
MOTOROLA SEMICONDUCTOR TECHNICAL DATA 24-Bit General Purpose Digital Signal Processor

The DSP56001 is a member of Motorola's family of HCMOS, low-power, general purpose Digital Signal Processors. The DSP56001 features 512 words of full speed, on-chip program RAM (PRAM) memory, two 256 word data RAMs, two preprogrammed data ROMs, and special on-chip bootstrap hardware to permit convenient loading of user programs into the program RAM. It is an off-the-shelf part since the program

Pin Grid Array (PGA)

Available in an 88 pin ceramic through-hole package.

DSP56001

Ceramic Quad Flat Pack (CQFP) Available in a 132 pin, small footprint,

surface mount package.

Plastic Quad Flat Pack (PQFP)

Available in a 132 pin, small footprint, surface mount package.

memory is user programmable. The core of the processor consists of three execution units operating in parallel — the data ALU, the address generation unit, and the program controller. The DSP56001 has MCU-style on-chip peripherals, program and data memory, as well as a memory expansion port. The MPU-style programming model and instruction set make writing efficient, compact code, straightforward.

The high throughput of the DSP56001 makes it well-suited for communication, high-speed control, numeric processing, computer and audio applications. The key features which facilitate this throughput are:

Speed	At 16.5 million instructions per second (MIPS) with a 33 MHz clock, the DSP56001 can execute a 1024 point complex Fast Fourier Transform in1.98 milliseconds (66,240 clock cycles).
Precision	The data paths are 24 bits wide thereby providing 144 dB of dynamic range; intermediate results held in the 56-bit accumulators can range over 336 dB.
Parallelism	The data ALU, address arithmetic units, and program controller operate in parallel so that an in- struction prefetch, a 24x24-bit multiplication, a 56-bit addition, two data moves, and two address pointer updates using one of three types of arithmetic (linear, modulo, or reverse carry) can be executed in a single instruction cycle. This parallelism allows a four coefficient Infinite Impulse Re- sponse (IIR) filter section to be executed in only four cycles, the theoretical minimum for a single multiplier architecture.
Integration	In addition to the three independent execution units, the DSP56001 has six on-chip memories, three on-chip MCU style peripherals (Serial Communication Interface, Synchronous Serial Interface, and Host Interface), a clock generator and seven buses (three address and four data), making the overall system functionally complete and powerful, but also very low cost, low power, and compact.
Invisible Pipeline	The three-stage instruction pipeline is essentially invisible to the programmer thus allowing straightforward program development in either assembly language or a high-level language such as ANSI C.
Instruction Set	The 62 instruction mnemonics are MCU-like making the transition from programming micropro- cessors to programming the DSP56001 digital signal processor as easy as possible. The orthog- onal syntax supports control of the parallel execution units. This syntax provides 12,808,830 dif- ferent instruction variations using the 62 instruction mnemonics. The no-overhead DO instruction and the REPEAT (REP) instruction make writing straight-line code obsolete.
DSP56000/DSP56001 Compatibility	The DSP56001 is identical to the DSP56000 except that it has 512x24-bits of on-chip program RAM instead of 3.75K of program ROM; a 32x24-bit bootstrap ROM for loading the program RAM from either a byte-wide memory mapped ROM or via the Host Interface; and the on-chip X and Y Data ROMs have been preprogrammed as positive Mu- and A-Law to linear expansion tables and a full, four quadrant sine wave table, respectively.
Low Power	 As a CMOS part, the DSP56001 is inherently very low power; however, three other features can reduce power consumption to an exceptionally low level. The WAIT instruction shuts off the clock in the central processor portion of the DSP56001. The STOP instruction halts the internal oscillator. Power increases linearly (approximately) with frequency; thus, reducing the clock frequency reduces power consumption.
This document contains information or	a new product. Specifications and information herein are subject to change without notice.

September 19, 1996

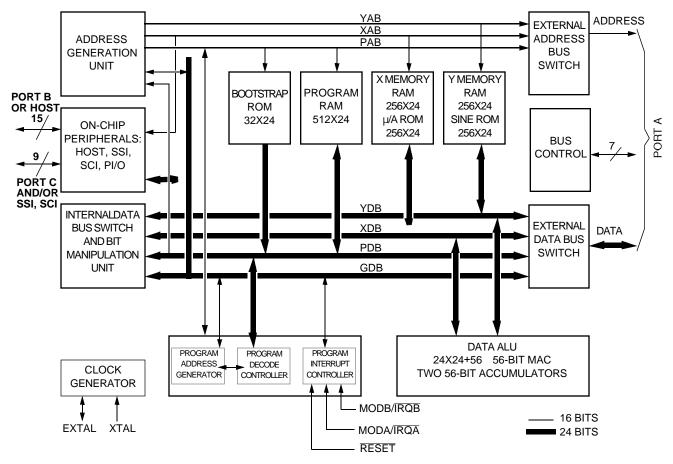
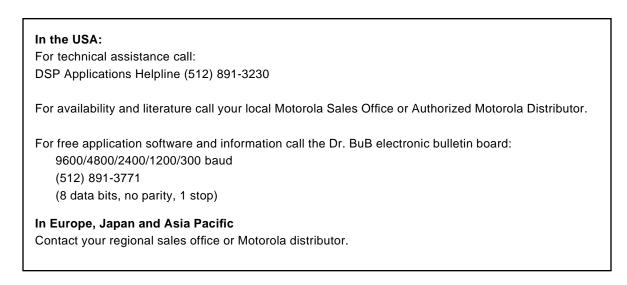



Figure 1. DSP56001 Block Diagram

SIGNAL DESCRIPTION

The DSP56001 is available in 132 pin surface mount (CQFP and PQFP) or an 88-pin pin-grid array packaging. Its input and output signals are organized into seven functional groups which are listed below and shown in Figure 1.

Port A Address and Data Buses Port A Bus Control Interrupt and Mode Control Power and Clock Host Interface or Port B I/O Serial Communications Interface or Port C I/O Synchronous Serial Interface or Port C I/O

PORT A ADDRESS AND DATA BUS

Address Bus (A0-A15)

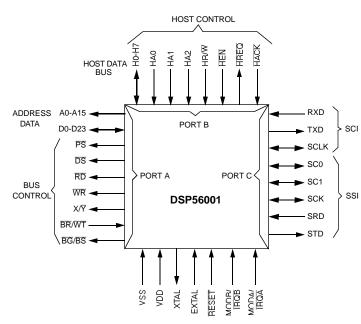
These three-state output pins specify the address for external program and data memory accesses. To minimize power dissipation, A0-A15 do not change state when external memory spaces are not being accessed.

Data Bus (D0-D23)

These pins provide the bidirectional data bus for external program and data memory accesses. D0-D23 are in the high-impedance state when the bus grant signal is asserted.

PORT A BUS CONTROL

Program Memory Select (PS)


This three-state output is asserted only when external program memory is referenced. This pin is three-stated during RESET.

Data Memory Select (DS)

This three-state output is asserted only when external data memory is referenced. This pin is three-stated during RESET.

X/Y Select (X/Y)

This three-state output selects which external data memory space (X or Y) is referenced by data memory select ($\overline{\text{DS}}$). This pin is three-stated during $\overline{\text{RESET}}$.

Read Enable (RD)

This three-state output is asserted to read external memory on the data bus D0-D23. This pin is three-stated during RESET.

Write Enable (WR)

This three-state output is asserted to write external memory on the data bus D0-D23. This pin is three-stated during $\overline{\mathsf{RESET}}$.

Bus Request (BR/WT)

The bus request input BR allows another device such as a processor or DMA controller to become the master of external data bus D0-D23 and external address bus A0-A15. When operating mode register (OMR) bit 7 is clear and BR is asserted, the DSP56001 will always release the external data bus D0-D23, address bus A0-A15, and bus control pins PS, DS, X/Y, RD, and WR (i. e., Port A), by placing these pins in the high-impedance state after execution of the current instruction has been completed. The BR pin should be pulled up when not in use.

If OMR bit 7 is set, this pin is an input that allows an external device to force wait states during an external Port A operation for as long as $\overline{\text{WT}}$ is asserted.

Bus Grant (BG/BS)

If OMR bit 7 is clear, this output is asserted to acknowledge an external bus request after Port A has been released. If OMR bit 7 is set, this pin is bus strobe and is asserted when the DSP accesses Port A. This pin is three-stated during RESET.

INTERRUPT AND MODE CONTROL

Mode Select A/External Interrupt Request A (MODA/IRQA), Mode Select B/External Interrupt Request B (MODB/IRQB)

These two inputs have dual functions: 1) to select the initial chip operating mode and 2) to receive an interrupt request from an external source. MODA and MODB are read and internally latched in the DSP when the processor exits the RESET state. Therefore these two pins should be forced into the proper state during reset. After leaving the RESET state, the MODA and MODB pins automatically change to external interrupt requests IRQA and IRQB. After leaving the reset state the chip operating mode can be changed by software. IRQA and IRQB may be programmed to be level sensitive or negative edge triggered. When edge triggered, triggering occurs at a voltage level and is not directly related to the fall time of the interrupt signal, however, the probability of noise on IRQA or IRQB generating multiple interrupts increases with increasing fall time of the interrupt signal. These pins are inputs during RESET.

Reset (RESET)

This Schmitt trigger input pin is used to reset the DSP56001. When RESET is asserted, the DSP56001 is initialized and placed in the reset state. When the RESET signal is deasserted, the initial chip operating mode is latched from the MODA and MODB pins. When coming out of reset, deassertion occurs at a voltage level and is not directly related to the rise time of the reset signal; however, the probability of noise on RESET generating multiple resets increases with increasing rise time of the reset signal.

POWER AND CLOCK

Power (Vcc), Ground (GND)

There are five sets of power and ground pins used for the four groups of logic on the chip, two pairs for internal logic, one power and two ground for Port A address and control pins, one power and two ground for Port A data pins, and one pair for peripherals. Refer to the pin assignments in the **LAYOUT PRACTICES** section.

External Clock/Crystal Input (EXTAL)

EXTAL may be used to interface the crystal oscillator input to an external crystal or an external clock.

Crystal Output (XTAL)

This output connects the internal crystal oscillator output to an external crystal. If an external clock is used, XTAL should not be connected.

HOST INTERFACE

Host Data Bus (H0-H7)

This bidirectional data bus is used to transfer data between the host processor and the DSP56001. This bus is an input unless enabled by a host processor read. H0-H7 may be programmed as general purpose parallel I/O pins called PB0-PB7 when the Host Interface is not being used. These pins are configured as a GPIO input pins during hardware reset.

Host Address (HA0-HA2)

These inputs provide the address selection for each Host Interface register. HA0-HA2 may be programmed as general purpose parallel I/O pins called PB8-PB10 when the Host Interface is not being used. These pins are configured as a GPIO input pins during hardware reset.

Host Read/Write (HR/W)

This input selects the direction of data transfer for each host processor access. HR/ \overline{W} may be programmed as a general purpose I/O pin called PB11 when the Host Interface is not being used. This pin is configured as a GPIO input pins during hardware reset.

Host Enable (HEN)

This input enables a data transfer on the host data bus. When HEN is asserted and HR/ \overline{W} is high, H0-H7 become outputs, and DSP56001 data may be read by the host processor, When HEN is asserted and HR/ \overline{W} is low, H0-H7 become inputs and host data is latched inside the DSP when HEN is deasserted. Normally a chip select signal, derived from host address decoding and an enable clock, is used to generate HEN. HEN may be programmed as a general purpose I/O pin called PB12 when the Host Interface is not being used. This pin is configured as a GPIO input pins during hardware reset.

Host Request (HREQ)

This open-drain output signal is used by the DSP56001 Host Interface to request service from the host processor, DMA controller, or simple external controller. HREQ may be programmed as a general purpose I/O pin (not open-drain) called PB13 when the Host interface is not being used. HREQ should be pulled high when not in use. This pin is configured as a GPIO input pins during hardware reset.

Host Acknowledge (HACK)

This input has two functions: 1) to receive a Host Acknowledge handshake signal for DMA transfers and, 2) to receive a Host Interrupt Acknowledge compatible with MC68000 Family processors. HACK may be programmed as a general purpose I/O pin called PB14 when the Host Interface is not being used. This pin is configured as a GPIO input pins during hardware reset. **HACK should be pulled high when not in use.**

SERIAL COMMUNICATIONS INTERFACE (SCI)

Receive Data (RXD)

This input receives byte-oriented data into the SCI Receive Shift Register. Input data is sampled on the positive edge of the Receive Clock. RXD may be programmed as a general purpose I/O pin called PC0 when the SCI is not being used. This pin is configured as a GPIO input pins during hardware reset.

Transmit Data (TXD)

This output transmits serial data from the SCI Transmit Shift Register. Data changes on the negative edge of the transmit clock. This output is stable on the positive edge of the transmit clock. TXD may be programmed as a general purpose I/O pin called PC1 when the SCI is not being used. This pin is configured as a GPIO input pins during hardware reset.

SCI Serial Clock (SCLK)

This bidirectional pin provides an input or output clock from which the transmit and/or receive baud rate is derived in the asynchronous mode and from which data is transferred in the synchronous mode. SCLK may be programmed as a general purpose I/O pin called PC2 when the SCI is not being used. This pin is configured as a GPIO input pins during hardware reset.

SYNCHRONOUS SERIAL INTERFACE (SSI)

Serial Control Zero (SC0)

This bidirectional pin is used for control by the SSI. SC0 may be programmed as a general purpose I/O pin called PC3 when the SSI is not being used. This pin is configured as a GPIO input pins during hardware reset.

Serial Control One (SC1)

This bidirectional pin is used for control by the SSI. SC1 may be programmed as a general purpose I/O pin called PC4 when the SSI is not being used. This pin is configured as a GPIO input pins during hardware reset.

Serial Control Two (SC2)

This bidirectional pin is used for control by the SSI. SC2 may be programmed as a general purpose I/O pin called PC5 when the SSI is not being used. This pin is configured as a GPIO input pins during hardware reset.

SSI Serial Clock (SCK)

This bidirectional pin provides the serial bit rate clock for the SSI when only one clock is used. SCK may be programmed as a general purpose I/O pin called PC6 when the SSI is not being used. This pin is configured as a GPIO input pins during hardware reset.

SSI Receive Data (SRD)

This input pin receives serial data into the SSI Receive Shift Register. SRD may be programmed as a general purpose I/O pin called PC7 when the SSI is not being used. This pin is configured as a GPIO input pins during hardware reset.

SSI Transmit Data (STD)

This output pin transmits serial data from the SSI Transmit Shift Register. STD may be programmed as a general purpose I/O pin called PC8 when the SSI is not being used. This pin is configured as a GPIO input pins during hardware reset.

<text><text><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>

This device contains circuity protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-reladi voltages to this high-impedance circuit. Reliability of operation is enhanced i suused inputs are lised to an appropriate logic voltage level (e.g., either Ged or Voc).

DSP56001

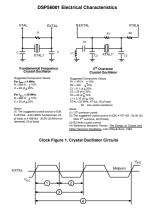
<section-header><section-header><section-header><section-header><section-header><text><text><text><text><text><text><text><text><text><text>

Vcc	GND	Function	
G12,C6	G11,07	Internal Logic supply pins	
1.0	16,1.9	Address bus output buffer supply pins	
G3	03,13	Data bus output buffer supply pins	
C9	E11	Port B and C output buffer supply pins	
	Power and	d Ground Connections for PGA	
Vec	Power and GND	d Ground Connections for PGA Function	
	GND	Function	
35, 36, 128, 1	GND 2983, 34, 130, 131	Function Internal Logic supply pins	

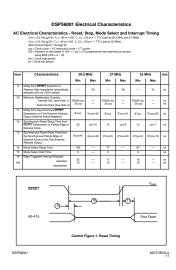
DSP56001

<section-header><section-header><section-header><section-header><section-header><text>

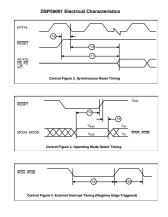
DSP56001 MOTOROLA 7

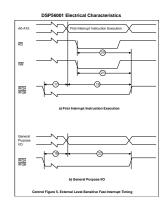

Characteristic	Symbol	Min	Тур	Max	Uni
Supply Voltage 20, 27 MHz 33 MHz	Vec	45 475	50	5.5 5.25	v
Input High Voltage Except EXTAL, RESET, MODA/ROR, MODE/ROB	VH	2.0	-	Vec	v
Input Low Voltage Except EXTAL, MODATROP, MODE/PROB	V _L	-0.5	-	0.8	v
Input High Voltage EXTAL	V _{HC}	4.0	-	Vec	v
Input Low Voltage EXTAL	Vac	-0.5	-	0.6	v
Input High Voltage RESET	Vee	2.5	-	Vec	v
Input High Voltage MODA/IRCR and MODB/IRCR	Vent	3.5	-	Vec	v
Input Low Voltage MODA/INDRAIN MODE/INDE	Vam	-0.5	-	2.0	v
Input Leakage Current EXTAL, RESET, MODA/ROX, MODB/ROB, BR	5	-1	-	1	ωA
Three-State (Off-State) Input Current (8/2.4 V/0.4 V)	ina .	-10	-	10	ωA
Output High Voltage (I _{OH} = -0.4 mA)	V _{DH}	2.4	-	-	v
$\begin{array}{llllllllllllllllllllllllllllllllllll$	V _{DL}	-	-	0.4	v
Total Supply Current 5.25 V, 33 MHz 5.5 V, 27 MHz 5.5 V, 20 MHz in WAIT Mode (see Note 1) in STOP Mode (see Note 1)	leess lees lees lees	-	160 130 100 10 100	185 155 115 25 2000	mA mA mA Au

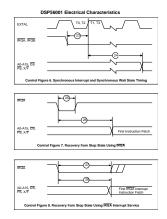
Notes: 1. Is order to obtain these results all inputs must be terminated (i.e., not allowed to float). 2. Periodically sampled and not 100% tested.


DSP56001 Electrical Characteristics A Cenceristical Characteristics The provide the second Vog-memorie area and u a V and u a V menodowy. AC Electrical Characteristics - Clock Operation the D552001 speed code on the en-chop cypal excitator as shown in Clock Figure 1, or 1 may be estemally supplied. An estimally applied against wine visible access tool bit commended to DTML being TML phycolary contracted and clock Figure 1 in the address radius. The shown wine visible access the address the the manament.

DSP56001 MOTOROLA 9




DSP56001 Electrical Characteristics AC Electrical Characteristics - Reset, Stop, Mode Select, and Interrupt Timing (continue) **DET** When any terminal characteristics - Reset and the selectric of the selectric of the selectric of the selectric selectric of the s


Num	Characteristics	20.5	MHz	27 1	MHz	33	MHz	Unit
		Min	Max	Min	Max	Min	Max	
17	Delay from IRCIA, IRCIE Assertion to External Memory Access Address Out Valid Caused by Fint Interrupt Instruction Facth Instruction Execution	5-cyc+ich 9-cyc+ich	-	5-cyc+lch 9-cyc+lch	-	5-cyc+lch 9-cyc+lch	-	ns ns
10	Delay from IRCA, IRCEI Assertion to General Purpose Transfer Output Valid Caused by First Interrupt Instruction Execution	11+cyc +ich	-	11-cyc +tch	-	11-cyc +tch	-	ns
19	Delay hom Address Output Valid Caused by First Interrupt Instruction Execution to Interrupt Request Deassertion for Level Sensitive Fast Interrupts	-	2-cyc+td+ (cyc-W5) -44	-	2-cyc+td+ (cyc-W5) -34	-	2-cyc+td+ (cyc-W5) -27	ns
20	Delay from RD Assertion to Interrupt Request Deassertion for Level Sensitive Fast Interrupts	-	2×cyc+ (cyc>WS) -40	-	2×cjic+ (cjic>WS) -31	-	2×cjic+ (cjic>WS) -25	ns
21	Delay from WR Assertion to WS+0 Interrupt Request Deassertion for WS>0 Level Sensitive Fast Interrupts	=	2+cyc-40 cjic+td+ (cjic-W5) -40	=	2-cyc-31 cjic+td+ (cjic-WS) -31	=	2-cyc-25 cjic+td+ (cjic-W5) -25	ns ns
22	Delay hom General-Purpose Output Valid to Interrupt Request Dessertion for Level Senable Fast Internation In: Single Cycle Two Cycle	=	101-60 (2-ctyst)+tcl -60	=	101-46 (2-ct)(2)+1cl -46	=	121-37 (2-cyc)+tcl -37	

MOTOROLA 12 DS

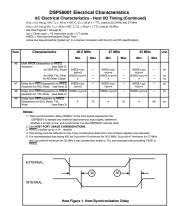
DSP56001 Electrical Characteristics AC Electrical Characteristics - Reset, Stop, Mode Select, and Interrupt Timing (Continued)

MOTOROLA 16

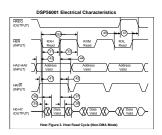
DSP56001

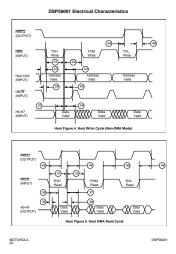
DSP55001 Electrical Characterization HOST PORT USAGE CONSIDERATIONS Order proferrational services and the service and the first port the service devices the proper portion and accumate inter-

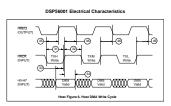
- A set of the set of th
- (1.24), man the instal at guaranteed to be instal. A potential problem exists when reading status bits MP3 and MP2 as an encoded part. If the CSP changes MP3 and MP2 from 00 to 11, free it is an analyzability that the fullow could read the bits during the transition and receive 01 or 10 instead of 11. If the combination of MP3 and MP2 has significance, the Host could read the wrong combination.
- combinence of the area we are a second secon
- Constaining the Heat Vactor
 Constaining the Heat Vactor
 The Vactor powerser should change the Heat Vactor register only when the Vactor
 Constant bit (HC) is clear. This change will
 guarantee that BCEP Interrupt control logic will receive a stable vector.


- c concept and the difference to many end of the second set of t

DSP56001


	DSP56001 Electrical Characteristics
	AC Electrical Characteristics - Host VO Timing
(Vcc = 5.)	0 Vdc ± 10%, T _J = -40 to +105° C, CL = 50 pl + 1 TTL Load at 20.5 MHz and 27 MHz
	3 Vdc ± 5%, T _J = -40 to +105° C, CL = 50 pf + 1 TTL Load at 33 MHz)
	(Figures 1 through 6)
cyc = Clo	ck cycle = 1/2 instruction cycle = 2 T cycles
	Host Synchronization Delay Time
Active low	v lines should be "pulled up" in a manner consistent with the AC and DC specification


Num	Characteristics	20.5	MHz	27 1	//Hz	331	//Hz	Ur
		Min	Max	Min	Max	Min	Max	
30	Host Synchronous Delay (see Note 1)	10	cyc+td	1d	cyc+td	1d	cyc+td	
31	RENTRACK Assertion Width (see Note 2) a.CVR, ICR, ISR Read (see Note 4) b.Read c.Write	070+60 50 25	Ξ	070+46 29 19	Ξ	0)0+37 31 16	Ξ	
32	INTRACK Deassertion Width (see Note 2 and 5)	25	-	19	-	16	-	ľ
223	Minimum Cycle Time Between Two REN Assertion for Consecutive CVR, ICR, and ISR Reads (see Note 2)	2°cyc+60	-	2°cyc+46	-	2ºcyc+37	-	1
	Host Data Input Setup Time Before RENTRACK Deassertion	5	-	4	-	4	-	Г
34	Host Data Input Hold Time After PERV PACK Descention	5	-	4	-	4	-	ľ
35	RENTRACK Assertion to Output Data Active from High Impedance	0	-	0	-	0	-	ľ
36	Valid (periodically sampled, and not 100% tested)	-	50	-	39	-	31	ľ
37	NEN RACK Deassertion to Output Data High Impedance	-	25	-	27	-	22	Г
38	Output Data Hold Time After FER/ FROM Deasention	5	-	4	-	4	-	ľ
29	HR/W Low Setup Time Before REN Assertion	0	-	0	-	0	-	T
40	HR/W Low Hold Time After FIEN Deassertion	5	-	4	-	4	-	ľ
41	HR/W High Setup Time to FIEN Assertion	0	-	0	-	0	-	ľ
	HR/W High Hold Time After FIERV FACK Deassertion	5	-	4	-	4	-	ħ
43	HAO-HA2 Setup Time Before PEN Assertion	0	-	0	-	0	-	ľ
44	NAO-HA2 Hold Time After FIEN Deassertion	5	-	4	-	4	-	ľ
45	DMA TRACK Assertion to FIRED Deassertion (see Note 3)	5	60	4	46	4	49	ħ

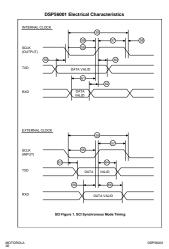

MOTOROLA 18 DSP560

	DSP56001 Electrical Characteristics
HREQ (OUTPUT)	
HACK (INPUT) HR/W (INPUT)	
H0-H7 (OUTPUT)	Control Contro

DSP56001 Electrical Characteristics
 AC Betrical Characteristics - SCI Time
 (1) - SCI - SC

Num	Characteristics	20.5	MHz	271	//Hz	33	MHz	Unit
		Min	Max	Min	Max	Min	Max	
55	Synchronous Clock Cycle tSCC	8-cyc	-	8-cyc	-	8-cyc	-	ns
56	Clock Low Period	4+cyc-20	-	4-cyc-15	-	4-cyc-13	-	ns
57	Clock High Period	4-cyc-20	-	4-cyc-15	-	4+cyc-13	-	15
50	Output Data Setup to Clock Failing Edge (Internal Clock)	2+cyc +td-50	-	2-cyc +td-39	-	2.cyc +td-31	-	ns
60	Output Data Hold After Clock Rising Edge (Internal Clock)	2.cyc -td-15	-	2.cyc -tzl-11	-	2.cyc -td-9	-	- 15
61	Input Data Setup Time Before Clock Rising Edge (Internal Clock)	2+cyc +1::1+45	-	2+cyc +tcl+35	-	2+cyc +td+28	-	- 15
62	Input Data Not Valid Before Clock Ris- ing Edge (Internal Clock)	-	2-cyc +td-10	-	2.cyc +tcl-8	-	2.cyc +tcl-6	-15
63	Clock Falling Edge to Output Data Valid (External Clock)	-	63	-	40	-	29	^5
ы	Output Data Hold After Clock Rising Edge (External Clock)	cyc+12	-	cyc+9	-	cyc+8	-	ns
	Input Data Setup Time Before Clock Rising Edge (External Clock)	30	-	23	-	19	-	-15
66	Input Data Hold Time After Clock Ris- ing Edge (External Clock)	40	-	31	-	25	-	- 15

MOTOROLA 24


DSP56001

D	SP56001	Electrical	Charae	cteristics
A	C Electrica	I Character	ristics - S	SCI Timing

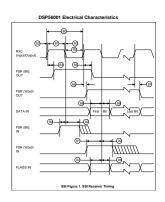
DESCROT DEACHTOR CAPACITERISES AC REACTERISES - SCATTERISE CAPACITY - SCATTERISES CAPACITY ier and loyc)

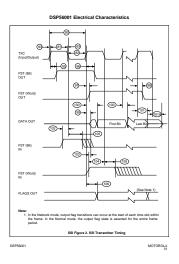
Num	Characteristics	20.5	MHz	27 1	//Hz	33 N	IHz	Unit
		Min	Max	Min	Max	Min	Max	
67	Asynchronous Clock Cycle	64 cyc	-	64-cyc	-	64-cyc	-	ns
68	Clock Low Period	32-cyc-20	-	32-cyc-15	-	32-cyc-13	-	115
60	Clock High Period	32-cjo-20	-	32-cyc-15	-	32-cyc-13	-	115
71	Output Data Setup to Clock Rising Edge (Internal Clock)	32) cyc -100	-	32.cpc -77	-	32.cpc -61	-	- 15
72	Output Data Hold After Clock Rising Edge (Internal Clock)	32-cyc -100	-	32-cyc -77	-	32.cjc -61	-	- 15

DSP56001

DSP56001 Electrical Characteristics
Note: In the wire CR note, TXD can be public up by 15
SCI Figure 2. SCI Asynchronous Mode Timing

	AC Electrical Characteristics - SSI Timing
	Voc = 5.0 Vdc ± 10%, T _J = -40 to +105° C, CL = 50 pl + 1 TTL Load at 20.5 MHz and 27 MH
	Vcc = 5.0 Vdc ± 5%, T ₂ = -40 to +105° C, CL = 50 pl + 1 TTL Load at 33 MHz,
	see SSI Figures 1 and 2)
	cyc = Clock cycle = 1/2 instruction cycle = 2 T cycles
	SSICC = SSI clock cycle time
	TXC (SCK Pin) = Transmit Clock
	RXC (SCD or SCK Pin) = Receive Clock
	FST (SC2 Pin) = Tranamit Frame Sync
	FSR (SC1 or SC2 Pin) = Receive Frame Sync
	ck = Internal Clock
	k ok = External Clock
	g ck = Gated Clock
	ck a = Internal Clock, Asynchronous Mode (Asynchronous implies that TXC and RXC are two different clocks)
ł	ck s = Internal Clock, Synchronous Mode (Synchronous implies that TXC and PXC are the same clock)
ł	al = bit length
	el = word length


Num	Characteristics	20.5 MHz		27 MHz		33 MHz		Unz	
		Min	Max	Min	Max	Min	Max		
80	Clock Cycle (see Note 1)	4 cyc	-	4 cyc	-	4 cyc	-	ns	
81	Clock High Period	2×cyc-20	-	2-cyc-15	-	2-cyc-13	-	ns	
	Clock High Period	2×cyc-20	-	2-cyc-15	-	2-cyc-13	-	- 15	
	RXC Rising Edge to FSR Out (bi) High x ck i ck a	=	80 50	=	61 38	=	48 21	ns ns	
85	RXC Rising Edge to FSR Out (bi) Low x ck i ck a	Ξ	70 40	-	54 31	-	8 B	.ns .ns	
	RXC Raing Edge to FSR Out (wi) High x ck i ck a	Ξ	70 40	=	54 31	=	42 25	.ns .ns	
67	RXC Rising Edge to FSR Out (w) Low x ck i ck a	Ξ	70 40	=	54 31	=	43 25	ns ns	
60	Data in Setup Time Before RXC (SCK in Synchronous Mode) Falling Edge x ck i ck a i ck a	N K G	Ξ	12 27 19	Ξ	10 22 16	Ξ	ns ns ns	
	Data in Hold Time After RXC Falling Edge x ck i ck a	25 5	=	27 4	Ξ	22 4	Ξ.	ns ns	
90	FSR input (bl) High Before RXC Falling Edge x ck i ck a	15 35	Ξ	12 27	Ξ	10 23	Ξ	ns ns	

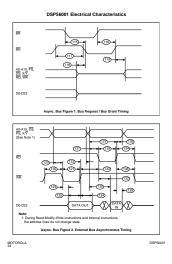

DSP56001 Electrical Characteristics AC Electrical Characteristics - SSI Timing (Continued)

Num	Characteristics	20.5	MHz	271	MHz	33	MHz	Un
		Min	Max	Min	Max	Min	Max	
93	Flags input Setup Before RXC Failing Edge x ck i ck a	30 50	=	23 39	=	19 31	Ξ	ns na
94	Flags Input Hold Time After RXC Falling Edge x.ck i.ck a	35 5	=	27 4	=	22 4	Ξ	ns ns
22	TXC Rising Edge to FST Out (bi) High x dk i ck a	=	70 30	=	54 23	=	43 19	15
96	TXC Rising Edge to FST Out (b) Low x dk i ck a	Ξ	65 35	Ξ	50 27	Ξ	40 22	ns ns
	TXC Rising Edge to FST Out (W) High x ck i ck a	Ξ	65 25	=	50 27	=	40 22	ns ns
58	TXC Rising Edge to FST Out (W) Low x ck i ck a	Ξ	65 35	=	50 27	=	40 22	ns ns
99	TXC Rising Edge to Data Out Enable from High Impedance x ck i ck a	=	65 40	Ξ	50 31	Ξ	49 22	ns ns
	TXC Rising Edge to Data Out Valid x ck i ck a	Ξ	65 40	=	50 31	=	49 22	ns ns
	TXC Rising Edge to Data Out High Impedance (periodically sampled, and not 100% tested) x ck i ck a	=	70 40	=	54 31	=	47 22	.ns
101a1	XC Falling Edge to Data Out High Impedance for Gated Clock Mode Only g ck	cyc+tch	-	cyc+tch	-	cyc+tch	-	- 15
102	FST input (bi) Setup Time Belore TXC Falling Edge x ck i ck a	15 35	=	12 27	=	10 23	Ξ	ns ns
103	FST input (w) to Data Out Enable from High impedance	-	60	-	46	-	37	- 15
104	FST input (w) Setup Time Before TXC Falling Edge x ck i ck a	20 55	=	15 42	=	13 34	=	ns ns
105	FST input Hold Time After TXC Falling Edge x ck i ck a	25 5	=	27 4	=	22 4	=	ns ns
106	Flag Output Valid After TXC Rising Edge x ck i ck a	=	70 40	=	54 31	=	41	ns ns

Note: 1. For internal clock, External Clock Cycle is defined by Icyc and SSI control register.

DSP56001

<section-header><section-header><section-header><text><text><text><text><text>

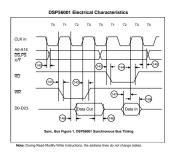

Num	Characteristics	20.5 MHz		27 MHz		33	Un	
		Min	Max	Min	Max	Min	Max	
115	Delay from BR Assertion to BG	_		_		_		t
		2-cyc+tch	20		4°cyc+tch+ 15		4°cyc+tch+ 13	1
	(see Note 2)	cyc+tch	4°cyc+tch+ cyc'W5+20	cyc+tch	4"cyc+tch+ cyc'W5+15	cyc+tch	4°cyc+tch+ cyc'W5+13	1
	(see Note 3)	cyc+tch	6°cyc+tch+ 2°cyc*WS+ 20	cyc+tch	6°cyc+tch+ 2°cyc*WS+ 15	cyc+tch	6°cyc+tch+ 2°cyc*WS+ 13	ľ
	(nee Note 4)	Infinity	-	Infinity		Infinity		
	(see Note 5)	1ch+4	cyc+tch+30	tch+3	cyc+tch+23	tch+3	cyc+tch+19	
	Flags Input Hold Time After RXC Falling Edge Deassertion	2°cyc	4°cyc+20	2°cyc	4°cyc+15	2°cyc	4'cyc+13	ľ
	BG Deassertion Duration	2*cyc-10	-	2"cyc-8	-	2"cyc-6	-	1
	Delay from Address, Data, and Control Bus High Impedance to BG Assertion	0	-	0	-	0	-	Г
119	Delay from BG Deassertion to Address, Data, and Control Bus Enabled	-	sch-10	-	sch-ē	-	sch-6	ľ
120	Address Valid to WR Assertion WS+0 WS+0	10-9 cyc-9	15+5 cyc+5	10-7 cyc-7	15+5 cyc+5	10-5.5 cjo-5.5	15+5 cyc+5	1
	WR Assertion Width WS+0 WS>0	W5*cyc +tcl-9	Ξ	cyc-7 W5*cpc +td-7	Ξ	cje-5.0 W5*cje +kd-5.0	Ξ	1
122	WR Deassertion to Address Not Valid	12h-12	-	tch-9	-	tch-7.5	-	1
	WR Assertion to Data Out Valid WS+0 WS>0	1ch-9 0	\$ch+10 10	1ch-7 0	1ch+8 8	10h-5.5 0	1ch+6.5 6.5	1
124	Data Out Hold Time from WR Deassertion (The maximum specifica- tion is periodically sampled, and not 100% tested.)	sch-9	tch+7	sch-7	tch+6	10-55	Ich+4.5	ľ
125	Data Out Setup Time to WK Deassertion (see Note 6) WS+0 WS>0	151-5 W51'cyc +151-5	Ξ	151-5 W51'cyc +151-5	Ξ	151-5 W51'cyc +151-5	Ξ	;
126	RD Deassertion to Address Not Valid	tch-9	-	tch-7	-	1ch-5.5	-	۰.

DSP56001

Num	Characteristics		20.5 MHz		27 MHz		33 MHz		Uni
			Min	Max	Min	Max	Min	Max	L .
127	Address Valid to W RD deassertion W	5=0 5>0	cyc+tcl-8 ((WS+1)- cyc)+tcl-8	Ξ	cyc+tcl-6 ((WS+1)+ cyc)+tcl-6	Ξ	cyc+tcl-6 ((WS+1)+ cyc)+tcl-6	Ξ	ns ns
	Input Data Hold Time to RD Deassertion		0	-	0	-	0	-	-15
129	RD Assertion Width W W	5×0 5×0	cyc-9 ((WS+1)* cyc)-9	Ξ	cyc-7 ((WS+1)* cyc)-7	=	cyc-6.5 ((WS+1)* cyc)-6.5	=	ns ns
130	Address Valid to V Input Data Valid V	VS = 0 VS > 0	Ξ	cyc+td-18 ((WS+1)- cyc)+td-18	=	cyc+td-14 ((WS+1)+ cyc)+td-14	=	cyc+td-11 ((WS+1)+ cyc)+td-11	ns ns
131	Address Valid to RD Assertion	_	12-9	121+5	10-7	121+5	10-5.5	121+5	115
1.32	RD Assertion to Input Data Valid	W\$=0 W\$>0	Ξ	cyc-14 ((NIS+1)* cyc)-14	Ξ	cyc-11 ((WS+1)* cyc)-11	Ξ	0/0-9 ((WS+1)* 0/0-9	ns ns
123	WR Deassertion to RD Assertion		cyc-15	-	cyc-12	-	cyc-10	-	0.5
134	RD Deassertion to RD Assertion	_	cyc-10	-	cyc-8	-	cyc-6.5	-	115
135	WR Deassertion to WR Assertion	W5+0 W5+0	cyc-15 cyc+tch-15	Ξ	cyc-12 cyc+tch-12	-	cyc-10 cyc+tch-10	-	15 15
136		NS-0 WS-0	cyc-10 cyc+tch-10	Ξ	cyc+8 cyc+1ch+8	=	cyc-6.5 cyc+tch- 6.5	=	715 715

a the Biology Chickan Hann Science, Janeszi 20,53M/sz and WS-ol, Min = td-4 at 20,53M/sz and WS-ol, Min = td-3 at 22 Minz and WS-ol, Min = td-3 at 22 Minz and WS-ol, Min = td-3 at 23 Minz and WS-ol, Min = td-2,5 at 23 Minz and WS-ol, Min = td-2,5 at 23 Minz and WS-ol, Min = td-2,5

DSP56001



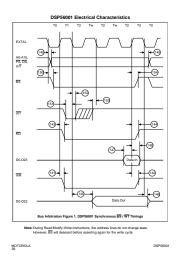
DSP56001 Electrical Characteristics AC Electrical Characteristics - External Bus Synchronous Timing Vec.s6Verg.9W, T₁-+0 W C C #35.5Me 27 Me Vec.s6Verg.9W, T₁-+0 W C C #35.5Me 27 Me

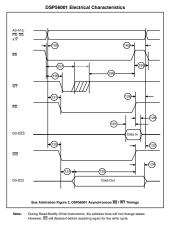
Num	Characteristics	20.5 MHz		27 MHz		33 MHz		Unit
		Min	Max	Min	Max	Min	Max	I
140	Cik Low Transition To Address Valid	-	24	-	19	-	19	115
141	Clk High Transition To WK WS = 0 Assertion (see Note 2) WS > 0	ő	19 tch+19	°.	15 1ch+15	°.	17 1ch+17	ns ns
142	Cik High Transition To WR Deassertion	5	21	5	16	5	13	- 15
143	Cik High Transition To RD Assertion	0	19	0	15	0	16	15
544	Cik High Transition To RD Deassertion	5	17	5	13	45	10.5	115
145	Cik Low Transition To Data-Out Valid	-	25	-	19	-	19	115
146	Cik Low Transition To Data-Out Invalid (see Note 3)	5	-	4	-	25	-	ns
	Data-In Valid To Clk High Transition (Setup)	0	-	0	-	0	-	ns
148	Cik High Transition To Data-In Invalid (Hold)	12	-	12	-	13	-	ns ns
149	Cik Low To Address Invalid (new Note 1)	3	-	з	-	з	-	-15

Note: 1.4. Cheng operations which are when ------1.4. Cheng operations and the second seco

DSP56001

DSP56001 Electrical Characteristics AC Electrical Characteristics - Bus Strobe / Wait Timing


Num	Characteristics	20.5	MHz	27 1	MHz	33	MHz	Unit
		Min	Max	Min	Max	Min	Max	
150	Cik Low Transition To IIS Assertion	4	24	3	19	2.5	19	ns
	WT Assertion To Cik Low Transition (setup time)	4	-	3	-	2.5	-	ns ns
152	Cik Low Transition To WT Deassertion For Minimum Timing	14	cyc-8	11	906	12	905	ns
153	WT Deassertion To Clk Low Transition For Maximum Timing (2 wait states	0	-	6	-	5	-	75
154	Cik High Transition To B5 Deassertion	5	26	4	20	35	19	ns
155	55 Assertion To Address Valid	-2	10	-2	- 0	-2	6.5	ns
156	ISS Assertion To WT Assertion (see Note 2)	0	cyo-15	0	cyc-11	0	cyo-10	75
	ISS Assertion To WT Dessertion (See Note 2 and Note 4) WS ≤ 2 WS ≥ 2	cyc (WS-1) -cyc	2*cyc-15 W\$*cyc -15	CJIC (WIS-1) -CJIC	2"cyc-11 W5"cyc -11	cyc+4 (WS-1) +cyc+4	2*cyc-10 W\$*cyc -10	ns ns
158	WT Deassertion To BS Deassertion	cyc+td	2-cyc+td +23	eye+td	2-cyc+td +17	eye+td	2-cyc+td +15	ns
159	Minimum IDS Deasaertion Width For Consecutive External Accesses	sch-7	-	sch-6	-	sch-4.5	-	75
	05 Dessertion To Address Invalid (see Note 3)	tch-10		sch-8		tch-6.5		
161	Data-In Valid to RD Deassertion (Set Up)	16	-	12	-	10	-	ns

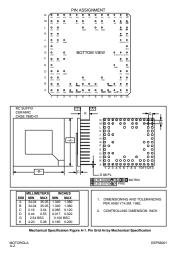

and cases which are referenced to a device topol signal are researced to production with 400 particle of the respective topol signal to the text. Set to provide the respective topol signal topol si

AC timing specification mapped to the 50% pp 2. If wait status are also specification number 3. BS2 deassertion to ad to be valid.
 The minimum numbe 5. For read-modify-write write cycle. However, sited for each of the second of the

DSP56001

MOTOROLA 37

DSP56001 MOTOROLA 39 DSP56001 Electrical Characteristics


MOTOROLA DSP56001 40

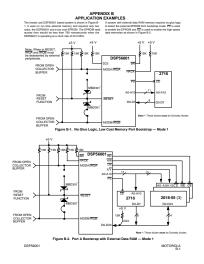
A	PE	ΞÞ	łD	A	

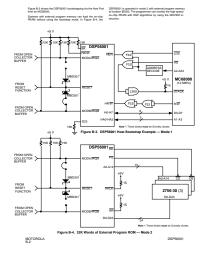
		ORDERI	NG INFORMATION	
D	SP56001FE 33	Pi 20 27	requency = 20.5 MHz = 27 MHz = 23 MHz	Pack age Type
			ISP Type 2001 = RAM Part	RC = Pin Grid Array FE = Cenamic Quad Flat Pack (CQFP) FC = Plastic Quad Flat Pack (PQFP)
		DSP56001 S	OCKET INFORMATION PGA	
Supplier	Telephone	Socket Type	Part Number	Comment
Advanced Interc	(401) 823-5200	Standard 88 Pin	4C5088-01TG ²	Includes Cutout in Center
	(717) 564-0100	Standard 88 Pin	5-916223-3 5-55283-9 5-55283-4	Low Insertion Force ZIF Production
Robinson Nuger	(012) 945-0211	Standard 128 Pin Custom Pinout	1-55383-4 PGA-080CM3P-5-TG ²	ZIF Burn-In and Test
Santec	(012) 944-6733	Standard 120 Pin	PGA-080CHP3-SL-TG MVAS-120-ZSTT-13 ¹	³ High Temp, Longer Leads Includes Output in Center
NOTES:		Custom 88 Pin	CPAS-88-ZSTT-138F	No Cutout
and tin 2. Please	shell. specify wirewtap an		part number shown specifies or	profile solder tail pins having a tin contact ald contact and tin shell.
			CQFP	
Suppler	Telephone	Socket Type	Part Number	Comment
	(717)584-0100	-	822054-21	Converts CQFP to fit AMP's 132 position PQFP "Micro-Pitch Socket".
NOTES: 1. This p	art is not a socket. It i	a converter that allo	ws a COFP part to be used in th	e PQFP socket described below.
			PQFP	
Supplier	Telephone	Socket Type	Part Number	Comment
	(717)584-0100	132 Pin	821949-5 ¹ 821942-1 ¹	Housing Sub-Assembly and Cover for 132 position PQFP 'Micro-Pitch Socket'.
NOTES: 1. One h	ousing sub-assembly	and one cover are rec	quired for each socket.	

DSP56001 MOTORO

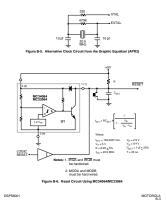
MOTOROLA A-1

PIN #	FUNCTION	PIN #	FUNCTION	PIN #	FUNCTION	PIN #	FUNCTION
17	NO CONNECT	116	NO CONNECT	83	NO CONNECT	50	NO CONNECT
16	114	115	D20	82	D1	49	22
15	HS	114		01	D0	40	X/T
	HIS	113		80		47	RD
13	PERIPHERAL VCC	112		79	A14	46	WK
12	PERIPHERAL VCC	111		78	NO CONNECT	45	210
11	147	110		77	A13	44	NO CONNECT
10	TREC	109		76	A12	43	BG
9	HR/W	108		75	A11	42	SRD
0	FILM	107		74		41	
7	NO CONNECT	105		73	ADDRESS BUS GND	40	SC1
6	RACK	105		72	NO CONNECT	29	STD
5	HAD	104		71	A10	38	NO CONNECT
- 4	NO CONNECT	103		70		37	502
3	NO CONNECT	102		69		36	INTERNAL LOGIC VI
2	HA1 HA2	101	DATA BUS VCC	60	A8 47	25	INTERNAL LOGIC VC
	NO CONNECT	99		66	NO CONNECT	23	INTERNAL LOGIC G
	INTERNAL LOGIC GND	98 97		65		22 21	SCK
	INTERNAL LOGIC GND		D10	64	ADDRESS BUS VCC	21	SO0 NO CONNECT
		96					
	INTERNAL LOGIC VCC	95 64	NO CONNECT	62	NO CONNECT	29	SCLK
		93		61	4	28	RND
	XTAL NO CONNECT	93		50	A4 NO CONNECT	27	
	NO CONNECT	92	DATA BUS GND	59	NO CONNECT	26	NO CONNECT
124	NODATION NODATION	90		50	A3 42	20	PERIPHERAL GND
	NO CONNECT	80		50	ADORESS IN IS GND	24	PERIPHERAL GND
	NMMCOBINE	00		20	ADDRESS BUS GND	22	PERPHERAL GND
	023	87	DA	54	A1	21	NO CONNECT
120	023	87	04	54	40	20	NO CONNECT
	022	80	02	52	AD	10	10
	NO CONNECT	84	NO CONNECT	51	NO CONNECT		NO CONNECT


DSP56001


MOTOROLA A-3 Mechanical Specification Figure A-2. Geramic Quad Flat Pack
MOTOROLA DSP58001

Mechanical Specification Figure A-2. Gramic Quad Flat Pack (Continued) SIP56001 MOTORCIA A-6 Mechanical Specification Figure A-3. Plastic Quad Flat Pack


Mechanical Specification Figure A-3. Plastic Quad Flat Pack (Continued)
DSP56001 MOTORCIA A-7

MOTOROLA DSP56001

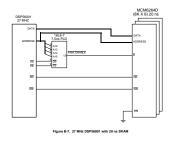
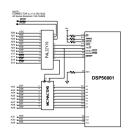
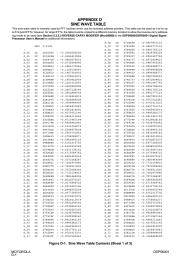


Figure 8.5 shows an alternative clock acceleration and a the Carphan Co-participation acceleration of the crystal acceleration acceleration of the crystal acceleration of the crystal acceleration ac

MOTOROLA DSP56001 B-4

Figure B-8 shows the DSP55001 connected to the bus of an BMAPC computer. The PNL equations and other defailed of the circuit are available in "An ISA REGISTRATE CFOR THE



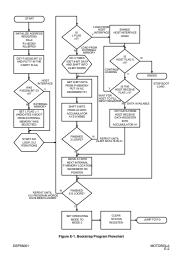

Figure B-8. DSP56001-to-ISA Bus Interface Schematic

DSP56001

MOTOROLA B-5 MOTOROLA D5F6001 8-6

			LAW /	-LAW EXPANSION 1				
	CB13	X:\$100		N.) N.)	P DC	\$078C00 \$025c00		495
	107	1203000		N_4	0 DC	\$075000		471
H 01	DC DC	2797000		8.4	2 10	2060000		429
M_02	DC	\$757000	2 7519	8.4	8 pc	2069000		423
M_02	DC	\$717000		1.4		2065000		407
20.04	DC	\$603000		N_4		\$061000		391
M_06	DC	\$697c00		N_4		\$050000		
M_06	DC	\$657c00		N_4		\$059000		259
M_07 M 08	DC	\$617c00		N_4		2055000		343
N_08	DC DC	1503000		8.4		2051000		211
8,09	DC DC	2593000		8.4		2048000		245
2,08	100	1513-00		8.4		2045000		
H OC	100	1413100	4959	8.4		1041-00		263
H (D	DC	2497000	2 4703	8.4		20 XDC 00		247
H_08	DC	\$457000		1.4		\$039000		
10,00	DC	\$417000	2 4191	N_5	0 DC	\$036000		
M_10	DC	\$3x3c00		N_5	1 DC	\$034000		
N_11	DC	\$307000		N_5		\$032000		
N_12 N 13	DC	\$3A7c00 \$387c00		N_5 N 5	3 DC	\$030c00 \$028c00		195
N.13 N.14	DC	\$387000		N_5		\$028000 \$020000		187
N_14 N 15	DC DC	2243200		N.5		1020000		
N_16	DC	2327000		N_N N 5	4 DC	2028000		163
8 17	DC	\$307000	7 3103	8.5		2026000	1	155
m 18	DC	\$2x7c00	2 2975	8.5	9 DC	2024000		147
H_19	DC	\$207000	2 2847	N_5	A DC	\$022000		139
N_1A	DC	\$2A7000		N_S		\$020000		
N_18	DC	\$287c00	2 2591	N_5	C DC	\$01mc00		123
M_1C	DC	\$267000		N_5		\$010000		115
M_10	DC	\$247c00 \$227c00		N_5		\$01AC00		107
10,18	DC	\$227c00 \$207c00	2 2207	N_5		2019C00 2017400		- 22
N_1P N_20	DC DC	\$1xFC00	· 4079	N_6 N 6		2017400		- 22
N_20	DC DC	\$1xPC00 \$1pPC00	- 1919	N_6		2016400		
8 22	DC DC	\$1CFC00	2 1855	8.6	3 10	2014400		- 81
H 23	DC	\$1mpc00	: 1781	H 6	4 10	2013400		22
8 24	DC	\$1AFC00	: 1727	N_6	6 EC	2012400		22
	DC	\$197000	: 1663	N_6		2011400		- 69
8,26	DC	\$187000		N_6		2010400		- 65
8,27	DC	\$17 F C00	2 1535	N_6	8 DC	2007400		61
10,28	DC	\$16PC00 \$15PC00	2 1471	N_6		2002400		\$7 53
16,29	DC			N_6		2002400		
N.2A	DC	\$14PC00 \$18PC00	2 2343	N_6	a no	2002400		- 22
8,28	DC DC	\$1,2PC00 \$1,2PC00	1 1 2 1 5	N_6 N 6		2003400		
8,20	100	\$11FC00		8.6		1003400		- 55
8.28	DC DC	\$107000	: 1087	8.6		2008400		- 22
8.27	DC	\$077000	: 1023	8	0 DC	2007800		30
M_30	DC	\$093000		N_3	1 10	\$007000		28
H_31	DC	\$0000000		N_3	2 DC	2006800		- 26
10,12	DC	\$00.3000		N_1	3 DC	\$006000		24
H_33	DC	\$008000	2 879	N_1	4 DC	2005800		22
N_34 N_35	DC	2003000		NC1		2005000		20
12,35	DC	\$0CBC00		10	6 DC	2004800		18
8,35	DC	2003000 2008000		8.3	7 DC	2004200		- 16
8.38	100	1000.00		8.3		1003300		- 12
8,39	100	20ABC00		8	· ···	2002800		- 14
8.35	DC DC	20A3000	2 655	8.3	B DC	20022000		- 77
10.10	DC	20/98000		10		2001800		- 2
8.30	DC	2093000	7 591	8.1	D DC	2001000		- 4
M_XD	DC	2088000		N_1	K DC	2002800		- 2
10,10	DC	\$083000	: \$27	N_1	¥ DC	\$000000		- 0
	Figure	re C.d. Mu	J aw/Ail	w Expansion Table Cor	vients ()	Sheet 1 of	21	
×А							-/	

A 80	717	#158000 7 68		0 70	2015800		43
A 81	DC	2148000 2 65	A 0	1 DC	2014800		41
A_82	DC	\$178000 : 75	A_0	2 EC	\$017800		47
A_83	DC	\$168000 : 73) A_C	3 DC	2016800		45
		\$119000 : 56		4 DC	2011800		25
A_85 A 86	DC	\$108000 : 52 \$138000 : 62	A_C A C	6 DC	2010800 2013800		22
A. 87	DC DC	#128000 : 59			2012800		17
A 88	DC	2108000 / 94			2012800	1	59
A_89	DC	\$108000 : 91			\$01C800		\$2
A_8A	DC	\$1 F \$200 : 103			\$01#800		63
A_88	DC DC	\$1x8000 : 97 \$198000 : 81			201#800 2019800		61
	DC	2198000 7 81			2019800		49
	100	21m8000 / 88			2013800		55
	DC DC	21A8200 2 84		F DC	2018800		53
	DC	\$0AC000 : 34	A_0	0 EC	2005800		11
	DC	\$0A4000 : 33		1 DC	2004800		
	DC	\$0mc000 : 37			2007800		15
A_92 A 94	DC DC	2084000 : 36 2080000 : 28	A_D A D		2006800	÷	13
A_14 A_15	DC DC	2084000 2 26		4 EC	2002800	÷.	1
A 16	DC DC	2090200 / 31		6 DC		1	2
A_97	DC	2094000 2 28	A 12	7 EC	2002800		6
A_98	DC	\$0xc000 : 47	i A_D	8 DC	2002800		27
A_99	DC	20124000 2 45			\$000800		25
A_6A A_68	DC	207000 : 50 2074000 : 48			2007800		31
A_98 A 90	DC DC	1074000 7 48			2008800		29
A 10	100	2004000 2 38			2008800		12
A_98	DC	\$000000 : 44	- A.D	K DC	2003800		23
A_97	DC	2004000 : 42			2003800		21
A_A0	DC	\$560000 : 275	. A.B	0 DC	\$056000		172
A_A1	DC DC	\$520000 : 263 \$5x0000 : 300	A_8		2052000		
A_A2 A_A3	DC DC	1500000 7 288			20582000		190
A.44	DC DC	2460000 7 224			2046000	5	140
A 46	DC.	2420000 / 211			2042200		132
A_36	DC	\$4x0000 : 249		6 EC	2042300		156
A_A7	DC	\$4A0000 : 236		7 DC	2048300		148
A_A8 A_A9	DC DC	2760000 : 377 2720000 : 364			2076000		
	DC	2720000 2 364			2072200		228
		27A0000 : 390			2078300		244
A.AC	DC	2660000 : 326		c nc	1066000		204
	DC	\$620000 : 313			\$062000		
A_AK	DC	\$6x0000 : 352	- A.K		\$06x300		
A_30	DC DC	\$6A0000 : 339 \$280000 : 137	1 A.F		206A300 202#300		212
A 81	DC DC	#290000 : 131			2029000		
A 52	DC DC	\$270000 : 190			2027200		11
A_83	DC	\$200000 : 144		8 DC	\$0.220000		90
A_24	DC	\$230000 / 112		4 DC			20
A_16 A_16	DC	\$210000 : 105 \$270000 : 124	1.9 1.9	6 DC	\$021000		66 78
A_36 A 87	DC DC	\$250000 7 124		6 DC 7 DC	1025000		78
A.26	DC.	23800000 / 188		8 20	2038000	1	118
A.39	DC	\$390000 : 183		9 DC	2039000		114
A_8A		\$\$ # 0000 : 201			203#200		
A_88	DC	\$\$D0000 : 195			\$0.820.00		122
A_RC	DC DC	\$330000 : 163 \$310000 : 156			2033000		102
A_10 A_10	DC DC	2370000 / 154			2037000		110
1,12	DC	2350000 / 174		r DC	2035000		100
	Figu	re C-1. Mu-Law/	-Law Expansion Table Con	tents (S	heet 2 of	2)	
DSP56001							NOTODOLA
UGF96001							MOTOROLA Cr2
							0.2



8_73	DC	8282689 1 +0.		8,84	DC		1 -0.9569402933
8_74	DC		2902846038	8,85	DC		: -0.9637761116
8_75	DC	\$22228A5 :+0.	2667128146	8,86	DC	2832604	/ -0.9700313210
z_76 z 77	DC DC		2429600928 2191012055	2_37 2_38	DC DC	28215A1	: -0.9757022262 : -0.9807853103
8_77	DC DC		195160120%%	2,24	DC DC	28275A1 281826C	1 -0.9807858108 1 -0.99511111
2.79	100		1709619015	2.35	100	2816200	1 -0.9891765118
# 7A	100		1467303932	2.00	DC .		1 -0.9924796224
8,78	DC		1224106997	8,80	DC		1 -0.9951847792
8_70	DC		0980170965	2,30	DC	2815809	: -0.9972904921
8_70	DC		0735644996	2,88	DC		1 -0.9987955093
8_7# 8_7#	DC DC	0064709 : +0. 0030400 : +0.	0491676016 0245412998	2_87 2_00	DC DC	28309CK	1 -0.9996988773
2 80	-		0001000010	8 C1	-		1 -0.9996988773
2 81	-		0245412998	2 02	DC DC		1 -0.9987955093
8_82	DC	3F88827 1 -0.	0493676316	8,03	DC .	2915809	: -0.9972904921
2_93	DC		0735644996	8_04	DC		1 -0.9951847792
2_94	DC	SF37420 1 -0.	0980170965	8_05	DC	281266X	1 -0.9924796224
2,85	DC DC		1224106997 1467303932	2_06 2 C7	DC DC		: -0.9891765118 : -0.9852777123
2_89 2_87	DC DC		1003610016	2,07	DC NC		1 -0.9892777128
2,88	100		1950902939	2 09	100		1 -0.9757022262
2.89	100	3x3r47x 1 -0.	2191012055	E CA	DC .		/ -0.9700313210
	DC		2429600928	8,08	DC	\$84A2FC	1 -0.9637761116
2,88	DC		2667128146	8_00	DC		1 -0.9569402933
8_97	DC		2903846038	8_CD	DC	\$8675DC	1 -0.9495282178
2_60 2_62	DC DC	3070947 : -0.	3136816919 3368898928	8_0X	DC DC	\$87787C	: -0.9415441155 : -0.9329928160
2.87	DC DC		3598949929	8 00	DC DC	2892251	1 -0.9238795042
2.90	-		1016010061	8,01	-	diam'r.	1 -0.9142097235
8_91	DC	\$CC210D 1 -0.	4052414000	8,82	DC .	28C4A14	1 -0.9039893150
8_92	DC		4275551140	8.03	DC	\$82AA28	1 -0.8932244182
8_93	DC DC		4496113062	8,04	DC DC	3871034	/ -0.8819212914
2_94	DC DC		4713967144	8,05	DC DC	\$91A(90 \$911673	1 -0.8700870275 -0.8571186005
2,95	DC DC		4928981960 5141026974	2,04	DC NC	2923593 0837mm2	1 -0.8977286005
2_97	100		6349675934	8,08	100		1 -0.8314697146
2.98	100	20080313 / -0.	5555701852	8 19	DC .	2975961	1 -0.8175848722
2,99	DC	\$864800 1 -0.	\$758082271	8,04	DC	299307#	1 -0.8032075167
2_95	DC		\$956993103	8,08	DC	29m1777	1 -0.7883464098
2,98	DC DC		6152315736 6343932748	8_DC 8_DD	DC DC		1 -0.7730104923 1 -0.7572088242
2,40	DC DC	RANCE 41 1 -0.	63439X2748 6531729102	1.00	DC DC	29F13C8 2A12883	1 -0.7972088242
2.95	-		6715589762	2.07	-	to Marrie	1 -0.7242470980
2.97	100	2878023 1 -0.	6895405054	2 20	DC .	2057086	/ -0.7071068287
8_A0	DC		7071068287	8_81	DC	\$A78023	1 -0.6895405054
8_A1	DC		7242470980	8_82	DC		1 -0.6715589762
8_A2 8_A3	DC DC	SA12883 1 -0.	7409611806 7672088242	2,23	DC DC	\$AC\$405 \$AECC33	: -0.6531729102 : -0.6343932748
2,44	DC DC		7972088242	2,24	DC NC	2m14017	1 -0.6152315736
2.05	DC DC		7883464098	2 26	DC DC	20030020	1 -0.5956993103
8,36	DC	299307# 1 -0.	8032075167	8,87	DC	21648328	: -0.5758082271
8_A7	DC		8175848722	83_3	DC		: -0.5555701852
8,,58	DC		8314697146	8,89	DC	2008533	1 -0.5349975824
2, 49	DC DC		8448535204 8577286005	8_KA 8_K8	DC DC	(NEX1E2 2018/06	: -0.5141026974 : -0.4928981960
2.00	DC DC		8977286005 6203620275	2,00	DC NC	0738846	1 -0.4928981960 1 -0.4213967144
8 10	DC DC		\$819212914	2.80	DC .	2067323	/ -0.4496113062
8,40	100	SHEAREN 1 -0.	8932244182	1.85	DC .	2094680	1 -0.4275551140
8_AK	DC	\$904A14 1 -0.	9039893150	2.07	DC	\$0021.00	1 -0.4052414000
8_AP	DC		9142097235	8,90	DC	2070438	1 -0.2826833963
8_80	DC		9238795042	8_91	DC	(018076 (048)/78	1 -0.3598949909
8_81 8 82	DC DC	28893ml : -0. 2877m7c : -0.	9329928160	2,92	DC DC	2D4E0CB	: -0.2368898928 : -0.2136816919
2,82	DC DC	28675DC 1 -0.	6495192172	2,71	DC DC		1 -0.2902846038
1,01	and a			~			
		Figure D	-1. Sine Wave Table Co	ntents	Shee	t 2 of 3)	
		-9				,	
DSP56001							MOTOROI A
							D-2

MOTOROLA DSP56001 D-3 DSP56001 MOTOROLA D-4

1				PAGE 1	22 50.0.10		
2			BOOTSTR	AP SOURC	E CODE FO	R D5P56001 - (C) Copyright 1986 Motorola Inc.
4			: Host aloor	itm / AND	enternal bur	method	
6			This is the	Bootstrap a	ource code o	ontained in the I	DSP56001 32 word boot RCM.
7			This progr	am can load	the internal	program memor	v from one of two external sources.
۰.			The progr	am reads P:	SC000 bit 23	to decide which	external source to access. If
9			: P:\$C000 b	123 = 0 the	in it loads inte	rnal PRAM from	n HO-H7, using the Host Interface
10			: logic, If P.	50000 bit 22	= 1 then it is	ads from 1.536	consecutive byte-wide P:
11			memory k	cations (sta	ting at P.SCI	000.	
13	000000000		BOOT	EQU	\$5000		: The location in P: memory
54							: where the external byte-wide
15							EPROM is expected to be mapp
16							
17	0:0000			ORG	PL:50		Bootstrap code starts at P.50
10							
19	P.0000	627-400	START	MOVE		MFFE3.R2	: R2 = address of the Host
		OOFFE9					
20							; Interface status register.
21	P:0002	G1F-400		MOVE		#BOOT,R1	; R1 = starting P: address of
		000000					
22							; external bootstrap byte-wide RD
23	P:0004	300000		MOVE		#0,R0	; R0 = starting P: address of
24							; internal memory where program
z							; will begin loading.
26							
27	P:0005	G7E18C		MOVE		P/R1),AI	; Get the data at P.\$C000
20	P:0005	200037		ROL	Α.		Shift bit 23 into the Carry flag
29	P:0007	0000030		300	<nl00p< td=""><td></td><td>; Perform load from Host Interface</td></nl00p<>		; Perform load from Host Interface
30							if carry is zero.
21							
32			: IMPORTA	NT NOTE: 1	This routine a	sources that the	L bit has been cleared before enterin
22			; this progra	m and that	M0 and M1 h	ave been preica	ided with SFFFF (linear addressing).
34			This would	the the cas	e after a rese	. If this program	is entered by changing the OMR

MOTOROLA DSP56001 E-3

		; to bootstra	p operatio	g mode, make certain th	at the L bit is cleared and registers MD
16		; and Milhar	ve been se	t to SFFFF. Also, make a	sure the BCR is set to \$xxFx since
17		: EPROMS	are slow a	nd BCR is set to SFFFF :	after a reset. If the L bit was set before
10 19		; changing r	nodes, the	program will load from e	odernal program memory.
N P:0008	0040F9		ORI	#\$40,0CR	; Set the L bit to indicate
и					; that the bootstrap program
12					; is being loaded from the
8					; external P: space.
н					
5					external P: memory space beginning
i6					to 512 24-bit words and stored in
17		; contiguous	s internal P	RAM memory locations	starting at P.\$0.
10					
69 20					plater A2 into register A1 eight bits his takes three loops) it stores the
10					ernal PRAM is filled. Note that the
12					ental PRAM is field. Note that the significant byte of P.\$0 first.
			e naenas case	a management with the state of	og moart ope of P-pointe.
4		. The secon	d anutine b	and the internal PDAM	using the Host Interface logic.
					PRAM, the Host Interface bootstrap
26					I the loaded program started, by setting
7		the Host F	Ing (HFQ)	1 at any time during the	and from the Host Processor.
20					
19 P.0009	050082 00001B	INLOOP	DO	#512,_LOOP1	; Load 512 instruction words.
10		: This is the			
12		, red is the	canality in		
D P-0008	055012		10	< HOSTLD	: Load from the Host Interface
4			water		: If the Limit flag is clear.
					, a see and ray is one.
z					
16		: This is the	fint routin	e. It loads from external	P. memory.
7					
	050380		DO.	#0, _LOOP2	Each instruction has 3 bytes.

DSP56001

MOTOROLA E-4

29 70	P:000E	07D98A		MOVE		P:(R1)+,A2	; Get the 8 LSB from external ; P: memory.
71	P.000F	0508AD		REP	40		Shift 8 bit data into A1
72	P:0010	200022		ASR			
73			_LOOP2				; Get another byte
74	P.0011	0C001B		JMP	< STORE		: then put the word in PRAM.
25							
37			; This is the a	econd rout	ine. It loads !	from the Host In	ierface pins.
77							
70	P:0012	QAA020	HOSTLD	DGET	#0,X:SFFE		; Configure Port B as Host Interfac
22	P:0013	GAA983	LELA	JCLR	KO, X: SFFE	P. LELE	: If HFD=1, stop loading data.
		000017					
80	P:0015	00008C		ENDDO			; Must terminate the DO loop
21	P:0016	0C001C		JMP	<_BOOTE1	ND CIV	
12							
20	P:0017	046280	LOLD	JCLR	#0,X:(R2).	LELA	; Wait for HRDF to go high
		000013					
ы							; (meaning 24-bit data is present)
25	P:0019	54F000		MOVE		X:SFFED,A1	: Put 24-bit host data in A1
		OOFFEE					
86							
17	P:001B	07588C	STORE	MOVE		A1,P:(R0)+	; Store 24-bit result in PRAM.
20							
29			_LOOP1				; and return for another 24-bit word
20							
21						execution to not	mail expanded mode
22			; and jumps to	the RESI	IT location.		
23							
ы	P:001C	05025A	_BOOTEND	MOVEC		#2,0MR	; Set the operating mode to 2
z							; (and trigger an exit from
86							; bootstrap mode).
27	P:001D	000089		ANDI	#\$0,0CR		; Clear SR as if RESET and
20							; introduce delay needed for ; Op. Mode change.
	P:001E	000000		JMP	-\$0		; Start letching from PRAM P:\$000
101							

Meteriol 2019/2003 Metris Unse Alemanian View D Enson 9 Wannings Figure E-2. Assembler Listing for Bootstrap Program (Sheet 3 of 3)

MOTOROLA E-5 DSP56001

