DAC2815 # **DUAL 12-BIT DIGITAL-TO-ANALOG CONVERTER (8-Bit Port Interface)** ### **FEATURES** - COMPLETE DUAL DAC — INCLUDES INTERNAL REFERENCES AND OUTPUT AMPLIFIERS - GUARANTEED SPECIFICATIONS OVER TEMPERATURE - GUARANTEED MONOTONIC OVER TEMPERATURE - HIGH-SPEED 8 + 4-BIT PARALLEL INTERFACE - LOW POWER: 300mW (150mW/DAC) - LOW GAIN DRIFT: 5ppm/°C - LOW NONLINEARITY: ±1/2 LSB max - UNIPOLAR OR BIPOLAR OUTPUT - CLEAR/RESET TO UNIPOLAR OR BIPOLAR ZERO ### **DESCRIPTION** The DAC2815 is one in a family of dual and quad 12-bit digital-to-analog converters (DACs). Serial, 8-bit, 12-bit interfaces are available. The DAC2815 is complete. It contains CMOS logic, switches, a high-performance buried-zener reference, and low-noise bipolar output amplifiers. No external components are required for either unipolar 0 to 10V, 0 to -10V, or bipolar ± 10 V output ranges. The DAC2815 has a 2-byte (8 + 4) double-buffered interface. Data is first loaded (level transferred) into the input registers in two steps for each DAC. Then both DACs are updated simultaneously. The DAC has an asynchronous clear control for reset to unipolar or bipolar zero depending on the mode selected. This feature is useful for power-on reset or system calibration. The DAC2815 is packaged in a 28-pin plastic DIP rated for the -40°C to $+85^{\circ}\text{C}$ extended industrial temperature range. High-stability laser-trimmed thin film resistors assure high reliability and true 12-bit integral and differential linearity over the full specified temperature range. # **SPECIFICATIONS**, Guaranteed over $T_A = -40^{\circ}C$ to +85°C unless otherwise specified. ### **ELECTRICAL** Specifications as shown for V $_{S}$ = $\pm12V$ or $\pm15V,~V_{L}$ = +5V, and R $_{L}$ = $2k\Omega$ unless otherwise noted. | | | DAC2815AP | | С | | | | | |--|---|-----------------------------|--------------------------|-------------------------------------|------------------|-------------|---------------------------------|---| | PARAMETER | CONDITIONS | MIN | TYP | MAX | MIN | TYP | MAX | UNITS | | DIGITAL INPUTS Resolution V _{IH} (Input High Voltage) V _{IL} (Input Low Voltage) I _{IN} (Input Current) C _{IN} (Input Capacitance) | T _A = 25°C
T _A = -40°C to +85°C | 12
2
0 | 0.8 | 5
0.8
±1
±10 | * * | * | * * * | Bits
V
V
μΑ
μΑ
ρF | | ACCURACY Integral, Relative Linearity ⁽¹⁾ Differential Nonlinearity ⁽²⁾ Unipolar Offset Error Bipolar Zero Error Gain Error Unipolar, Bipolar Power Supply Sensitivity ⁽³⁾ | $T_{A} = 25^{\circ}\text{C}$ $T_{A} = -40^{\circ}\text{C to } +85^{\circ}\text{C}$ $T_{A} = +25^{\circ}\text{C}$ $T_{A} = -40^{\circ}\text{C TO } +85^{\circ}\text{C}$ With Internal or External 10.0V Ref $V_{S} = \pm 11.4\text{V to } \pm 18\text{V},$ $V_{L} = +4.5\text{V to } +5.5\text{V}$ | | +1.5/–1 | ±1
±1
±3
±20
±0.2
30 | | | ±1/2 * ±1 ±0.5 * ±10 ±0.15 * | LSB
LSB
LSB
mV
mV
mV
ppmFSR/V | | TEMPERATURE DRIFT Gain Drift Unipolar, Bipolar Unipolar Offset Drift Bipolar Zero Drift | | | ±5
±0.1
±5 | ±30
±5
±15 | | * * | ±20
*
±8 | ppm/°C
ppmFSR/°C
ppmFSR/°C | | REFERENCE OUTPUT Output Voltage Reference Drift Output Current Max Load Capacitance (For Stability) Short Circuit Current Load Regulation (Δ V _{OUT} VS Δ I _{LOAD}) | $T_A = 25^{\circ}C$ $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ | +9.980
+10/-5
+6.5/-5 | +10
±2
500
±20 | +10.020
±30 | +9.985
*
* | * * * | +10.015
±20 | V
ppm/°C
mA
mA
pF
mA
ppm/mA | | Supply Regulation (∆ V _{OUT} vs ∆ V _S) INVERTER -10V Reference(⁴), Inverter Output -10V Reference Drift DC Output Impedance Output Current Max Load Capacitance (For Stability) Short Circuit Current | | -10.020
±7 | -10
0.1
200
±30 | ±5
-9.980
±30 | -10.015
* | *
*
* | +
-9.985
+20 | ppm/V V ppm/°C Ω mA pF mA | | REFERENCE INPUT Reference Input Resistance Inverter Input Resistance BPO Input Resistance Reference Input Range | | 3.5
7
14 | 5
10
20 | ±10 | * * | * * | * | kΩ
kΩ
kΩ
V | | ANALOG SIGNAL OUTPUTS Voltage Range DC Output Impedance Output Current Max Load Capacitance (For Stability) Short Circuit Current | V _{out} | -V _S + 1.4
±5 | 0.1
500
±30 | +V _S - 1.4 | * | * * | * | V
Ω
mA
pF
mA | | DYNAMIC PERFORMANCE ⁽⁵⁾ Unipolar Mode Settling Time Bipolar Mode Settling Time Slew Rate Small-Signal Bandwidth | C _L = 100pF
To 1/2 LSB of Full Scale
To 1/2 LSB of Full Scale | | 2.5
3.5
10
3 | 10
10 | | * * * | * | μs
μs
V/μs
MHz | | ANALOG GROUND CURRENT (Code Dependent) DIGITAL CROSSTALK | Full Scale Transition | | ±2 | | | * | | mA
nV-s | | D/A GLITCH IMPULSE | C _L = 100pF | | 30 | | | * | | nV-s | | | L | | | | | | | | # **SPECIFICATIONS** (CONT), Guaranteed over $T_A = -40^{\circ}C$ to +85°C unless otherwise specified. ### **ELECTRICAL** Specifications as shown for V_S = $\pm 12V$ or $\pm 15V$, V_L = +5V, and R_L = $2k\Omega$ unless otherwise noted. | | | | DAC2815AP | | | DAC2815BP | | | |-------------------------------------|---|-------|-----------|-------|-----|-----------|-----|-------| | PARAMETER | CONDITIONS | MIN | TYP | MAX | MIN | TYP | MAX | UNITS | | POWER SUPPLY | | | | | | | | | | +V _S and -V _S | | ±11.4 | ±15 | ±18 | * | * | * | V | | +V _L | | 4.5 | 5 | 5.5 | * | * | * | V | | +I _S | | | +10 | +13.5 | | * | * | mA | | -I _S | | | -10 | -13.5 | | * | * | mA | | +I _L | Digital Inputs = 0V or +VL | | 0.2 | 1 | | * | * | mA | | +I_ | Digital Inputs = V _{IL} or V _{IH} | | | 5 | | | * | mA | | Total Power, All DACs | | | 300 | 410 | | * | * | mW | | TEMPERATURE RANGE | | | | | | | | | | Specified | | -40 | | +85 | * | | * | °C | | Operating | | -40 | | +85 | * | | * | °C | | Thermal Resistance, θ_{JA} | | | 75 | | | * | | °C/W | NOTES: (1) End point linearity. (2) Guaranteed monotonic. (3) Change in bipolar full scale output. Includes voltage output DAC, voltage reference, and reference inverter. (4) Inverter output with inverter input connected to +V_{REF}. (5) Guaranteed but not tested. Electrostatic discharge can cause damage ranging from performance degradation to complete device failure. Burr-Brown Corporation recommends that all integrated circuits be handled and stored using appropriate ESD protection methods. ### **PACKAGE INFORMATION** | MODEL | PACKAGE | PACKAGE DRAWING
NUMBER ⁽¹⁾ | |-----------|--------------------|--| | DAC2815AP | 28-Pin Plastic DIP | 215 | | DAC2815BP | 28-Pin Plastic DIP | 215 | NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix D of Burr-Brown IC Data Book. ### **ABSOLUTE MAXIMUM RATINGS** | IV to AGND | .7\/ | |---|-----------------| | +V _L to AGND 0V, - | | | +V _L to DGND | +7V | | +V _S to AGND | 18V | | -V _S to AGND | 18V | | AGND to DGND±0 | | | Any digital input to DGND0.3V, +V _L +0 | .3V | | Ref In to AGND ± | 25V | | Ref In to DGND± | 25V | | Storage Temperature Range –55°C to +12 | 5°C | | Operating Temperature Range –40°C to +8 | 5°C | | Lead Temperature (soldering, 10s)+30 | 0°C | | Junction Temperature+15 | 5°C | | Output Short Circuit | ±V _S | | Reference Short Circuit | +V _S | ### **ORDERING INFORMATION** | MODEL | LINEARITY ERROR
(LSB) | | | | |-----------|--------------------------|--|--|--| | DAC2815AP | ±1 | | | | | DAC2815BP | ±1/2 | | | | The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems. ### **PIN DESIGNATIONS** | PIN | DESCRIPTOR | FUNCTION | PIN | DESCRIPTOR | FUNCTION | |-----|-----------------------|---|-----|-----------------------|--------------------------------| | 1 | D_6 | Data bit 6 input | 28 | DGND | Digital common | | 2 | D_7 | Data bit 7 input | 27 | D ₅ | Data bit 5 input | | 3 | A_0 | Address 0 input | 26 | D ₄ | Data bit 4 input | | 4 | A_1 | Address 1 input | 25 | D ₃ | Data bit 3 input | | 5 | CLR | Asychronous input reset to zero | 24 | D ₂ | Data bit 2 input | | 6 | MODE | Selection input for unipolar or bipolar reset to zero | 23 | D ₁ | Data bit 1 input | | 7 | CS | Chip select enable, DAC A and DAC B | 22 | D_0 | Data bit 0 input | | 8 | –V _S
LE | Negative analog power supply, -15V input | 21 | WR | Write input, DAC A and DAC B | | 9 | ĪĒ | Latch data enable, DAC A and DAC B | 20 | BPO A | Bipolar offset input, DAC A | | 10 | +V _L | Positive logic power supply, +5V input | 19 | BPO B | Bipolar offset input, DAC B | | 11 | AGND | Analog common | 18 | Inv In | Inverter (A3) input | | 12 | +V _S | Positive analog power supply, +15V input | 17 | +V _{REF} Out | Reference voltage, +10V output | | 13 | V _{REF} In | ± Reference voltage input | 16 | V _{OUT} A | Analog output voltage, DAC A | | 14 | Inv Out | Inverter (A ₃) output | 15 | V _{OUT} B | Analog output voltage, DAC B | ### **PIN CONFIGURATION** | Top View | | | DIP | |---------------------|-------|------------------------|-----| | D ₆ | 1 | 28 DGNI | | | D ₇ | 2 | 27 D ₅ | | | A ₀ | 3 | 26 D ₄ | | | A ₁ | 4 | 25 D ₃ | | | CLR | 5 | 24 D ₂ | | | MODE | 6 DAC | 2815 23 D ₁ | | | cs | 7 | 22 D ₀ | | | -V _S | 8 | 21 WR | | | ĪĒ | 9 | 20 BPO | A | | +V _L | 10 | 19 BPO | В | | AGND | 11 | 18 Inv In | | | +V _S | 12 | 17 +V _{REF} | Out | | V _{REF} In | 13 | 16 V _{OUT} | A | | Inv Out | 14 | 15 V _{OUT} | В | ## **TYPICAL PERFORMANCE CURVES** $\rm T_A = +25^{\circ}C,~V_S = \pm 12V$ or $\pm 15V,~V_L = +5V$ unless otherwise noted. # **TYPICAL PERFORMANCE CURVES (CONT)** T_A = +25°C, V_S = ±12V or ±15V, V_L = +5V unless otherwise noted. NOTE: Crosstalk is dominated by digital crosstalk/feedthrough of the $\overline{\text{LE}}$ signal. # **TYPICAL PERFORMANCE CURVES (CONT)** $\rm T_A$ = +25°C, $\rm V_S$ = ±12V or ±15V, $\rm V_L$ = +5V unless otherwise noted. DAC output noise due to activity on digital inputs with latch disabled. ### **TIMING CHARACTERISTICS** $+V_L = +5V$, $T_A = -40$ °C to +85°C. ### INTERFACE LOGIC TRUTH TABLE | MODE | CLR | LE | cs | WR | A ₁ | A ₀ | FUNCTION | |------|-----|----|----|----|-----------------------|----------------|---| | Х | 1 | 1 | 0 | 0 | 0 | 0 | DAC A LS Input Register Loaded with D7-D0 (LSB) | | X | 1 | 1 | 0 | 0 | 0 | 1 | DAC A MS Input Register Loaded with D3-(MSB)-D0 | | X | 1 | 1 | 0 | 0 | 1 | 0 | DAC B LS Input Register Loaded with D7-D0 (LSB) | | X | 1 | 1 | 0 | 0 | 1 | 1 | DAC B MS Input Register Loaded with D3-(MSB)-D0 | | X | 1 | 0 | 0 | 1 | Х | Х | DAC A, DAC B Registers Updated Simultaneously from Input Registers | | X | 1 | 0 | 0 | 0 | Х | Х | DAC A, DAC B Registers are Transparent | | X | 1 | Χ | 1 | Х | Х | Х | No Data Transfer | | X | 1 | 1 | Χ | 1 | Х | X | No Data Transfer | | 0 | 0 | Χ | Χ | Х | Х | X | All Registers Cleared | | 1 | 0 | Х | Х | Х | Х | Х | Input Registers Cleared = 000 _{HEX} , DAC Registers = 800 _{HEX} | NOTE: X = Don't care. ### FUNCTIONAL BLOCK DIAGRAM, DAC2815 — Dual 12-bit DAC, 8-bit Port # DISCUSSION OF SPECIFICATIONS ### **INPUT CODES** All digital inputs of the DAC2815 are TTL and 5V CMOS compatible. Input codes for the DAC2815 are either USB (Unipolar Straight Binary) or BOB (Bipolar Offset Binary) depending on the mode of operation. See Figure 3 for ±10V bipolar connection. See Figures 4 and 5 for 0 to 10V and 0 to –10V unipolar connections. # UNIPOLAR AND BIPOLAR OUTPUTS FOR SELECTED INPUT | DIGITAL INPUT | UNIPOLAR (USB) | BIPOLAR (BOB) | |--------------------|-------------------------|---------------| | FFF _{HEX} | +Full scale | +Full scale | | 800 _{HEX} | +1/2 Full scale | Zero | | 7FF _{HEX} | +1/2 Full scale – 1 LSB | Zero – 1 LSB | | 000 _{HEX} | Zero | -Full scale | ### INTEGRAL OR RELATIVE LINEARITY This term, also known as end point linearity, describes the transfer function of analog output to digital input code. Integral linearity error is the deviation of the analog output versus code transfer function from a straight line drawn through the end points. #### DIFFERENTIAL NONLINEARITY Differential nonlinearity is the deviation from an ideal 1 LSB change in the output voltage when the input code changes by 1 LSB. A differential nonlinearity specification of ± 1 LSB maximum guarantees monotonicity. ### **UNIPOLAR OFFSET ERROR** The output voltage for code $000_{\rm HEX}$ when the DAC is in the unipolar mode of operation. ### **BIPOLAR ZERO ERROR** The output voltage for code $800_{\rm HEX}$ when the DAC is in the bipolar mode of operation. ### **GAIN ERROR** The deviation of the output voltage span ($V_{MAX} - V_{MIN}$) from the ideal span of 10V-1 LSB (unipolar mode) or 20V-1 LSB (bipolar mode). The gain error is specified with and without the internal +10V reference error included. ### **OUTPUT SETTLING TIME** The time required for the output voltage to settle within a percentage-of-full-scale error band for a full scale transition. Settling to $\pm 0.012\%$ (1/2 LSB) is specified for the DAC2815. #### **DIGITAL-TO-ANALOG GLITCH** Ideally, the DAC output would make a clean step change in response to an input code change. In reality, glitches occur during the transition. See Typical Performance Curves. ### **DIGITAL CROSSTALK** Digital crosstalk is the glitch impulse measured at the output of one DAC due to a full scale transition on the other DAC—see Typical Performance Curves. It is dominated by digital coupling. Also, the integrated area of the glitch pulse is specified in nV–s. See table of electrical specifications. ### **DIGITAL FEEDTHROUGH** Digital feedthrough is the noise at a DAC output due to activity on the digital inputs—see Typical Performance Curves. ### **OPERATION** Depending on the address selected, the 4 MSBs or the 8 LSBs are written into the appropriate input register for each DAC when the \overline{WR} signal is brought low. This data is latched in the input register when the \overline{WR} goes high. Data are then transferred from the input registers to the DAC latch registers by bring \overline{LE} low. The data are latched in the DAC latch registers when \overline{LE} goes high. Both DACs are updated simultaneously. When $\overline{\text{CLR}}$ is brought low, the input registers are cleared to 000_{HEX} (-10V), while the DAC registers = 800_{HEX} . If $\overline{\text{LE}}$ is brought low, the DACs are updated with 000_{HEX} resulting in -10V (bipolar) or 0V (unipolar) on the output. ### **CIRCUIT DESCRIPTION** Each of the two DACs in the DAC2815 consists of a CMOS logic section, a CMOS DAC cell, and an output amplifier. One buried-zener +10.0V reference and a reference inverter (for a -10.0V reference) are shared by both DACs. Figure 1 is a simplified circuit for a DAC cell. An R, 2R ladder network is driven by a voltage reference at V_{REF} . Current from the ladder is switched either to I_{OUT} or AGND by 12 single-pole double-throw CMOS switches. This maintains constant current in each leg of the ladder regardless of FIGURE 1. Simplified Circuit Diagram of DAC Cell. FIGURE 2. Recommended Ground Connections for Multiple DAC packages. digital input code. This makes the resistance at $V_{\rm REF}$ constant (it can be driven by either a voltage or current reference). The reference can be either positive or negative polarity with a range of up to $\pm 10 V$. CMOS switches included in series with the ladder terminating resistor and the feedback resistor, $R_{\rm FB}$, compensate for the temperature drift of the ladder switch ON resistance. The output op amps are connected as transimpedance amplifiers to convert the DAC-cell output current into an output voltage. They have been specially designed and compensated for precision and fast settling in this application. ### **POWER SUPPLY CONNECTIONS** The DAC2815 is specified for operation with power supplies of $V_L = +5V$ and $V_S =$ either $\pm 12V$ or $\pm 15V$. Even with the V_S supplies at $\pm 11.4V$ the DACs can swing a full $\pm 10V$. Power supply decoupling capacitors (1 μ F tantalum) should be located close to the DAC power supply connections. Separate digital and analog ground pins are provided to permit separate current returns. They should be connected together at one point. Proper layout of the two current returns will prevent digital logic switching currents from degrading the analog output signal. The analog ground current is code dependent so the impedance to the system reference ground must be kept to a minimum. Connect DACs as shown in Figure 2 or use a ground plane to keep ground impedance less than 0.1Ω for less than 0.1LSB error. ### -10V REFERENCE An internal inverting amplifier (Gain = -1.0V/V) is provided to invert the +10V reference. Connect $+V_{REF}$ Out to Inv In for a -10V reference at Inv Out. #### **OUTPUT RANGE CONNECTIONS** ### ±10V Output Range For a $\pm 10V$ bipolar outputs connect the DAC2815 as shown in Figure 3. Connect the MODE to logic high (+5V) for reset to bipolar zero. With MODE connected low (GND) reset will be to –Full-Scale. ### 0 To +10V Output Range For 0 to +10V unipolar outputs connect the DAC2815 as shown in Figure 4. Connect the MODE to logic low (GND) for reset to unipolar zero. ### 0 To -10V Output Range For 0 to -10V unipolar outputs connect the DAC2815 as shown in Figure 5. Connect the MODE to logic low (GND) for reset to unipolar zero. ### **CONNECTION TO DIGITAL BUS** DAC2815s can easily be connected to a µprocessor bus. Decode your address lines to derive the control signals shown in Figure 6. Only one \overline{LATCH} signal is required for a system where all DAC2815s are updated simultaneously. If you want to update DAC2815s independently, use separate \overline{LATCH} signals. The \overline{LATCH} and \overline{WRITE} signals can be brought low simultaneously to update the DAC registers with the same processor instruction that writes the final 8-bit data word the DAC input registers. 9 FIGURE 3. Analog Connections for ±10V DAC Output. FIGURE 4. Analog Connections for 0 to ± 10 V DAC Output. FIGURE 5. Analog Connections for 0 to –10V DAC Output. FIGURE 6. Logic Connection for Multiple DAC2815 Packages.