)

Note: F1 should be significantly less than F2. For example, F2 could be 66 MHz and F1 could be 33 MHz. The degree of difference between F1 and F2 determines the amount of precision with which the current rating can be determined for an application.

PLL PERFORMANCE ISSUES

The following explanations should be considered as general observations on expected PLL behavior. There is no testing that verifies these exact numbers. These observations were measured on a limited number of parts and were not verified over the entire temperature and voltage ranges.

Phase Skew Performance

The phase skew of the PLL is defined as the time difference between the falling edges of EXTAL and CLKOUT for a given capacitive load on CLKOUT, over the entire process, temperature and voltage ranges. As defined in **Figure 2-2** on page 2-7, for input frequencies greater than 15 MHz and the MF \leq 4, this skew is greater than or equal to 0.0 ns and less than 1.8 ns; otherwise, this skew is not guaranteed. However, for MF < 10 and input frequencies greater than 10 MHz, this skew is between -1.4 ns and +3.2 ns.

PLL Performance Issues

Phase Jitter Performance

The phase jitter of the PLL is defined as the variations in the skew between the falling edges of EXTAL and CLKOUT for a given device in specific temperature, voltage, input frequency, MF, and capacitive load on CLKOUT. These variations are a result of the PLL locking mechanism. For input frequencies greater than 15 MHz and MF \leq 4, this jitter is less than ±0.6 ns; otherwise, this jitter is not guaranteed. However, for MF < 10 and input frequencies greater than 10 MHz, this jitter is less than ±2 ns.

Frequency Jitter Performance

The frequency jitter of the PLL is defined as the variation of the frequency of CLKOUT. For small MF (MF < 10) this jitter is smaller than 0.5%. For mid-range MF (10 < MF < 500) this jitter is between 0.5% and approximately 2%. For large MF (MF > 500), the frequency jitter is 2–3%.

Input (EXTAL) Jitter Requirements

The allowed jitter on the frequency of EXTAL is 0.5%. If the rate of change of the frequency of EXTAL is slow (i.e., it does not jump between the minimum and maximum values in one cycle) or the frequency of the jitter is fast (i.e., it does not stay at an extreme value for a long time), then the allowed jitter can be 2%. The phase and frequency jitter performance results are only valid if the input jitter is less than the prescribed values.

dsp

SECTION 5

ORDERING INFORMATION

Consult a Motorola Semiconductor sales office or authorized distributor to determine product availability and to place an order.

Part	Supply Voltage	Package Type	Pin Count	Frequency (MHz)	Order Number
DSP56302A	3 V	Thin Quad Flat Pack (TQFP)	144	66 80 100	XC56302APV66 XC56302APV80 XC56302APV100
DSI SUSULA	5 V	Plastic Ball Grid Array (PBGA)	196	66 80 100	XC56302AGC66 XC56302AGC80 XC56302AGC100

Table 5-1 Ordering Information	Table 5-1	Ordering	Information
--	-----------	----------	-------------

dsp

APPENDIX A

POWER CONSUMPTION BENCHMARK

The following benchmark program permits evaluation of DSP power usage in a test situation. It enables the PLL, disables the external clock, and uses repeated Multiply-Accumulate (MAC) instructions with a set of synthetic DSP application data to emulate intensive sustained DSP operation.

```
;*
;* CHECKS
          Typical Power Consumption
; *
  page 200,55,0,0,0
  nolist
I_VEC EQU $000000; Interrupt vectors for program debug only
START EQU $8000; MAIN (external) program starting address
INT_PROG EQU $100 ; INTERNAL program memory starting address
INT_XDAT EQU $0; INTERNAL X-data memory starting address
INT_YDAT EQU $0; INTERNAL X-data memory starting address
  INCLUDE "ioequ.asm"
  INCLUDE "intequ.asm"
  list
       P:START
  org
;
  movep #$0123FF,x:M BCR; BCR: Area 3 : 1 w.s (SRAM)
; Default: 1 w.s (SRAM)
  movep #$0d0000,x:M_PCTL ; XTAL disable
             ; PLL enable
             ; CLKOUT disable
;
; Load the program
;
  move #INT PROG,r0
  move #PROG_START,r1
  do
       #(PROG_END-PROG_START), PLOAD_LOOP
  move p:(r1)+,x0
```

```
move x0,p:(r0)+
   nop
PLOAD_LOOP
;
; Load the X-data
;
   move #INT XDAT,r0
   move #XDAT_START,r1
   do
         #(XDAT_END-XDAT_START),XLOAD_LOOP
   move p:(r1)+,x0
   move x0, x: (r0) +
XLOAD_LOOP
;
; Load the Y-data
;
   move #INT_YDAT,r0
   move #YDAT_START,r1
   do
         #(YDAT_END-YDAT_START),YLOAD_LOOP
   move p:(r1)+,x0
   move x0, y: (r0) +
YLOAD_LOOP
;
   jmp
         INT_PROG
PROG_START
   move #$0,r0
   move #$0,r4
   move #$3f,m0
   move
         #$3f,m4
;
   clr
         а
   clr
         b
   move
         #$0,x0
   move #$0,x1
   move #$0,y0
   move
         #$0,y1
   bset
         #4, omr
                      ; ebd
         #60,_end
sbrdor
         x0,y0,ax:(r0)+,x1 y:(r4)+,y1
   mac /
         x1,y1,ax:(r0)+,x0 y:(r4)+,y0
   mac
         a,b
   add
         x0,y0,ax:(r0)+,x1
   mac
                            y:(r4)+,y0
   mac
         x1,y1,a
   move b1,x:$ff
_end
```

	bra	sbr	
	nop		
PR	OG_END		
	nop		
	nop		
XD.	AT_STA	RT	
;	org	x:0	
	dc	\$262EB9	
	dc	\$86F2FE	
	dc	\$E56A5F	
	dc	\$616CAC	
	dc	\$8FFD75	
	dc	\$9210A	
	dc	\$A06D7B	
	dc	\$CEA798	
	dc	\$8DFBF1	
	dc	\$A063D6	
	dc dc	\$6C6657 \$C2A544	
	dc dc	\$A3662D	
	dc	\$A3002D	
	dc	\$84F0F3	
	dc	\$E6F1B0	
	dc	\$B3829	
	dc	\$8BF7AE	
	dc 🔨	\$63A94F	
	dc	\$EF78DC	
	dc	\$242DE5	
	dc	\$A3E0BA	
	dc	\$EBAB6B	
	dc	\$8726C8	
	dc dc	\$CA361 \$2F6E86	
	dc	\$A57347	
	dc	\$4BE774	
	dc	\$462774 \$8F349D	
	dc	\$A1ED12	
	dc	\$4BFCE3	
	dc	\$EA26E0	
	dc	\$CD7D99	
	dc	\$4BA85E	
	dc	\$27A43F	

	dc	\$A8B10C
	dc	\$D3A55
	dc	\$25EC6A
	dc	\$2A255B
	dc	\$A5F1F8
	dc	\$2426D1
	dc	\$AE6536
	dc	\$CBBC37
	dc	\$6235A4
	dc	\$37F0D
	dc	\$63BEC2
	dc	\$A5E4D3
	dc	\$8CE810
	dc	\$3FF09
	dc	\$60E50E
	dc	\$CFFB2F
	dc	\$40753C
	dc	\$8262C5
	dc	\$CA641A
	dc	\$EB3B4B
	dc	\$2DA928
	dc	\$AB6641
	dc	\$28A7E6
	dc	\$4E2127
	dc	\$482FD4
	dc	\$7257D
	dc	\$E53C72
	dc	\$1A8C3
	dc	\$E27540
XDA	AT_END	
YDA	AT_STAF	Т
;	org	y:0
	dc	\$5B6DA
	dc	SC3F70B

; dc \$C3F70B \$6A39E8 dc \$81E801 dc dc \$C666A6 dc \$46F8E7 dc \$AAEC94 dc \$24233D dc \$802732 dc \$2E3C83 dc \$A43E00 \$C2B639 dc dc \$85A47E \$ABFDDF dc

dc	\$F3A2C	
dc	\$2D7CF5	
dc	\$E16A8A	
dc	\$ECB8FB	
dc	\$4BED18	
dc	\$43F371	
dc	\$83A556	
dc	\$E1E9D7	
dc	\$ACA2C4	
dc	\$8135AD	
dc	\$2CE0E2	
dc	\$8F2C73	
dc	\$432730	
dc	\$A87FA9	
dc	\$4A292E	
dc	\$A63CCF	
dc	\$6BA65C	
dc	\$E06D65	
dc	\$1AA3A	
dc	\$A1B6EB	
dc	\$48AC48	
dc	\$EF7AE1	
dc	\$6E3006	
dc	\$62F6C7	
dc	\$6064F4	
dc	\$87E41D	
dc	\$CB2692	
dc	\$2C3863	
dc	\$C6BC60	
dc	\$43A519	
dc 🔶	\$6139DE	
de	\$ADF7BF	
dc	\$4B3E8C	
dc	\$6079D5	
dç	\$EOF5EA	
dc	\$8230DB	
dc 🗸	\$АЗВ778	
dc	\$2BFE51	
dc	\$E0A6B6	
	\$68FFB7	
dc		
dc	\$28F324	
dc	\$8F2E8D	
dc	\$667842	
dc	\$83E053	
dc	\$A1FD90	
dc	\$6B2689	
dc	\$85B68E	

```
dc $622EAF
   dc $6162BC
   dc $E4A245
YDAT_END
;
    EQUATES for DSP56302A I/O registers and ports
;
    Last update: June 11 1995
;
page 132,55,0,0,0
   opt mex
ioequ ident 1,0
;-----
    EQUATES for I/O Port Programming
;
;-----
                                                     _____
; Register Addresses
M_HDR EQU $FFFFC9; Host port GPIO data Register
M_HDDR EQU $FFFFC8; Host port GPIO direction Register
M_PCRC EQU $FFFFBF; Port C Control Register
M_PRRC EQU $FFFFBE ; Port C Direction Register
M_PDRC EQU $FFFFBD ; Port C GPIO Data Register
M_PDRC EQU $FFFFBD ; Port C GPIO Data Register
M_PCRD EQU $FFFFAF ; Port D Control register
M_PRRD EQU $FFFFAE ; Port D Direction Data Register
M_PDRD EQU $FFFFAD ; Port D GPIO Data Register
M_PCRE EQU $FFFF9F ; Port E Control register
M_PRRE EQU $FFFF9E ; Port E Direction Register
M_PDRE EQU $FFFF9D ; Port E Data Register
. COCE CDB Register
M_OGDB EQU $FFFFFC ; OnCE GDB Register
;
      EQUATES for Host Interface
;
; Register Addresses
```
```
M HCR EQU $FFFFC2; Host Control Register
M_HSR EQU $FFFFC3; Host Status Rgister
M_HPCR EQU $FFFFC4 ; Host Polarity Control Register
M HBAR EQU $FFFFC5; Host Base Address Register
M_HRX EQU $FFFFC6 ; Host Receive Register
M_HTX EQU $FFFFC7 ; Host Transmit Register
; HCR bits definition
               ; Host Receive interrupts Enable
M HRIE EQU $0
                   ; Host Transmit Internet
; Host Command Interrupt Enable
M_HTIE EQU $1
                     ; Host Transmit Interrupt Enable
M_HCIE EQU $2
M HF2 EQU $3
M_HF3 EQU $4
                    ; Host Flag 3
; HSR bits definition
M_HRDF EQU $0 ; Host Receive Data Full
M_HTDE EQU $1
                     ; Host Receive Data Emptiy
M_HCP EQU $2
                    ; Host Command Pending
M_HF0 EQU $3
                    ; Host Flag 0
M_HF1 EQU $4
                     ; Host Flag 1
; HPCR bits definition
M HGEN EQU $0
                     ; Host Port GPIO Enable
                     Host Address 8 Enable
M_HA8EN EQU $1
                      ; Host Address 9 Enable
M_HA9EN EQU $2
                     ; Host Chip Select Enable
M_HCSEN EQU $3
                 ; Host Request Enable
M_HREN EQU $4
M_HAEN EQU $5 ; Host Acknowledge Enable
M_HEN EQU $6 ; Host Enable
M HOD EQU $8
                    ; Host Request Open Drain mode
M_HDSP EQU $9
                    ; Host Data Strobe Polarity
M_HASP EQU $A
                    ; Host Address Strobe Polarity
M HMUX EQU $B
                     ; Host Multiplexed bus select
M_HD_HS_EQU $C
                      ; Host Double/Single Strobe select
                    ; Host Chip Select Polarity
M_HCSP EQU $D
                    ; Host Request PolarityPolarity
M_HRP EQU $E
M_HAP EQU $F
                    ; Host Acknowledge Polarity
;
     EQUATES for Serial Communications Interface (SCI)
;
;
```

; Register Addresses

```
; SCI Transmit Data Register (high)
M_STXH EQU $FFFF97
                        ; SCI Transmit Data Register (middle)
M_STXM EQU $FFFF96
M STXL EQU $FFFF95
                        ; SCI Transmit Data Register (low)
M_SRXH EQU $FFFF9A
                        ; SCI Receive Data Register (high)
M SRXM EQU $FFFF99
                        ; SCI Receive Data Register (middle)
                       ; SCI Receive Data Register (low)
M SRXL EQU $FFFF98
M_STXA EQU $FFFF94
                       ; SCI Transmit Address Register
M SCR EQU $FFFF9C
                        ; SCI Control Register
M_SSR EQU $FFFF93
                        ; SCI Status Register
M_SCCR EQU $FFFF9B ; SCI Clock Control Register
       SCI Control Register Bit Flags
;
M WDS EQU $7
                        ; Word Select Mask (WDS0-WDS3)
M_WDS0 EQU 0
                        ; Word Select 0
M_WDS1 EQU 1
                         ; Word Select 1
                     ; Word Select 2
M WDS2 EQU 2
M SSFTD EQU 3 ; SCI Shift Direction
M SBK EOU 4
                         ; Send Break
M WAKE EQU 5
                         ; Wakeup Mode Select
M_RWU EQU 6
                         ; Receiver Wakeup Enable
                         ; Wired-OR Mode Select
M WOMS EOU 7
M SCRE EQU 8
                         ; SCI Receiver Enable
                         SCI Transmitter Enable
M_SCTE EQU 9
                       ; Idle Line Interrupt Enable
M_ILIE EQU 10
                          SCI Receive Interrupt Enable
M_SCRIE EQU 11
M_SCTIE EQU 12
                          ; SCI Transmit Interrupt Enable
M_TMIE EQU 13
                          Cimer Interrupt Enable
M_TIR EQU 14
                        ; Timer Interrupt Rate
M SCKP EQU 15
                         ; SCI Clock Polarity
M_REIE EQU 16
                          ; SCI Error Interrupt Enable (REIE)
       SCI Status Register Bit Flags
M TRNE EQU 0
                        ; Transmitter Empty
M TDRE EQU 1
                        ; Transmit Data Register Empty
M_RDRF EQU 2
                        ; Receive Data Register Full
M IDLE EQU 3
                         ; Idle Line Flag
M_OR EQU 4
                       ; Overrun Error Flag
M_PE EQU 5
                       ; Parity Error
M FE EQU 6
                      ; Framing Error Flag
M_R8 EQU 7
                      ; Received Bit 8 (R8) Address
       SCI Clock Control Registe
;
r
```

```
; Clock Divider Mask (CD0-CD11)
M_CD EQU $FFF
M_COD EQU 12
                                     ; Clock Out Divider
                                     ; Clock Prescaler
M_SCP EQU 13
M RCM EQU 14
                                     ; Receive Clock Mode Source Bit
M_TCM EQU 15
                                     ; Transmit Clock Source Bit
 EQUATES for Synchronous Serial Interface (SSI)
 ;
 ;------
 ;
          Register Addresses Of SSIO
 ;
M_TX00 EQU $FFFFBC ; SSI0 Transmit Data Register 0
M_TX01 EQU $FFFFBB ; SSIO Transmit Data Register 1
M_TX02 EQU $FFFFBA
                                      ; SSIO Transmit Data Register 2
M_IRO2 EQU $FFFFB9; SSI0 Time Slot RegisterM_RX0 EQU $FFFFB8; SSI0 Receive Data RegisterM_SSISR0 EQU $FFFFB7; SSI0 Status RegisterM_CRB0 EQU $FFFFB6; SSI0 Control Register BM_CRD0 EQU $FFFFB6; SSI0 Control Register A

    SSI0 Control Register A
    ; SSI0 Transmit Slot Mask Register A
    ; SSI0 Transmit Slot Mask Register B

M_CRA0 EQU $FFFFB5
M_TSMA0 EQU $FFFFB4
M_TSMB0 EQU $FFFFB3
                                   i SSIO Transmit Side ....
i SSIO Receive Slot Mask Register A
M_RSMA0 EQU $FFFFB2
M_RSMB0 EQU $FFFFB1
 ; Register Addresses Of SSI1
M_TX10 EQU $FFFFAC; SSI1 Transmit Data Register 0M_TX11 EQU $FFFFAB; SSI1 Transmit Data Register 1M_TX12 EQU $FFFFAB; SSI1 Transmit Data Register 2M_TSR1 EQU $FFFFA9; SSI1 Time Slot RegisterM_RX1 EQU $FFFFA8; SSI1 Receive Data RegisterM_SSISR1 EQU $FFFFA7; SSI1 Status Register
M_SSISR1 EQU $FFFFA7, SSII Receive Data RegisterM_CRB1 EQU $FFFFA6; SSII Status Register BM_CRA1 EQU $FFFFA5; SSII Control Register AM_TSMA1 EQU $FFFFA4; SSII Transmit Slot Mask Register AM_TSMB1 EQU $FFFFA3; SSII Transmit Slot Mask Register BM_RSMA1 EQU $FFFFA2; SSII Receive Slot Mask Register AM_RSMB1 EQU $FFFFA1; SSII Receive Slot Mask Register B
 ; SSI Control Register A Bit Flags
                         ; Prescale Modulus Select Mask (PM0-PM7)
M_PM EQU $FF
M_PSR EQU 11
                                     ; Prescaler Range
M DC EQU $1F000 ; Frame Rate Divider Control Mask (DC0-DC7)
```

```
M_ALC EQU 18
                   ; Alignment Control (ALC)
M_WL EQU $380000
                      ; Word Length Control Mask (WL0-WL7)
M_SSC1 EQU 22
                    ; Select SC1 as TR #0 drive enable (SSC1)
;
       SSI Control Register B Bit Flags
M OF EQU $3
                      ; Serial Output Flag Mask
M OFO EQU O
                        ; Serial Output Flag 0
M_OF1 EQU 1
                        ; Serial Output Flag 1
M_SCD EQU $1C
                        ; Serial Control Direction Mask
M SCD0 EQU 2 ; Serial Control 0 Direction
M_SCD1 EQU 3
                        ; Serial Control 1 Direction
                        ; Serial Control 2 Direction
M SCD2 EQU 4
M_SCKD EQU 5
                        ; Clock Source Direction
                        ; Shift Direction
M_SHFD EQU 6
M FSL EQU $180
                       ; Frame Sync Length Mask (FSL0-FSL1)
                        ; Frame Sync Length 0
M_FSL0 EQU 7
M_FSL1 EQU 8
                        ; Frame Sync Length 1
M FSR EQU 9
                       ; Frame Sync Relative Timing
M FSP EQU 10
                       ; Frame Sync Polarity
M CKP EOU 11
                       ; Clock Polarity
M SYN EQU 12
                       ; Sync/Async Control
                        ; SSI Mode Select
M_MOD EQU 13
M_SSTE EQU $1C000
                      ; SSI Transmit enable Mask
M SSTE2 EQU 14
                          ; SSI Transmit #2 Enable
                         /; SSI Transmit #1 Enable
M_SSTE1 EQU 15
                      ; SSI Transmit #0 Enable
M_SSTE0 EQU 16
M_SSRE EQU 17
                       ; SSI Receive Enable
M SSTIE EQU 18
                        ; SSI Transmit Interrupt Enable
M_SSRIE EQU 19
                         SSI Receive Interrupt Enable
M_STLIE EQU 20
                         SSI Transmit Last Slot Interrupt Enable
M SRLIE EQU 21
                         /; SSI Receive Last Slot Interrupt Enable
M STEIE EOU 22
                          ; SSI Transmit Error Interrupt Enable
M_SREIE EQU 23 ; SI Receive Error Interrupt Enable
     SSI Status Register Bit Flags
M IF EQU $3
                      ; Serial Input Flag Mask
M_IFO EQU 0
                       ; Serial Input Flag 0
M IF1 EQU 1
                        ; Serial Input Flag 1
M_TFS EQU 2
                       ; Transmit Frame Sync Flag
M_RFS EQU 3
                        ; Receive Frame Sync Flag
M TUE EQU 4
                        ; Transmitter Underrun Error FLag
M_ROE EQU 5
                       ; Receiver Overrun Error Flag
M_TDE EQU 6
                        ; Transmit Data Register Empty
M RDF EQU 7
                       ; Receive Data Register Full
```

```
;
     SSI Transmit Slot Mask Register A
M_SSTSA EQU $FFFF ; SSI Transmit Slot Bits Mask A (TS0-TS15)
;
     SSI Transmit Slot Mask Register B
M_SSTSB EQU $FFFF ; SSI Transmit Slot Bits Mask B (TS16-TS31)
;
    SSI Receive Slot Mask Register A
M_SSRSA EQU $FFFF ; SSI Receive Slot Bits Mask A (RS0-RS15)
; SSI Receive Slot Mask Register B
M_SSRSB EQU $FFFF ; SSI Receive Slot Bits Mask B (RS16-RS31)
                                        ------
;------
   EQUATES for Exception Processing
;
;_____
                                ; Register Addresses
M_IPRP EQU $FFFFE ; Interrupt Priority Register Peripheral
; Interrupt Priority Register Core (IPRC)
M IAL EOU $7
                   ; IROA Mode Mask
M_IALO EQU 0
                    ; IRQA Mode Interrupt Priority Level (low)
M IAL1 EQU 1
                    ; IRQA Mode Interrupt Priority Level (high)
                     ; IRQA Mode Trigger Mode
M_IAL2 EQU 2
                  ; IRQB Mode Mask
M_IBL EQU $38
                     ; IRQB Mode Interrupt Priority Level (low)
M_IBLO EQU 3
M_IBL1 EQU 4
                    ; IRQB Mode Interrupt Priority Level (high)
                    ; IRQB Mode Trigger Mode
M IBL2 EQU 5
                  ; IRQC Mode Mask
M_ICL EQU $1C0
M_ICLO EQU 6
                    ; IRQC Mode Interrupt Priority Level (low)
M ICL1 EQU 7
                    ; IRQC Mode Interrupt Priority Level (high)
M_ICL2 EQU 8
                    ; IRQC Mode Trigger Mode
M_IDL EQU $E00 ; IRQD Mode Mask
M IDLO EQU 9
                    ; IRQD Mode Interrupt Priority Level (low)
M_IDL1 EQU 10
                    ; IRQD Mode Interrupt Priority Level (high)
```

M_IDL2 EQU 11 M_DOL EQU \$3000 M_D0L0 EQU 12 M_DOL1 EQU 13 M D1L EQU \$C000 M_D1L0 EQU 14 M D1L1 EQU 15 M_D2L0 EQU 16 M_D2L1 EQU 17 M_D3L EQU \$C0000 M_D3L0 EQU 18 M D3L1 EQU 19 M_D4L EQU \$300000 M_D4L0 EQU 20 M_D4L1 EQU 21 M_D5L EQU \$C00000 M_D5L0 EQU 22 M_D5L1 EQU 23

, DMAO Interrupt priority Level Mask DMAO Interrupt -; DMA0 Interrupt Priority Level (low) ; DMA0 Interrupt Priority Level (high) ; DMA1 Interrupt Priority Level Mask ; DMA1 Interrupt Priority Level (low) ; DMA1 Interrupt Priority Level (high) M_D2L EQU \$30000 ; DMA2 Interrupt priority Level Mask ; DMA2 Interrupt Priority Level (low) ; DMA2 Interrupt Priority Level (low) ; DMA3 Interrupt Priority Level (high ; DMA3 Interrupt Priority Level Mask ; DMA3 Interrupt Priority ; DMA2 Interrupt Priority Level (high) ; DMA3 Interrupt Priority Level (low) ; DMA3 Interrupt Priority Level (high) ; DMA4 Interrupt priority Level Mask ; DMA4 Interrupt Priority Level (low) ; DMA4 Interrupt Priority Level (high) ; DMA4 Interrupt priority Level Mask ; DMA5 Interrupt Priority Level (low) ; DMA5 Interrupt Priority Level (high)

; Interrupt Priority Register Peripheral (IPRP)

M_HPL EQU \$3 M HPLO EQU O M_HPL1 EQU 1 M_SOL EQU \$C M_SOLO EQU 2 M SOL1 EQU 3 M_S1L EQU \$30 M_S1L0 EQU 4 M S1L1 EQU 5 M_SCL EQU \$C0 M SCLO EQU 6 M SCL1 EQU 7 M_TOL EQU \$300 M TOLO EQU 8 M_TOL1 EQU 9

; SSI0 Interrupt Priority Level (low) ; SSIO Interrupt Priority Level (high) ; \$\$11 Interrupt Priority Level Mask SSI1 Interrupt Priority Level (low) ; SSI1 Interrupt Priority Level (high) ; SCI Interrupt Priority Level Mask ; SCI Interrupt Priority Level (low) ; SCI Interrupt Priority Level (high) ; TIMER Interrupt Priority Level Mask ; TIMER Interrupt Priority Level (low) ; TIMER Interrupt Priority Level (high) ;------

; Host Interrupt Priority Level Mask ; Host Interrupt Priority Level (low)

🦪 🔆 SSIO Interrupt Priority Level Mask

Host Interrupt Priority Level (high)

EQUATES for TIMER

; Register Addresses Of TIMER0

Preliminary

;

;

M_TCSR0 EQU \$FFFF8F ; Timer 0 Control/Status Register
M_TLR0 EQU \$FFFF8E ; TIMER0 Load Reg
M_TCPR0 EQU \$FFFF8D ; TIMER0 Compare Register
M_TCR0 EQU \$FFFF8C ; TIMER0 Count Register

; Register Addresses Of TIMER1

M_TCSR1 EQU \$FFFF8B; TIMER1 Control/Status Register
M_TLR1 EQU \$FFFF8A ; TIMER1 Load Reg
M_TCPR1 EQU \$FFFF89 ; TIMER1 Compare Register
M_TCR1 EQU \$FFFF88 ; TIMER1 Count Register

; Register Addresses Of TIMER2

M_TCSR2 EQU \$FFFF87 ; TIMER2 Control/Status Register
M_TLR2 EQU \$FFFF86 ; TIMER2 Load Reg
M_TCPR2 EQU \$FFFF85 ; TIMER2 Compare Register
M_TCR2 EQU \$FFFF84 ; TIMER2 Count Register
M_TPLR EQU \$FFFF83 ; TIMER Prescaler Load Register
M_TPCR EQU \$FFFF82 ; TIMER Prescalar Count Register

; Timer Control/Status Register Bit Flags

```
M_TE EQU 0 ; Timer Enable
M_TOIE EQU 1 7 Timer Overflow Interrupt Enable
M_TCIE EQU 2 ; Timer Compare Interrupt Enable
M_TC EQU $F0 ; Timer Control Mask (TC0-TC3)
M_INV EQU 8 ; Inverter Bit
M_TRM EQU 9 ; Timer Restart Mode
M_DIR EQU 11 ; Direction Bit
M_DI EQU 12 ; Data Input
M DO EQU 13 ; Data Output
M_PCE EQU 15; Prescaled Clock Enable
M_TOF EQU 20 ; Timer Overflow Flag
M_TCF EQU 21 ; Timer Compare Flag
       Timer Prescaler Register Bit Flags
;
M_PS EQU $600000 ; Prescaler Source Mask
M PSO EQU 21
M_PS1 EQU 22
; Timer Control Bits
```

M_TCO EQU 4 ; Timer Control 0

```
M_TC1 EQU 5 ; Timer Control 1
M_TC2 EQU 6 ; Timer Control 2
M_TC3 EQU 7 ; Timer Control 3
; ______
     EQUATES for Direct Memory Access (DMA)
;______
      Register Addresses Of DMA
;
M DSTR EQU FFFFF4 ; DMA Status Register
M_DOR0 EQU $FFFFF3 ; DMA Offset Register 0
M_DOR1 EQU $FFFFF2 ; DMA Offset Register 1
M_DOR2 EQU $FFFFF1 ; DMA Offset Register 2
M_DOR3 EQU $FFFFF0 ; DMA Offset Register 3
;
      Register Addresses Of DMA0
M DSR0 EQU $FFFFEF ; DMA0 Source Address Register
M_DDR0 EQU $FFFFEE ; DMA0 Destination Address Register
M_DCO0 EQU $FFFFED ; DMA0 Counter
M_DCR0 EQU $FFFFEC ; DMA0 Control Register
;
      Register Addresses Of DMA1
M_DSR1 EQU $FFFFEB ; DMA1 Source Address Register
M_DDR1 EQU $FFFFEA / DMA1 Destination Address Register
M_DCO1 EQU $FFFFE9; DMA1 Counter
M_DCR1 EQU $FFFFE8 \; DMA1 Control Register
   Register Addresses Of DMA2
;
M_DSR2 EQU $FFFFE7 ; DMA2 Source Address Register
M_DDR2 EQU $FFFFE6 ; DMA2 Destination Address Register
M_DCO2 EQU $FFFFE5 ; DMA2 Counter
M_DCR2 EQU $FFFFE4 ; DMA2 Control Register
; Register Addresses Of DMA4
M_DSR3 EQU $FFFFE3 ; DMA3 Source Address Register
M_DDR3 EQU $FFFFE2 ; DMA3 Destination Address Register
M_DCO3 EQU $FFFFE1 ; DMA3 Counter
M DCR3 EQU $FFFFE0 ; DMA3 Control Register
```

; Register Addresses Of DMA4

M_DSR4 EQU \$FFFFDF ; DMA4 Source Address Register
M_DDR4 EQU \$FFFFDE ; DMA4 Destination Address Register
M_DC04 EQU \$FFFFDD ; DMA4 Counter
M DCR4 EQU \$FFFFDC ; DMA4 Control Register

; Register Addresses Of DMA5

M_DSR5 EQU \$FFFFDB ; DMA5 Source Address Register M_DDR5 EQU \$FFFFDA ; DMA5 Destination Address Register M_DC05 EQU \$FFFFD9 ; DMA5 Counter M_DCR5 EQU \$FFFFD8 ; DMA5 Control Register

; DMA Control Register

M_DSS EQU \$3; DMA Source Space Mask (DSS0-Dss1) M_DSS0 EQU 0; DMA Source Memory space 0 M_DSS1 EQU 1; DMA Source Memory space 1 M DDS EQU \$C; DMA Destination Space Mask (DDS-DDS1) M DDS0 EQU 2; DMA Destination Memory Space 0 M_DDS1 EQU 3; DMA Destination Memory Space 1 M_DAM EQU \$3f0; DMA Address Mode Mask (DAM5-DAM0) M DAMO EQU 4; DMA Address Mode 0 M_DAM1 EQU 5; DMA Address Mode 1 M_DAM2 EQU 6; DMA_Address Mode 2 M_DAM3 EQU 7; DMA Address Mode 3 M_DAM4 EQU 8; DMA Address Mode 4 M_DAM5 EQU 9; DMA Address Mode 5 M_D3D EQU 10; DMA Three Dimensional Mode M DRS EQU \$F800; DMA Request Source Mask (DRS0-DRS4) M DCON EOU 16; DMA Continuous Mode M DPR EQU \$60000; DMA Channel Priority M DPRO EQU 17; DMA Channel Priority Level (low) M_DPR1 EQU 18; DMA Channel Priority Level (high) M_DTM EQU \$380000; DMA Transfer Mode Mask (DTM2-DTM0) M DTMO EQU 19; DMA Transfer Mode 0 M_DTM1 EQU 20; DMA Transfer Mode 1 M DTM2 EQU 21; DMA Transfer Mode 2 M_DIE EQU 22; DMA Interrupt Enable bit M_DE EQU 23; DMA Channel Enable bit

; DMA Status Register

M_DTD EQU \$3F; Channel Transfer Done Status MASK (DTD0-DTD5)
M_DTD0 EQU 0 ; DMA Channel Transfer Done Status 0

Preliminary

MOTOROLA

```
M_DTD1 EQU 1 ; DMA Channel Transfer Done Status 1
M_DTD2 EQU 2 ; DMA Channel Transfer Done Status 2
M_DTD3 EQU 3 ; DMA Channel Transfer Done Status 3
M_DTD4 EQU 4 ; DMA Channel Transfer Done Status 4
M DTD5 EQU 5; DMA Channel Transfer Done Status 5
M_DACT EQU 8; DMA Active State
M DCH EQU $E00; DMA Active Channel Mask (DCH0-DCH2)
M DCHO EQU 9; DMA Active Channel 0
M_DCH1 EQU 10; DMA Active Channel 1
M DCH2 EQU 11 ; DMA Active Channel 2
;
     EQUATES for Phase Locked Loop (PLL)
;
Register Addresses Of PLL
;
M_PCTL EQU $FFFFFD ; PLL Control Register
     PLL Control Register
;
M_MF EQU $FFF : Multiplication Factor Bits Mask (MF0-MF11)
M_DF EQU $7000 ; Division Factor Bits Mask (DF0-DF2)
M_XTLR EQU 15 ; XTAL Range select bit
M_XTLD EQU 16 ; XTAL Disable Bit
M_PSTP EQU 17 ; STOP Processing State Bit
M_PEN EQU 18 ; PLL Enable Bit
M_PCOD EQU 19 ; PLL Clock Output Disable Bit
M PD EQU $F00000; PreDivider Factor Bits Mask (PD0-PD3)
                  -----
     EQUATES for BIU
                  _____
   Register Addresses Of BIU
M_BCR EQU $FFFFFB; Bus Control Register
```

M_DCR EQU \$FFFFFA; DRAM Control Register M_AAR0 EQU \$FFFFF9; Address Attribute Register 0

M_AAR1 EQU \$FFFFF8; Address Attribute Register 1
M_AAR2 EQU \$FFFFF7; Address Attribute Register 2
M_AAR3 EQU \$FFFFF6; Address Attribute Register 3
M_IDR EQU \$FFFFF5; ID Register

; Bus Control Register

M_BAOW EQU \$1F; Area 0 Wait Control Mask (BA0W0-BA0W4) M_BA1W EQU \$3E0; Area 1 Wait Control Mask (BA1W0-BA14) M_BA2W EQU \$1C00; Area 2 Wait Control Mask (BA2W0-BA2W2) M_BA3W EQU \$E000; Area 3 Wait Control Mask (BA3W0-BA3W3) M_BDFW EQU \$1F0000 ; Default Area Wait Control Mask (BDFW0-BDFW4) M_BBS EQU 21; Bus State M_BLH EQU 22; Bus Lock Hold M_BRH EQU 23; Bus Request Hold

; DRAM Control Register

M_BCW EQU \$3; In Page Wait States Bits Mask (BCW0-BCW1) M_BRW EQU \$C ; Out Of Page Wait States Bits Mask (BRW0-BRW1) M_BPS EQU \$300; DRAM Page Size Bits Mask (BPS0-BPS1) M_BPLE EQU 11; Page Logic Enable M_BME EQU 12; Mastership Enable M_BRE EQU 13; Refresh Enable M_BSTR EQU 14; Software Triggered Refresh M_BRF EQU \$7F8000; Refresh Rate Bits Mask (BRF0-BRF7) M_BRP EQU 23; Refresh prescaler

; Address Attribute Registers

M_BAT EQU \$3 ; Ext. Access Type and Pin Def. Bits Mask (BAT0-BAT1)
M_BAAP EQU 2; Address Attribute Pin Polarity
M_BPEN EQU 3; Program Space Enable
M_BXEN EQU 4; X Data Space Enable
M_BYEN EQU 5; Y Data Space Enable
M_BAM EQU 6; Address Muxing
M_BPAC EQU 7; Packing Enable
M_BNC EQU \$F00 ; Number of Address Bits to Compare Mask (BNC0-BNC3)
M_BAC EQU \$FFF000; Address to Compare Bits Mask (BAC0-BAC11)

; control and status bits in SR

M_CP EQU \$c00000; mask for CORE-DMA priority bits in SR M_CA EQU 0; Carry M_V EQU 1; Overflow M_Z EQU 2; Zero

M_N EQU 3; Negative M U EQU 4; Unnormalized M_E EQU 5; Extension M_L EQU 6; Limit M_S EQU 7; Scaling Bit M_IO EQU 8; Interupt Mask Bit 0 M I1 EQU 9; Interupt Mask Bit 1 M S0 EQU 10; Scaling Mode Bit 0 M_S1 EQU 11; Scaling Mode Bit 1 M SC EQU 13; Sixteen Bit Compatibility M_DM EQU 14; Double Precision Multiply M_LF EQU 15; DO-Loop Flag M FV EQU 16; DO-Forever Flag M_SA EQU 17; Sixteen-Bit Arithmetic M_CE EQU 19; Instruction Cache Enable M SM EQU 20; Arithmetic Saturation M_RM EQU 21; Rounding Mode M_CPO EQU 22; bit 0 of priority bits in SR M_CP1 EQU 23; bit 1 of priority bits in SR control and status bits in OMR ; M_CDP EQU \$300; mask for CORE-DMA priority bits in OMR equ0; Operating Mode A M MA M MB equl; Operating Mode B M MC equ2; Operating Mode C equ3; Operating Mode D M MD M_EBD EQU 4; External Bus Disable bit in OMR M_SD EQU 6; Stop Delay M_MS EQU 7; Memory Switch bit in OMR M_CDP0 EQU 8; bit 0 of priority bits in OMR M_CDP1 EQU 9; bit 1 of priority bits in OMR EQU 10 > Burst Enable M BEN M_TAS EQU 11 ; TA Synchronize Select M_BRT EQU 12; Bus Release Timing M ATE EQU 15; Address Tracing Enable bit in OMR. M_XYS EQU 16; Stack Extension space select bit in OMR. M_EUN EQU 17; Extensed stack UNderflow flag in OMR. M_EOV EQU 18; Extended stack OVerflow flag in OMR. M_WRP_EQU 19; Extended WRaP flag in OMR. M SEN EQU 20; Stack Extension Enable bit in OMR.

```
;
;
   EQUATES for DSP56302A interrupts
;
   Last update: June 11 1995
;
;
page 132,55,0,0,0
  opt mex
intequ ident 1,0
  if
    @DEF(I_VEC)
  ;leave user definition as is.
  else
I_VEC EQU $0
  endif
;-----
                                        _____
; Non-Maskable interrupts
;-----
                               _____
I_RESET EQU I_VEC+$00; Hardware RESET
I_STACK EQU I_VEC+$027 Stack Error
I_ILL EQU I_VEC+$04; Illegal Instruction
I_DBG EQU I_VEC+$06; Debug Request
I_TRAP EQU I_VEC+$08; Trap
I_NMI EQU I_VEC+$0A7 Non Maskable Interrupt
;-----
; Interrupt Request Pins
;-----
                    _____
I_IRQA EQU I_VEC+$10 ; IRQA
I_IRQB EQU I_VEC+$12 ; IRQB
I IROC EQU I VEC+$14 ; IROC
I_IRQD EQU I_VEC+$16 ; IRQD
; DMA Interrupts
;-----
I_DMA0 EQU I_VEC+$18 ; DMA Channel 0
I_DMA1 EQU I_VEC+$1A ; DMA Channel 1
I_DMA2 EQU I_VEC+$1C ; DMA Channel 2
I_DMA3 EQU I_VEC+$1E ; DMA Channel 3
I_DMA4 EQU I_VEC+$20 ; DMA Channel 4
I DMA5 EQU I VEC+$22 ; DMA Channel 5
```

```
;______
; Timer Interrupts
;-----
I_TIMOC EQU I_VEC+$24; TIMER 0 compare
I_TIM0OF EQU I_VEC+$26; TIMER 0 overflow
I_TIM1C EQU I_VEC+$28; TIMER 1 compare
I TIM1OF EQU I VEC+$2A; TIMER 1 overflow
I_TIM2C EQU I_VEC+$2C; TIMER 2 compare
I_TIM2OF EQU I_VEC+$2E; TIMER 2 overflow
; ESSI Interrupts
;-----
I_SIORD EQU I_VEC+$30; ESSIO Receive Data
I_SIORDE EQU I_VEC+$32; ESSIO Receive Data w/ exception Status
I_SIORLS EQU I_VEC+$34; ESSIO Receive last slot
I_SIOTD EQU I_VEC+$36 ; ESSIO Transmit data
I_SIOTDE EQU I_VEC+$38; ESSIO Transmit Data w/ exception Status
I_SIOTLS EQU I_VEC+$3A; ESSIO Transmit last slot
I_SI1RD EQU I_VEC+$40; ESSI1 Receive Data
I_SI1RDE EQU I_VEC+$42; ESSI1 Receive Data w/ exception Status
I SI1RLS EQU I VEC+$44 ; ESSI1 Receive last slot
I_SI1TD EQU I_VEC+$46 ; ESSI1 Transmit data
I_SIITDE EQU I_VEC+$48; ESSII Transmit Data w/ exception Status
I_SI1TLS EQU I_VEC+$4A; ESSI1 Transmit last slot
;-----
; SCI Interrupts
I_SCIRD EQU I_VEC+$50 ; SC1 Receive Data
I_SCIRDE EQU I_VEC+$52 > SCI Receive Data With Exception Status
I_SCITD EQU I_VEC+$54 > SCI Transmit Data
I_SCIIL EQU I_VEC+$56 \; SCI Idle Line
I_SCITM EQU I_VEC+$58 / ; SCI Timer
; HOST Interrupts
I_HRDF EQU I_VEC+$60 ; Host Receive Data Full
I HTDE EQU I VEC+$62 ; Host Transmit Data Empty
I_HC EQU I_VEC+$64 ; Default Host Command
;______
; INTERRUPT ENDING ADDRESS
;------
I INTEND EQU I VEC+$FF ; last address of interrupt vector space
```

-dsp

APPENDIX B

BOOTSTRAP PROGRAMS

```
; BOOTSTRAP CODE FOR DSP56302 - (C) Copyright 1995 Motorola Inc.
; Revised June, 29 1995.
;
; Bootstrap through the Host Interface, External EPROM or SCI.
; This is the Bootstrap program contained in the DSP56302 192-word Boot
; ROM. This program can load any program RAM segment from an external
; EPROM, from the Host Interface or from the SCI serial interface.
; If MD:MC:MB:MA=1000, then the Boot ROM is bypassed and the DSP56302 will
; start fetching instructions beginning with the address $8000 assuming that
; an external memory of SRAM type is used. The accesses will be performed
; using 31 wait states with no address attributes selected (default area).
;
;
; If MC:MB:MA=001, then it loads a program RAM segment from consecutive
; byte-wide P memory locations, starting at P:$D00000 (bits 7-0).
; The memory is selected by the Address Attribute AA1 and is accessed with
; 31 wait states.
; The EPROM bootstrap code expects to read 3 bytes
; specifying the number of program words, 3 bytes specifying the address
; to start loading the program words and then 3 bytes for each program
; word to be loaded. The number of words, the starting address and the
; program words are read least significant byte first followed by the
; mid and then by the most significant byte.
; The program words will be condensed into 24-bit words and stored in
; contiguous PRAM memory locations starting at the specified starting
: address.
; After reading the program words, program execution starts from the same
; address where loading started.
;
;
; If MC:MB:MA=010, then it loads the program RAM from the SCI interface.
; The number of program words to be loaded and the starting address must
; be specified. The SCI bootstrap code expects to receive 3 bytes
```

```
; specifying the number of program words, 3 bytes specifying the address
; to start loading the program words and then 3 bytes for each program
; word to be loaded. The number of words, the starting address and the
; program words are received least significant byte first followed by the
; mid and then by the most significant byte. After receiving the
; program words, program execution starts in the same address where
; loading started. The SCI is programmed to work in asynchronous mode
; with 8 data bits, 1 stop bit and no parity. The clock source is
; external and the clock frequency must be 16x the baud rate.
; After each byte is received, it is echoed back through the SCI
; transmitter.
;
; If MC:MB:MA=100, then it loads the program RAM from the Host
; Interface programmed to operate in the ISA mode.
; The HOST ISA bootstrap code expects to read a 24-bit word
; specifying the number of program words, a 24-bit word specifying the address
; to start loading the program words and then a 24-bit word for each program
; word to be loaded. The program words will be stored in
; contiguous PRAM memory locations starting at the specified starting address.
; After reading the program words, program execution starts from the same
; address where loading started.
; The Host Interface bootstrap load program may be stopped by
; setting the Host Flag 0 (HF0). This will start execution of the loaded
; program from the specified starting address.
; If MC:MB:MA=101, then it loads the program RAM from the Host
; Interface programmed to operate in the HC11 non multiplexed mode.
;
; The HOST HC11 bootstrap code expects to read a 24-bit word
; specifying the number of program words, a 24-bit word specifying the address
; to start loading the program words and then a 24-bit word for each program
; word to be loaded. The program words will be stored in
; contiguous PRAM memory locations starting at the specified starting address.
/After reading the program words, program execution starts from the same
; address where loading started.
; The Host Interface bootstrap load program may be stopped by
; setting the Host Flag 0 (HF0). This will start execution of the loaded
; program from the specified starting address.
;
; If MC:MB:MA=110, then it loads the program RAM from the Host
; Interface programmed to operate in the 8051 multiplexed bus mode,
```

```
; in double-strobe pin configuration.
; The HOST 8051 bootstrap code expects accesses that are byte wide.
; The HOST 8051 bootstrap code expects to read 3 bytes forming a 24-bit word
; specifying the number of program words, 3 bytes forming a 24-bit word
; specifying the address to start loading the program words and then 3 bytes
; forming 24-bit words for each program word to be loaded.
; The program words will be stored in contiguous PRAM memory locations
; starting at the specified starting address.
; After reading the program words, program execution starts from the same
; address where loading started.
; The Host Interface bootstrap load program may be stopped by setting the
; Host Flag 0 (HF0). This will start execution of the loaded program from
; the specified starting address.
:
; The base address of the HI08 in multiplexed mode is 0x80 and is not modified
; by the bootstrap code. All the address lines are enabled and should be
; connected accordingly.
; If MC:MB:MA=111, then it loads the program RAM from the Host
; Interface programmed to operate in the MC68302 bus mode,
; in single-strobe pin configuration.
; The HOST MC68302 bootstrap code expects accesses that are byte wide.
; The HOST MC68302 bootstrap code expects to read 3 bytes forming a 24-bit word
; specifying the number of program words, 3 bytes forming a 24-bit word
; specifying the address to start loading the program words and then 3 bytes
; forming 24-bit words for each program word to be loaded.
; The program words will be stored in contiguous PRAM memory locations
; starting at the specified starting address.
; After reading the program words, program execution starts from the same
; address where loading started.
; The Host Interface bootstrap load program may be stopped by setting the
; Host Flag 0 (HF0). This will start execution of the loaded program from
the specified starting address.
;
BOOT
       equ
               $D00000
                               ; this is the location in P memory
                               ; on the external memory bus
                               ; where the external byte-wide
                               ; EPROM would be located
                               ; AAR1 selects the EPROM as CE~
AARV
       eau
               $D00409
                               ; mapped as P from $D00000 to
                               ; $DFFFFF, active low
M_SSR
       EQU
               $FFFF93
                               ; SCI Status Register
                               ; SCI Transmit Data Register (low)
M STXL EQU
               $FFFF95
M SRXL EQU
               $FFFF98
                               ; SCI Receive Data Register (low)
```

M_SCCR	EQU	\$FFFF9B	;	SCI Clock Control Register
M_SCR	EQU	\$FFFF9C	;	SCI Control Register
M_PCRE	EQU	\$FFFF9F	;	Port E Control register
M_AAR1	EQU	\$FFFF8	;	Address Attribute Register 1
M_HPCR	EQU	\$FFFFC4	;	Host Polarity Control Register
M_HSR	EQU	\$FFFFC3	;	Host Status Register
M_HRX	EQU	\$FFFFC6	;	Host Receive Register
HRDF	EQU	\$0	;	Host Receive Data Full
HF0	EQU	\$3	;	Host Flag 0
HEN	EQU	\$6	;	Host Enable

ORG PL:\$ff0000,PL:\$ff0000 ; bootstrap code starts at \$ff0000

START

	clr a #\$0a,X0			clear a and load X0 with constant 0a0000
jclr		#2,omr,EPRSCILD		If MC:MB:MA=0xx, go load from EPROM/SCI
	jclr	<pre>#1,omr,OMR1IS0</pre>	;	IF MC:MB:MA=10x, go to look for ISA/HC11
			;	options
	jclr	#0,omr,18051HOSTLD	;	If MC:MB:MA=110, go load from 8051 Host
	jmp	MC68302HOSTLD	;	If MC:MB:MA=111, go load from MC68302 Host
OMR1IS0				
	jset	#0,omr,HC11HOSTLD	;	If MC:MB:MA=101, go load from HC11 Host
			;	If MC:MB:MA=100, go load from ISA HOST

; This is the routine which loads a program through the HI08 host port ; The program is downloaded from the host MCU with the following scenario: ; 1) 3 bytes - Define the program length. ; 2) 3 bytes - Define the address to which to start loading the program to. ; 3) 3n bytes (while n is any integer number) ; The program words will be stored in contiguous PRAM memory locations starting ; at the specified starting address. ; After reading the program words, program execution starts from the same address ; where loading started. ; The host MCU may terminate the loading process by setting the HF1=0 and HF0=1. ; When the downloading is terminated, the program will start execution of the ; loaded program from the specified starting address. ; The HI08 boot ROM program enables the following busses to download programs ; through the HI08 port: ; ; 1 - ISA - Dual strobes non-multiplexed bus with negative strobe ; pulses dual positive request ; 2 - HC11 - Single strobe non-multiplexed bus with positive strobe ; pulse single negative request. ; 4 - i8051 - Dual strobes multiplexed bus with negative strobe pulses ; dual negative request.

```
; 5 - MC68302 - Single strobe non-multiplexed bus with negative strobe
; pulse single negative request.
ISAHOSTLD
  movep #%010100000011000,x:M_HPCR
    ; Configure the following conditions:
    ; HAP = 0 Negative host acknowledge
    ; HRP = 1 Positive host request
    ; HCSP = 0 Negative chip select input
    ; HD/HS = 1 Dual strobes bus (RD and WR strobes)
    ; HMUX = 0 Non multiplexed bus
    ; HASP = 0 (address strobe polarity has no meaning in non-multiplexed bus)
    ; HDSP = 0 Negative data strobes polarity
    ; HROD = 0 Host request is active when enabled spare = 0
    ; This bit should be set to 0 for future compatibility
    ; HEN = 0 When the HPCR register is modified HEN should be cleared
    ; HAEN = 0 Host acknowledge is disabled
    ; HREN = 1 Host requests are enabled
    ; HCSEN = 1 Host chip select input enabled
    ; HA9EN = 0 (address 9 enable bit has no meaning in non-multiplexed bus)
    ; HA8EN = 0 (address 8 enable bit has no meaning in non-multiplexed bus)
    ; HGEN = 0 Host GPIO pins are disabled
   bra <HI08CONT
HC11HOSTLD
   movep #%0000001000011000, x: M_HPCR
    ; Configure the following conditions:
    ; HAP = 0 Negative host acknowledge
    ; HRP = 0 Negative host request
    ; HCSP = 0 Negative chip select input
    ; HD/HS = 0 Single strobe bus (R/W~ and DS strobes)
    ; HMUX = 0 Non multiplexed bus
    \mathcal{F} HASP = 0 (address strobe polarity has no meaning in non-multiplexed bus)
    ₩HDSP = 1 Negative data strobes polarity
   HROD = 0 Host request is active when enabled
    ; spare = 0 This bit should be set to 0 for future compatibility
    ; HEN = 0 When the HPCR register is modified HEN should be cleared
    ; HAEN = 0 Host acknowledge is disabled
    ; HREN = 1 Host requests are enabled
    ; HCSEN = 1 Host chip select input enabled
    ; HA9EN = 0 (address 9 enable bit has no meaning in non-multiplexed bus)
    ; HA8EN = 0 (address 8 enable bit has no meaning in non-multiplexed bus)
    ; HGEN = 0 Host GPIO pins are disabled
   bra <HI08CONT
I8051HOSTLD
  movep #%0001110000011110,x:M HPCR
    ; Configure the following conditions:
```

```
; HAP = 0 Negative host acknowledge
    ; HRP = 0 Negative host request
    ; HCSP = 0 Negative chip select input
    ; HD/HS = 1 Dual strobes bus (RD and WR strobes)
    ; HMUX = 1 Multiplexed bus
    ; HASP = 1 Positive address strobe polarity
    ; HDSP = 0 Negative data strobes polarity
    ; HROD = 0 Host request is active when enabled spare = 0
    ; This bit should be set to 0 for future compatibility
    ; HEN = 0 When the HPCR register is modified HEN should be cleared
    ; HAEN = 0 Host acknowledge is disabled
    ; HREN = 1 Host requests are enabled
    ; HCSEN = 1 Host chip select input enabled
    ; HA9EN = 1 Enable address 9 input
    ; HA8EN = 1 Enable address 8 input
    ; HGEN = 0 Host GPIO pins are disabled
   bra <HI08CONT
MC68302HOSTLD
  movep #%000000000111000,x:M HPCR
    ; Configure the following conditions
    ; HAP = 0 Negative host acknowledge
    ; HRP = 0 Negative host request
    ; HCSP = 0 Negative chip select input
    ; HD/HS = 0 Single strobe bus (\mathbb{R}/\mathbb{W} and DS strobes)
    ; HMUX = 0 Non multiplexed bus
    ; HASP = 0 (address strobe polarity has no meaning in non-multiplexed bus)
    ; HDSP = 0 Negative data strobes polarity
    ; HROD = 0 Host request is active when enabled spare = 0
    ; This bit should be set to 0 for future compatibility
    ; HEN = 0 When the HPCR register is modified HEN should be cleared
    ; HAEN = 1 Host acknowledge is enabled
    ; HREN = 1 Host requests are enabled
    ; HCSEN = 1 Host chip select input enabled
    ; HA9EN = 0 (address 9 enable bit has no meaning in non-multiplexed bus)
    ; HA8EN = 0 (address 8 enable bit has no meaning in non-multiplexed bus)
    ; HGEN = 0 Host GPIO pins are disabled
HI08CONT
           #HEN, x:M HPCR
                           ; Enable the HIO8 to operate as host interface
  bset
                           ; (set HEN=1)
   jclr #HRDF,x:M_HSR,* ; wait for the program length to be written
  movep
           x:M_HRX,a0
   jclr
           #HRDF,x:M_HSR,* ; wait for the program starting address
                           ; to be written
   movep
         x∶M_HRX,r0
   move
           r0,r1
           a0,HI08LOOP ; set a loop with the downloaded length counts
   do
```

DSP56302A Technical Data Sheet

```
HI08LL
  jset #HRDF,x:M_HSR,HI08NW ; If new word was loaded then jump
                            ;to read that word
  jclr
        #HF0,x:M_HSR,HI08LL ; If HF0=0 then continue with the downloading
  enddo
                            ; Must terminate the do loop
        <HI08LOOP
  bra
HI08NW
  movep x:M HRX,p:(r0)+
                            ; Move the new word into its destination
                            ; location in the program RAM
HI08LOOP
  bra
         <FINISH
EPRSCILD
  jclr #1,omr,EPROMLD
                            ; If MC:MB:MA=001, go load from EPROM
; This is the routine that loads from the SCI.
; MC:MB:MA=010 - external SCI clock
SCILD
  movep #$0302,X:M SCR
                            ; Configure SCI Control Reg
  movep #$C000,X:M SCCR
                            ; Configure SCI Clock Control Reg
                           ; Configure SCLK, TXD and RXD
  movep #7,X:M_PCRE
  do #6,_LOOP6
                           🕼 get 3 bytes for number of program words and
                            ; 3 bytes for the starting address
  jclr #2,X:M_SSR,*
                            ; Wait for RDRF to go high
                            ; Put 8 bits in A2
  movep X:M_SRXL,A2
  jclr #1,X:M_SSR,*
                            ; Wait for TDRE to go high
  movep A2,X:M_STXL
                            ; echo the received byte
  asr #8, a, a
LOOP6
  move al,r0
                            ; starting address for load
  move al,r1
                            ; save starting address
  do a0,_LOOP7
                            ; Receive program words
  do #3,_LOOP8
  jclr #2,X:M_SSR,*
                            ; Wait for RDRF to go high
  movep X:M_SRXL,A2
                            ; Put 8 bits in A2
  jclr #1,X:M SSR,*
                            ; Wait for TDRE to go high
                           ; echo the received byte
  movep a2,X:M_STXL
  asr #8,a,a
LOOP8
                           ; Store 24-bit result in P mem.
  movem a1,p:(r0)+
LOOP7
  bra <FINISH
                           ; Boot from SCI done
```

```
;______
; This is the routine that loads from external EPROM.
; MC:MB:MA=001
EPROMLD
                     ; r2 = address of external EPROM
      move #BOOT,r2
      movep #AARV,X:M_AAR1 ; aarl configured for SRAM types of access
      do #6, LOOP9
                           ; read number of words and starting address
      movem p:(r2)+,a2
                          ; Get the 8 LSB from ext. P mem.
                           ; Shift 8 bit data into A1
      asr #8,a,a
LOOP9
                           ;
      move al,r0
                           ; starting address for load
                           ; save it in rl
      move al,rl
                           ; a0 holds the number of words
      do a0,_LOOP10
                          ; read program words
                          ; Each instruction has 3 bytes
      do #3,_LOOP11
      movem p:(r2)+,a2
                          ; Get the 8 LSB from ext. P mem.
      asr #8,a,a
                           ; Shift 8 bit data into Al
LOOP11
                          ; Go get another byte.
      movem al,p:(r0)+
                           ; Store 24-bit result in P mem.
LOOP10
                           ; and go get another 24-bit word.
                           ; Boot from EPROM done
FINISH
; This is the exit handler that returns execution to normal
; expanded mode and jumps to the RESET vector.
      andi #$0,ccr
                          ; Clear CCR as if RESET to 0.
       jmp (rl)
                           ; Then go to starting Prog addr.
; End of bootstrap code. Number of program words: 91
                                                             <del>dsp</del>
```

INDEX

Α

ac electrical characteristics 2-4 address bus 1-1 Address Trace mode iv address, electronic mail ii ALU iii applications v arbitration bus timings 2-56 Arithmetic Logic Unit iii

В

benchmark test algorithm A-1 bootstrap ROM iv boundary scan (JTAG) timing diagram 2-79 bus address 1-2 data 1-2 external address 1-6 external data 1-6 multiplexed 1-2 non-multiplexed 1-2 bus acquisition timings 2-57 bus control 1-1 bus release timings 2-58, 2-59

С

Clock 1-5 clock 1-1 external 2-5 operation 2-7 clocks internal 2-5 contents ii crystal oscillator circuits 2-6

D

Data Arithmetic Logic Unit iii data bus 1-1 data memory expansion iv dc electrical characteristics 2-3 Debug support iv description, general i design considerations

electrical 4-3 PLL 4-5, 4-6 power consumption 4-4 thermal 4-1, 4-2 Direct Memory Access iii DMA iii document conventions ii documentation list vi Double Data Strobe 1-2 DRAM out of page read access 2-49 Wait states selection guide 2-37 write access 2-50 out of page and refresh timings 11 Wait states 2-43 15 Wait states 2-46 4 Wait states 2-37 8 Wait states 2-40 Page mode read accesses 2-36 Wait states selection guide 2-26 write accesses 2-35 Page mode timings 1 Wait state 2-27 2 Wait states 2-29 3 Wait states 2-31 4 Wait states 2-33 refresh access 2-51 DRAM controller iv DS 1-2 DSP56300 core features iii Family Manual vi DSP56302 User's Manual vi DSP56302A block diagram i description i features iii specifications 2-1 Technical Data vi

Preliminary Data

Ε

electrical design considerations 4-3 Enhanced Synchronous Serial Interface 1-1, 1-16 Enhanced Synchronous Serial Interfaces v ESSI v, 1-1, 1-2, 1-16 receiver timing 2-74 timings 2-70 transmitter timing 2-73 External 2-21 external address bus 1-6 external bus control 1-6, 1-7, 1-8 external bus synchronous timings (SRAM access) 2-52external clock operation 2-5 external data bus 1-6 external interrupt timing (negative edge-triggered) 2 - 18external level-sensitive fast interrupt timing 2-18 external memory access (DMA Source) timing 2-20 external memory expansion port 1-6 External Memory Interface (Port A) 2-21

F

functional groups 1-2 functional signal groups 1-1

G

general description i General Purpose Input/Output v GPIO v, 1-2 Timers 1-2 GPIO timing 2-77 Ground 1-4 PLL 1-4 ground 1-1

Н

helpline electronic mail (email) address ii HI08 v, 1-1, 1-2, 1-11, 1-12, 1-13, 1-14, 1-15 Host Interface 1-1 Host Interface v, 1-2, 1-11, 1-12, 1-13, 1-14, 1-15 Host Interface timing 2-60 host port configuration 1-12 usage considerations 1-11 Host Request Double 1-2 Single 1-2 HR 1-2

ı.

information sources vi instruction cache iv internal clocks 2-5 internet address ii interrupt and mode control 1-1, 1-9 interrupt control 1-9 interrupt timing 2-10 external level-sensitive fast 2-18 external negative edge-triggered 2-18 synchronous from Wait state 2-19

J

JTAG iv JTAG reset timing diagram 2-80 JTAG timing 2-78

Μ

maximum ratings 2-1, 2-2 memory expansion port iv mode control 1-9 Mode select timing 2-10 multiplexed bus 1-2 multiplexed bus timings read 2-65 write 2-66

Ν

non-multiplexed bus 1-2 non-multiplexed bus timings read 2-63 write 2-64

0

off-chip memory iv OnCE Debug request 2-80 module timing 2-80 OnCE module iv OnCE/JTAG 1-2 OnCE/JTAG port 1-1 on-chip DRAM controller iv On-Chip Emulation module iv on-chip memory iv operating mode select timing 2-19 ordering information 5-1

Preliminary Data

Ρ

package 144-pin TQFP 3-1 196-pin PBGA 3-1 PBGA description 3-10, 3-11, 3-12, 3-15, 3-19 TQFP description 3-2, 3-3, 3-4, 3-6, 3-9 **PBGA 3-1** ball grid drawing (bottom) 3-11 ball grid drawing (top) 3-10 ball list by name 3-15 ball list by number 3-12 mechanical drawing 3-19 PCU iii Phase Lock Loop iii, 2-9 PLL iii, 1-1, 1-5, 2-9 **Characteristics 2-9** performance issues 4-5 PLL design considerations 4-5, 4-6 PLL performance issues 4-6 Port A 1-1, 1-6, 2-21 Port B 1-1, 1-2, 1-14 Port C 1-1, 1-2, 1-16 Port D 1-1, 1-2 Port E 1-1 Power 1-3 power 1-1 power consumption benchmark test A-1 power consumption design considerations 4-4 power management v Program Control Unit iii program memory expansion iv program RAM iv

R

recovery from Stop state using IRQA 2-19, 2-20 RESET 1-9 Reset timing 2-10, 2-17 synchronous 2-17 ROM, bootstrap iv

S

SCI v, 1-2 Asynchronous mode timing 2-69 Synchronous mode timing 2-69 timing 2-67
Serial Communications Interface v
Serial Communications Interface (SCI) 1-1 signal groupings 1-1 signals 1-1 functional grouping 1-2 Single Data Strobe 1-2 SRAM 2-54 Access 2-52 read access 2-25 read and write accesses 2-21 support iv write access 2-25 Stop mode v Stop state recovery from 2-19, 2-20 Stop timing 2-10 supply voltage 2-2 Switch mode iv synchronous bus timings SRAM 2 WS 2-55 SRAM 1 WS (BCR controlled) 2-54 synchronous interrupt from Wait state timing 2-19 synchronous Reset timing 2-17

Т

table of contents ii TAP iv target applications v technical assistance ii Test Access Port iv Test Access Port timing diagram 2-79 Test Clock (TCLK) input timing diagram 2-78 thermal characteristics 2-2 thermal design considerations 4-1, 4-2 Timer event input restrictions 2-75 interrupt generation 2-76 timing 2-75 Timers 1-1, 1-2 timing interrupt 2-10 mode select 2-10 Reset 2-10 Stop 2-10 **TOFP 3-1** mechanical drawing 3-9 pin list by name 3-6 pin list by number 3-4 pin-out drawing (bottom) 3-3 pin-out drawing (top) 3-2

Preliminary Data

W

Wait mode v World Wide Web vi

Х

X data RAM iv

Υ

Y data RAM iv

OnCE and Mfax are trademarks of Motorola, Inc.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application. Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (A) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/Europe/Locations Not Listed:

Motorola Literature Distribution P.O. Box 5405 Denver, Colorado 80217 303-675-2140 1 (800) 441-2447

Mfax™:

RMFAX0@email.sps.mot.com TOUCHTONE (602) 244-6609 US & Canada ONLY (800) 774-1848

Asia/Pacific:

Motorola Semiconductors H.K. Ltd. 8B Tai Ping Industrial Park 51 Ting Kok Road Tai Po, N.T., Hong Kong 852-26629298

Technical Resource Center: 1 (800) 521-6274

DSP Helpline dsphelp@dsp.sps.mot.com

Japan:

Nippon Motorola Ltd. SPD, Strategic Planning Office 4-32-1, Nishi-Gotanda Shinagawa-ku, Tokyo 141, Japan 81-3-5487-8488

Internet: http://www.motorola-dsp.com