

Microcomputer Components

8-Bit CMOS Microcontroller

C511/C511A C513/C513A C513A-H

Data Sheet 06.96

Data Sheet C511/C511A/C513/C513A/C513A-H						
Revision History	Current Version : 06.96					
Previous Release	s: 02.96, 05.95					
Page	Subjects (changes since last revision)					
Several 41	Corrections of text Figure 22: external clock configuration corrected					

SIEMENS

8-Bit CMOS Microcontroller Family

C511 C511A C513 C513A C513A-H

Preliminary

- Fully software compatible to standard 8051/8052 microcontrollers
- Up to 12 MHz operating frequency
- Up to 12 K×8 ROM / EEPROM
- Up to 256×8 RAM
- Up to 256 x 8 XRAM
- Four 8-bit ports
- Up to three 16-bit Timers / Counters (Timer 2 with Up/Down and 16-bit Autoreload Feature)
- Synchronous Serial Channel (SSC)
- Optional USART
- Up to seven interrupt sources, two priority levels
- Power Saving Modes
- P-LCC-44 package (C513A also in P-MQFP-44 package)
- Temperature Ranges : SAB-C511 / 511A / 513 / 513A / C513A-H T SAF-C513A T

 T_{A} : 0 °C to 70 °C T_{A} : -40 °C to 85 °C

The C511, C511A, C513, C513A, and C513A-H are members of a family of low cost microcontrollers, which are software compatible with the components of the SAB 8051, SAB 80C51 and C500 families.

The first four versions contains a non-volatile read-only (ROM) program memory. The C513A-H is a version with a 12 Kbyte EEPROM instead of ROM. This device can be used for prototype designs which have a demand for reprogrammable on-chip code memory.

The members of the microcontroller family differ in functionality according **table 1**. They offer different ROM sizes, different RAM/XRAM sizes and a different timer/USART configuration. Common to all devices is an advanced SSC serial port, a second synchronous serial interface, which is compatible to the SPI serial bus industry standard. The functionality of the C513A-H is a superset of all ROM versions of the C511/C513 family.

Table 1

Functionality of the C511/C513 MCUs

Device	ROM Size	EEPROM Size	RAM Size	XRAM Size	Timers ¹⁾	USART	SSC
C511	2.5 KB	-	128 B	-	T0, T1	-	1
C511A	4 KB	-	256 B	-	T0, T1	-	1
C513	8 KB	-	256 B	-	T0, T1, T2	1	1
C513A	12, 16 KB	-	256 B	256 B	T0, T1, T2	1	1
C513A-H	-	12 KB	256 B	256 B	T0, T1, T2	1	1

¹⁾ T0/T1 refers to the standard 8051 timer 0/1 units, T2 refers to the 8052 timer 2 unit.

Figure 1 C511/513 Logic Symbol

Table 2 Ordering Information

Туре	Ordering Code	Package	Description (8-Bit CMOS microcontroller)
C511-RN	Q67120-DXXXX	P-LCC-44	with mask-programmable ROM (2.5K), 12 MHz
C511A-RN	Q67120-DXXXX	P-LCC-44	with mask-programmable ROM (4K), 12 MHz
C513-1RN	Q67120-DXXXX	P-LCC-44	with mask-programmable ROM (8K), 12 MHz
C513A-RN	Q67120-DXXXX	P-LCC-44	with mask-programmable ROM (12K), 12 MHz
	Q67120-DXXXX	P-LCC-44	with mask-programmable ROM (12K), 12 MHz, ext. temp. – 40 °C to 85 °C
C513A-2RN	Q67120-DXXXX	P-LCC-44	with mask-programmable ROM (16K), 12 MHz
	Q67120-DXXXX	P-LCC-44	with mask-programmable ROM (16K), 12 MHz, ext. temp. – 40 °C to 85 °C
C513A-2RM	Q67120-DXXXX	P-MQFP-44	with mask-programmable ROM (16K), 12 MHz
	Q67120-DXXXX	P-MQFP-44	with mask-programmable ROM (16K), 12 MHz, ext. temp. – 40 °C to 85 °C
C513A-LN	Q67120-C1017	P-LCC-44	for external memory (12 MHz)
	Q67120-C1035	P-LCC-44	for external memory (12 MHz), ext. temp. – 40 °C to 85 °C
C513A-LM	Q67120-C1026	P-MQFP-44	for external memory (12 MHz)
	Q67120-C1036	P-MQFP-44	for external memory (12 MHz), ext. temp. – 40 °C to 85 °C
C513A-HN	Q67120-C0989	P-LCC-44	with reprogrammable EEPROM (12K), 12 MHz, ext. temp. – 40 °C to 85 °C

Note : The ordering number of the ROM types (DXXXX extension) is defined after program release (verification) of the customer.

SIEMENS

Figure 2 P-LCC-44 Package Pin Configuration (Top View)

If the C513A-H is used in programming mode, the pin configuration is different to **figure 2** and **3** (see **figure 5**).

SIEMENS

Figure 3 P-MQFP-44 Package Pin Configuration of the C513A (Top View)

Table 3 Pin Definitions and Functions

Symbol	Pin N	lumber	I/O*)	Functi	on	
	P-LCC- 44	P-MQFP- 44				
P1.7-P1.0	9-2 3-1, 44-40		Ι/Ο	Port 1 p the inter as inpu- low will becaus contair In gene functio functio For the is imple STO of When	pins that he ernal pullup its. As inp I source co se of the ir is the time eral the ou in must be in to operate outputs o emented, putput in ac used for S	I/O port with internal pull-up resistors. ave 1s written to them are pulled high by p resistors, and in that state can be used uts, port 1 pins being externally pulled urrent (I_{IL} , in the DC characteristics) neternal pullup resistors. Port 1 also er 2 and SSC pins as secondary function. tput latch corresponding to a secondary programmed to a one (1) for that ate. of the SSC (SCLK, STO) special circuitry providing true push-pull capability. The ddition will have true tristate capability. SSC inputs, the pull-up resistors will be the inputs will float (high ohmic inputs).
				The alt	ernate fur	nctions are assigned to port 1, as follows:
	2	40		P1.0	T2	Input to counter 2 ¹⁾
	3	41		P1.1	T2EX	Capture -Reload trigger of timer 2 ¹⁾ Up-Down count
	4	42		P1.2	SCLK	SSC Master Clock Output SSC Slave Clock Input
	5	43		P1.3	SRI	SSC Receive Input
	6	44		P1.4	STO	SSC Transmit Output
	7	1		P1.5	SLS	Slave Select Input
				¹⁾ not a	vailable in tl	he C511/511A

Table 3 Pin Definitions and Functions (cont'd)

Symbol	Pin N	lumber	I/O*)	Functi	Function				
	P-LCC- 44	P-MQFP- 44							
P3.0-P3.7	11, 13-19	5, 7-13	1/0	Port 3 is a bidirectional I/O port with internal pull-up resistors. Port 3 pins that have 1s written to them are pulled high b the internal pullup resistors, and in that state can be use as inputs. As inputs, port 3 pins being externally pulled low will source current (I_{IL} , in the DC characteristics) because of the internal pullup resistors. Port 3 also contains the interrupt, timer, serial port and external					
				output be pro	latch corr grammed	bins that are used by various options. The responding to a secondary function must to a one (1) for that function to operate.			
				3 as fo	llows:				
	11	5		P3.0	RXD	Receiver data input (asynchronous) or data input/output (synchronous) of serial interface (USART) ¹⁾			
	13	7		P3.1	TXD	Transmitter data output (USART) ¹⁾ (asynchronous) or clock output (synchronous) of serial interface			
	14	8		P3.2	INTO	Interrupt 0 input / timer 0 gate control			
	15	9		P3.3	INT1	Interrupt 1 input / timer 1 gate control			
	16	10		P3.4	Т0	Counter 0 input			
	17	11		P3.5	T1	Counter 1 input			
	18	12		P3.6	WR	Write control signal : latches the data byte from port 0 into the external data memory			
	19	13		P3.7	RD	Read control signal : enables the external data memory to port 0			
				¹⁾ not a	vailable in	the C511/511A			
XTAL2	20	14	_	XTAL2 Output		verting oscillator amplifier.			

Table 3 Pin Definitions and Functions (cont'd)

Symbol	Pin N	lumber	I/O*)	Function				
	P-LCC- 44 P-MQFP- 44							
XTAL1	21	15	-	XTAL1 Input to the inverting oscillator amplifier and input to the internal clock generator circuits. To drive the device from an external clock source, XTAL1 should be driven, while XTAL2 is left unconnected. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is divided down by a divide-by-two flip-flop. Minimum and maximum high and low times as well as rise/fall times specified in the AC characteristics must be observed.				
P2.0-P2.7	24-31	18-25	I/O	Port 2 is a bidirectional I/O port with internal pullup resistors. Port 2 pins that have 1s written to them are pulled high by the internal pullup resistors, and in that state can be used as inputs. As inputs, port 2 pins being externally pulled low will source current (I_{IL} , in the DC characteristics) because of the internal pullup resistors. Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX @DPTR). In this application it uses strong internal pullup resistors when issuing 1s. During accesses to external data memory that use 8-bit addresses (MOVX @Ri), port 2 issues the contents of the P2 special function register.				
PSEN	32	26	0	The Program Store Enable output is a control signal that enables the external program memory to the bus during external fetch operations. It is activated every six oscillator periodes except during external data memory accesses. Remains high during internal program execution.				
RESET	10	4	1	RESET A high level on this pin for two machine cycles while the oscillator is running resets the device. An internal resistor to $V_{\rm SS}$ permits power-on reset using only an external capacitor to $V_{\rm CC}$.				

Table 3 Pin Definitions and Functions (cont'd)

Symbol	Pin Number		I/O*)	Function					
	P-LCC- 44	P-MQFP- 44							
ALE	33	27	0	The Address Latch Enableoutput is used for latching the low-byte of the address intexternal memory during normal operation. It is activatedevery six oscillator periodes except during an externaldata memory access.If no external memory is used, the ALE signal generatiocan be inhibited, reducing system RFI, by clearingregister bit EALE in the SYSCON register.External Access Enable					
ĒĀ	35	29	1	$\begin{array}{ccc} \mbox{When held at high level, instructions are fetched from the internal ROM when the PC is less than the size of the internal ROM : C511 0A00_H C511A 1000_H C513 2000_H C513A/A-H 3000_H C513A-2R 4000_H \\ \end{array}$					
P0.0-P0.7	43-36	37-30	I/O	 instructions from external program memory. Port 0 is an 8-bit open-drain bidirectional I/O port. Port 0 pins that have 1s written to them float, and in that state can be used as high-impendance inputs. Port 0 is also the multiplexed low-order address and data bus during accesses to external program or data memory. In this application it uses strong internal pullup transistors when issuing 1s. External pullup resistors are required during 					
V _{SS}	22	16	_	Circuit ground potential					
	44	38	_	Power Supply terminal for all operating modes					
N.C.	1, 12, 23, 34	6, 17, 28, 39	-	Power Supply terminal for all operating modes No connection, do not connect externally					

SIEMENS

Figure 4 C513A-H Logic Symbol in Programming Mode

Figure 5 C513A-H Pin Configuration in Programming Mode (P-LCC-44)

Table 4 Pin Definitions and Functions in Programming Mode (C513A-H only)

Symbol	Pin Number	I/O*)	Function
	P-LCC-44		
PRES	15	I	Programming Interface Reset A high level on this input resets the programming interface and its registers to their initial state.
AD0 - AD7	43 - 36	I/O	Bidirectional Address/Data Bus AD0-7 is used to transfer data to and from the registers of the programming interface and to read the data of the memory field during EEPROM verification.
PALE	16	I	Programming Address Latch Enable This input is used to latch address information at AD0-7. The trailing edge of PALE is used to latch the register addresses. Each read or write access in programming mode must be initiated by a PALE high pulse.
PRD	18	I	Programming Read Control A low level at this pin (and PCS=low) enables the AD0-7 buffers for reading of the data or control registers of the programming interface.
PWR	19	I	Programming Write Control A low level at this pin (and PCS=low) causes the data at AD0- 7 to be written into the data or control registers of the programming interface.
PCS	17	I	Programming Chip Select A low level at this pin enables the access to the registers of the programming interface. If PCS is active, either PRD or PWR control whether data is read or written into the registers. PCS should be always deactivated between subsequent accesses to the programming interface.
XTAL2	20	_	XTAL2 Output of the inverting oscillator amplifier.
XTAL1	21	-	XTAL1 Input to the inverting oscillator amplifier and input to the internal clock generator circuits. To drive the device from an external clock source, XTAL1 should be driven, while XTAL2 is left unconnected. During the device programming a clock must be always supplied.

Table 4 Pin Definitions and Functions in Programming Mode (C513A-H only) (cont'd)

Symbol	Pin Number	I/O*)	Function						
	P-LCC-44								
PMS0 PMS1 PMS2 PMS3	35 33 32 10	I	mode. In normal mod	put the C513A-H le the programmir /n in the table bel	into the program-ming ng mode select pins have ow. PMS0-3 must be se able below.				
			Normal Mode Pin Names	Progr. Mode Pin Names	Required Logic Level				
			ĒĀ	PMS0	0				
			ALE	PMS1	1				
			PSEN	PMS2	0				
			RESET	PMS3	1				
V _{SS}	22	-	Circuit ground pote	ential					
V _{CC}	44	-	Power supply terminal for all operating modes						
N.C.	1-9, 11-14, 23-31, 34	-	No connection These pins must not be connected.						

Functional Description

The C511/C513 microcontrollers are fully compatible to the standard 8051/80C52 and C500 microcontroller family. While maintaining all architectural and operational characteristics of the 80C52/C500 the C511/C513 incorporates enhancements such as additional internal XRAM and a second (synchronous) serial interface unit.

Figure 6 shows a block diagram of the C511/C513 microcontroller family.

Block Diagram of the C511/C513 Units

CPU

The C511/C513 are efficient both as a controller and as an arithmetic processor. It has extensive facilities for binary and BCD arithmetic and for bit-handling capabilities. Efficient use of program memory results from an instruction set consisting of 44 % one-byte, 41 % two-byte, and 15 % three-byte instructions. With a 12 MHz crystal, 58 % of the instructions execute in 1 μ s.

Special Function Registers

All registers except the program counter and the four general purpose register banks reside in the special function register area.

The 34 special function registers (SFR) include pointers and registers that provide an interface between the CPU and the other on-chip peripherals. There are also 128 directly addressable bits within the SFR area.

All SFRs are listed in **table 5** and **table 6**. In **table 5** they are organized in groups which refer to the functional blocks of the C511/C513. **Table 6** illustrates the contents of the SFRs, e.g. the bits of the SFRs, in numeric order of their addresses.

Table 5 **SFRs - Functional Blocks**

Block	Symbol	Name	Address	Contents after Reset
CPU	ACC B DPH DPL PSW SP SYSCON	Accumulator B-Register Data Pointer, High Byte Data Pointer, Low Byte Program Status Word Stack Pointer System Control Reg. C511/C511A/C513 C513A/C513A-H	E0H ¹⁾ F0H ¹⁾ 83H 82H D0H ¹⁾ 81H B1H B1H	00H 00H 00H 00H 00H 07H 101X0XXXB ³⁾ 101X0XX0B ³⁾
Interrupt System	IE IP	Interrupt Enable Register Interrupt Priority Register	A8 _H ¹⁾ B8 _H ¹⁾	00 _H X0000000 _B ³⁾
Ports	P0 P1 P2 P3	Port 0 Port 1 Port 2 Port 3	80 _H ¹⁾ 90 _H ¹⁾ A0 _H ¹⁾ B0 _H ¹⁾	FF _H FF _H FF _H FF _H
SSC	SSCCON STB SRB SCF SCIEN SSCMOD	SSC Control Register SSC Transmit Buffer SSC Receive Register SSC Flag Register SSC Interrupt Enable Register SSC Mode Test Register	E8_H ¹⁾ E9 _H EA _H F8_H ¹⁾ F9 _H EB _H	07 _H XX _H ³) XX _H ³) XXXXX00 _B ³ 00 _H
USART	PCON ²⁾ SBUF SCON	Power Control Register Serial Channel Buffer Register Serial Channel 1 Control Register	87 _H 99 _H 98 _H 1)	0XXX0000 _B ³⁾ XX _H ³) 00 _H
Timer 0 / Timer 1	TCON TMOD TL0 TL1 TH0 TH1	Timer Control Register Timer Mode Register Timer 0, Low Byte Timer 1, Low Byte Timer 0, High Byte Timer 1, High Byte	88 _H ¹⁾ 89 _H 8A _H 8B _H 8C _H 8D _H	00_H 00 _H 00 _H 00 _H 00 _H
Timer 2	T2CON T2MOD RC2L RC2H TL2 TH2	Timer 2 Control Register Timer 2 Mode Register Timer 2 Reload/Capture Register, Low Byte Timer 2 Reload/Capture Register, High Byte Timer 2 Low Byte Timer 2 High Byte	C8_H ¹⁾ C9 _H CA _H CB _H CC _H CD _H	00 _H XXXXXX0 _B ³⁾ 00 _H 00 _H 00 _H 00 _H
Power Save Mode	PCON ²⁾	Power Control Register	87 _H	0XXX0000 _B ³⁾

Bit-addressable special function registers
 This special function register is listed repeatedly since some bits of it also belong to other functional blocks.

³⁾ X means that the value is indeterminate and the location is reserved

Table 6Contents of the SFRs, SFRs in Numeric Order of their Addresses

Addr	Register	Content after	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Reset 1)								
80 _H	P0	FFH	.7	.6	.5	.4	.3	.2	.1	.0
81 _H	SP	07 _H	.7	.6	.5	.4	.3	.2	.1	.0
82 _H	DPL	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
83 _H	DPH	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
87 _H	PCON	0XXX- 0000 _B	SMOD	-	-	-	GF1	GF0	PDE	IDLE
⁸⁸ H	TCON	00H	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0
⁸⁹ H	TMOD	00 _H	GATE	C/T	M1	M0	GATE	C/T	M1	M0
8AH	TL0	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
8BH	TL1	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
8CH	TH0	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
8DH	TH1	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
90 _H	P1	FFH	-	-	SLS	STO	SRI	SCLK	T2EX	T2
98 _H	SCON	00 _H	SM0	SM1	SM2	REN	TB8	RB8	TI	RI
99 _H	SBUF	ХХН	.7	.6	.5	.4	.3	.2	.1	.0
A0 _H	P2	FFH	.7	.6	.5	.4	.3	.2	.1	.0
A8 _H	IE	00 _H	EAL	ESSC	ET2	ES0	ET1	EX1	ET0	EX0
B0 _H	P3	FFH	RD	WR	T1	Т0	INT1	INT0	TxD0	RxD0
B1 _H	SYSCON	2)	1	0	EALE	-	0	-	-	XMAP ²⁾
B8H	IP	X000- 0000 _B	-	PSSC	PT2	PS	PT1	PX1	PT0	PX0
C8 _H	T2CON	00H	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2	CP/ RL2
C9H	T2MOD	xxxx- xxx0 _B	-	_	-	-	-	-	_	DCEN
CAH	RC2L	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
СВН	RC2H	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
CCH	TL2	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
CDH	TH2	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
D0 _H	PSW	00 _H	CY	AC	F0	RS1	RS0	OV	F1	Р
E0H	ACC	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
E8 _H	SSCCON	07 _H	SCEN	TEN	MSTR	CPOL	CPHA	BRS2	BRS1	BRS0
E9H	STB	хх _Н	.7	.6	.5	.4	.3	.2	.1	.0
EAH	SRB	хх _Н	.7	.6	.5	.4	.3	.2	.1	.0
EBH	SSCMOD	00 _H ³⁾	0	0	0	0	0	0	0	0
F0 _H	В	00 _H	.7	.6	.5	.4	.3	.2	.1	.0

Table 6Contents of the SFRs, SFRs in Numeric Order of their Addresses (cont'd)

Addr	Register	Content after Reset ¹⁾	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
F8 _H	SCF	XXXX- XX00B	-	_	_	-	_	_	WCOL	тс
F9 _H	SCIEN	xxxx- xx00 _B	-	_	-	-	_	_	WCEN	TCEN

¹⁾ X means that the value is indeterminate and the location is reserved.

²⁾ The availability of the XMAP bit and the reset value of SYSCON depends on the specific microcontroller : C511/C511A/C513 : 101X0XXX_B - bit XMAP is not available

³⁾ This register ist only used for test purposes and must not be written. Otherwise unpredictable results may occur.

Shaded registers are bit-addressable special function registers.

Timer/ Counter 0 and 1

Timer/Counter 0 and 1 can be used in four operating modes as listed in table 7:

Table 7

Timer/Counter 0 and 1 operating modes

Mode	Description		TMOD				Input Clock		
		Gate	C/T	M1	MO	internal	external (max)		
0	8-bit timer/counter with a divide-by-32 prescaler	Х	Х	0	0	$f_{\rm OSC}/_{12 \times 32}$	$f_{\rm OSC}/_{24 \times 32}$		
1	16-bit timer/counter	Х	Х	0	1	$f_{\rm OSC}/_{12}$	fosc/24		
2	8-bit timer/counter with 8-bit auto-reload	Х	Х	1	0	$f_{\rm OSC}/_{12}$	fosc/24		
3	Timer/counter 0 used as one 8-bit timer/counter and one 8-bit timer Timer 1 stops	X	Х	1	1	fosc/12	fosc/24		

In "timer" function (C/ \overline{T} = '0') the register is incremented every machine cycle. Therefore the count rate is $f_{OSC}/12$.

In "counter" function the register is incremented in response to a 1-to-0 transition at its corresponding external input pin (P3.4/T0, P3.5/T1). Since it takes two machine cycles to detect a falling edge the max. count rate is $f_{OSC}/24$. External inputs $\overline{INT0}$ and $\overline{INT1}$ (P3.2, P3.3) can be programmed to function as a gate to facilitate pulse width measurements. **Figure 7** illustrates the input clock logic.

Figure 7 Timer/Counter 0 and 1 Input Clock Logic

Timer / Counter 2 (not available in the C511/C511A)

Timer 2 is a 16-bit Timer/Counter with up/down count feature. It can operate either as timer or as an event counter which is selected by bit $C/\overline{T2}$ (T2CON.1). It has three operating modes as shown in **table 8**.

Table 8

Timer/Counter 2 Operating Modes

	T	2CON		T2MOD	T2CON			Input	Clock
Mode	R×CLK or T×CLK	CP/ RL2	TR2	DCEN	EXEN	P1.1/ T2EX	Remarks	internal	external (P1.0/T2)
16-bit Auto-	0	0	1	0	0	Х	reload upon overflow		
reload	0	0	1	0	1	\downarrow	reload trigger (falling edge)	<i>f</i> _{osc} /12	max f _{osc} /24
	0	0	1	1	Х	0	Down counting		
	0	0	1	1	Х	1	Up counting		
16-bit Cap-	0	1	1	Х	0	Х	16-bit Timer/ Counter (only		
ture	0	1	1	Х	1	\downarrow	up-counting) capture TH2, TL2 \rightarrow RC2H, RC2L	f _{osc} /12	max f _{osc} /24
Baud Rate Gene-	1	Х	1	Х	0	X	no overflow interrupt request (TF2)	f /2	max
rator	1	Х	1	Х	1	Ļ	extra external interrupt ("Timer 2")	f _{osc} /2	f _{osc} /24
off	Х	Х	0	Х	Х	Х	Timer 2 stops	-	_

Note: $\downarrow = \neg$ falling edge

Semiconductor Group

Serial Interface (USART, not available in the C511/C511A)

The serial port is full duplex and can operate in four modes (one synchronous mode, three asynchronous modes) as illustrated in **table 9**. Figure 8 illustrates the block diagram of Baudrate generation for the serial interface.

Table 9 USART Operating Modes

Mode	SCON		Baudrate	Description
wode	SM0	SM1		
0	0	0	f _{osc} /12	Serial data enters and exits through R×D. T×D outputs the shift clock. 8-bit are transmitted/received (LSB first)
1	0	1	Timer 1/2 overflow rate	8-bit UART 10 bits are transmitted (through T×D) or received (R×D)
2	1	0	$f_{\rm OSC}/32$ or $f_{\rm OSC}/64$	9-bit UART 11 bits are transmitted (T×D) or received (R×D)
3	1	1	Timer 1/2 overflow rate	9-bit UART Like mode 2 except the variable baud rate

Figure 8 Block Diagram of Baud Rate Generation for the Serial Interface

The possible baudrates can be calculated using the formulas given in table 10.

Table 10 Baudrates Selection

Baud rate derived from	Interface Mode	Baudrate			
Oscillator	0 2	$f_{ m OSC}$ /12 (2 ^{SMOD} $ imes$ $f_{ m OSC}$)/64			
Timer 1 (16-bit timer) (8-bit timer with 8-bit autoreload)	1,3 1,3	$\begin{array}{c} (2^{\text{SMOD}} \times \text{timer 1 overflow rate})/32 \\ (2^{\text{SMOD}} \times f_{\text{OSC}})/(32 \times 12 \times (256\text{-TH1})) \end{array}$			
Timer 2	1,3	$f_{\rm OSC}/(32 \times (65536-(RC2H, RC2L)))$			

Synchronous Serial Channel (SSC)

The C511/C513 microcontrollers provide a Synchronous Serial Channel unit, the SSC. This interface is compatible to the popular SPI serial bus interface. It can be used for simple I/O expansion via shift registers, for connection of a variety of peripheral components, such as A/D converters, EEPROMs etc., or for allowing several microcontrollers to be interconnected in a master/slave structure. It supports full-duplex or half-duplex operation and can run in a master or a slave mode. **Figure 9** shows the block diagram of the SSC.

Additional On-Chip XRAM (not available in the C511/C511A/C513)

The C513A/C513A-H contain another 256 byte of on-chip RAM additional to the 256 byte internal RAM. This RAM is called XRAM ('e**X**tended **RAM**').

The additional on-chip XRAM is logically located in the external data memory range from address $FF00_H$ to $FFFF_H$. The contents of the XRAM are not affected by a reset. After power up the content is undefined, while it remains unchanged during and after reset as long as the power supply is not turned off. The XRAM is controlled by SFR SYSCON as shown in **table 11**.

Table 11 Control of the XRAM

SFR SYSCON Bit XMAP	Description
0	Reset value. Access to XRAM is disabled.
1	XRAM enabled. The signals \overline{RD} and \overline{WR} are not activated during MOVX accesses in the XRAM address range.

The XRAM is accessed as external data memory. Therefore, MOVX instruction types must be used for accessing the XRAM. A general overview gives **table 12**.

Table 12Accessing the XRAM

Instruction using	Instruction	Remarks
DPTR (16-bit addr.)	MOVX A @DPTR MOVX @DPTR,A	Normally the use of these instructions would use a physically external memory. However, in the C513A/ C513A-H the XRAM is accessed if it is enabled by bit XMAP and the 16-bit address (DPTR) is within the XRAM address range FF00 _H - FFFF _H .
R0/R1 (8-bit addr.)	MOVX A, @Ri MOVX @Ri,A	If XRAM is enabled in the C513A/C513A-H, MOVX instructions using Ri will always access the internal XRAM. External data memory cycles will not be generated in this case. If the XRAM is disabled, MOVX instructions using Ri will generate normal external data memory cycles.

Interrupt System

The C511/C513 provide 7 interrupt sources with two priority levels. **Figure 10** gives a general overview of the interrupt sources and illustrates the request and control flags.

Figure 10 Interrupt Request Sources

Table 13Interrupt Sources and their Corresponding Interrupt Vectors

Source (Request Flags)	Vector	Vector Address		
IEO	External interrupt 0	0003 _H		
TF0	Timer 0 interrupt	000BH		
IE1	External interrupt 1	0013 _H		
TF1	Timer 1 interrupt	001BH		
RI + TI	USART serial port interrupt, (C513/C513A/C513A-H only)	0023 _H		
TF2 + EXF2	Timer 2 interrupt			
SSCI	Synchronous serial channel interrupt (SSC)	002B _H 0043 _H		

A low-priority interrupt can itself be interrupted by a high-priority interrupt, but not by another lowpriority interrupt. A high-priority interrupt cannot be interrupted by any other interrupt source.

If two requests of different priority level are received simultaneously, the request of higher priority is serviced. If requests of the same priority are received simultaneously, an internal polling sequence determines which request is serviced. Thus within each priority level there is a second priority structure determined by the polling sequence as shown in **table 14**.

Table 14Priority-within-Level Structure

Interrupt Source		Priority
External Interrupt 0,	IE0	High
Synchronous Serial Channe	I SSC	
Timer 0 Interrupt,	TF0	
External Interrupt 1,	IE1	\downarrow
Timer 1 Interrupt,	TF1	
Universal Serial Channel,	RI or TI	
Timer 2 Interrupt,	TF2 or EXF2	Low

Power Saving Modes

Two power down modes are available, the idle mode and the power down mode. In the idle mode only the CPU will be deactivated while in the power down mode the on-chip oscillator is stopped.

The bits PDE and IDLE select the power down mode or the idle mode, respectively. If the power down mode and the idle mode are set at the same time, power down takes precedence. **Table 15** gives a general overview of the power saving modes.

Table 15Entering and leaving the power saving modes

Mode	Entering Example	Leaving by	Remarks
Idle mode	ORL PCON, #01H	 enabled interrupt Hardware Reset 	CPU is gated off CPU status registers maintain their data. Peripherals are active
Power Down Mode	ORL PCON, #02H	Hardware Reset	Oscillators are stopped. Contents of on-chip RAM and SFR's are maintained (leaving power down mode means redefinition of SFR's contents)

In the power down mode of operation, $V_{\rm CC}$ can be reduced to minimize power consumption. It must be ensured, however, that $V_{\rm CC}$ is not reduced before the power down mode is invoked, and that $V_{\rm CC}$ is restored to its normal operating level, before the power down mode is terminated. The reset signal that terminates the power down mode also restarts the oscillator. The reset should not be activated before $V_{\rm CC}$ is restored to its normal operating level and must be held active long enough to allow the oscillator to restart and stabilize (similar to power-on reset).

Absolute Maximum Ratings

Ambient temperature under bias (T_A) Storage temperature (T_{ST})	
Voltage on $V_{\rm CC}$ pins with respect to ground ($V_{\rm SS}$)	
Input current on any pin during overload condition Absolute sum of all input currents during overload condition.	
Power dissipation	TBD

Note:

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage of the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for longer periods may affect device reliability. During overload conditions ($V_{IN} > V_{CC}$ or $V_{IN} < V_{SS}$) the Voltage on V_{cc} pins with respect to ground (V_{SS}) must not exceed the values defined by the absolute maximum ratings.

DC Characteristics

 $V_{\rm CC} = 5 \text{ V} + 10 \text{ \%}, -15 \text{ \%}; V_{\rm SS} = 0 \text{ V};$ $T_{\rm A} = 0 \text{ to } + 70 \text{ °C}$

Parameter	Symbol	Limi	t Values	Unit	Test Condition	
		min.	max.			
Input low voltage (except EA, RESET)	V _{IL}	- 0.5	0.2 V _{cc} - 0.1	V	_	
Input low voltage (EA)	V_{IL1}	- 0.5	0.2 V _{CC} - 0.3	V	_	
Input low voltage (RESET)	V _{IL2}	- 0.5	0.2 V _{cc} + 0.1	V	-	
Input high voltage (except EA, RESET, XTAL1)	V _{IH}	0.2 V _{CC} + 0.9	V _{CC} + 0.5	V	-	
Input high voltage to XTAL1	$V_{\rm IH1}$	0.7 V _{cc}	V _{cc} + 0.5	V	_	
Input high voltage to \overline{EA} , RESET	V _{IH2}	0.6 V _{cc}	V _{cc} + 0.5	V	-	
Output low voltage Ports 1, 2, 3 (except P1.2, P1.4) Port 0, ALE, PSEN P1.2 / P1.4 pull-down transistor resistance	$V_{ m OL}$ $V_{ m OL1}$ $R_{ m DSon}$		0.45 0.45 120	V V Ω	$I_{\rm OL}$ = 1.6 mA ¹⁾ $I_{\rm OL}$ = 3.2 mA ¹⁾ $V_{\rm OL}$ = 0.45 V	
Output high voltage Ports 1, 2, 3	V _{OH}	2.4 0.9 V _{cc}	-	VV	I _{он} = – 80 μA I _{он} = – 10 μA	
Port 0 in ext. bus mode, ALE, PSEN P1.2 / P1.4 pull-up transistor resistance	$V_{ m OH1}$ $R_{ m DSon}$	2.4 0.9 V _{cc} -	- - 120	V V Ω	$I_{OH} = -800 \mu\text{A}$ $I_{OH} = -80 \mu\text{A}$ $V_{OH} = 0.9 V_{CC}$	
Logic 0 input current (Ports 1, 2, 3)	I _{IL}	- 10	- 50	μA	V _{IN} = 0.45 V	
Logical 1-to-0 transition current (Ports 1, 2, 3)	I _{TL}	- 65	- 650	μA	$V_{\rm IN} = 2 \ {\rm V}$	
Maximum output low current per pin (Ports 0, 1, 2, 3)	I _{OLM}	-	5	mA	$V_{\rm OL} \leq 1 \ { m V}$	
Maximum output low current per port	I _{PL}	-	30	mA	-	
Input leakage current Port 0 (if EA=0), EA, P1.2, P1.3, P1.5 as SSC inputs	I _{LI}	_	± 1	μA	$0.45 < V_{\rm IN} < V_{\rm CC}$	
Pin capacitance 7)	C _{IO}	-	10	pF	$f_{\rm C}$ = 1 MHz, $T_{\rm A}$ = 25 °C	

DC Characteristics (cont'd)

 $V_{\rm CC} = 5 \text{ V} + 10 \text{ \%}, -15 \text{ \%}; V_{\rm SS} = 0 \text{ V};$ $T_{\rm A} = 0 \text{ to } + 70 \text{ °C}$

Parameter	Symbol	mbol Limit Values		Unit	Test Condition
		typ. ⁸⁾	max.		
Power supply current:					
C511/C511A/C513/C513A					
Active mode, 12 MHz ⁶⁾	I _{CC}	7	9.5	mA	$V_{\rm CC} = 5 \rm V,^{4)}$
Idle mode, 12 MHz ⁶⁾		3.5	4.5	mA	$V_{\rm CC} = 5 \rm V,^{5)}$
Power Down Mode	I_{PD}	TBD	50	μA	$V_{\rm CC} = 2 \dots 5.5 {\rm V},^{3)}$
С513А-Н					
Active mode, 12 MHz ⁶⁾	I _{cc}	16	TBD	mA	$V_{\rm CC} = 5 \rm V,^{4)}$
Idle mode, 12 MHz ⁶⁾	I _{CC}	6	TBD	mA	$V_{\rm CC} = 5 \rm V,^{5)}$
Power Down Mode	I_{PD}	TBD	50	μA	$V_{\rm CC} = 2 \dots 5.5 {\rm V}^{3}$

Notes:

- ¹⁾ Capacitive loading on ports 0 and 2 may cause spurious noise pulses to be superimposed on the V_{OL} of ALE and port 3. The noise is due to external bus capacitance discharging into the port 0 and port 2 pins when these pins make 1-to-0 transitions during bus operation. In the worst case (capacitive loading > 100 pF), the noise pulse on ALE line may exceed 0.8 V. In such cases it may be desirable to qualify ALE with a schmitt-trigger, or use an address latch with a schmitt-trigger strobe input.
- ²⁾ Capacitive loading on ports 0 and 2 may cause the V_{OH} on ALE and \overline{PSEN} to momentarily fall bellow the 0.9 V_{CC} specification when the address lines are stabilizing.
- ³⁾ I_{PD} (Power Down Mode) is measured under following conditions: $\overline{EA} = Port0 = V_{CC}$; RESET = V_{SS} ; XTAL2 = N.C.; XTAL1 = V_{CC} ; all other pins are disconnected.
- ⁴⁾ I_{CC} (active mode) is measured with: XTAL1 driven with t_{CLCH}, t_{CHCL} = 5 ns, V_{IL} = V_{SS} + 0.5 V, V_{IH} = V_{CC} - 0.5 V; XTAL2 = N.C.; EA = Port0 = RESET = V_{CC}; all other pins are disconnected. I_{CC} would be slightly higher if a crystal oscillator is used (appr. 1 mA).
- ⁵⁾ I_{CC} (Idle mode) is measured with all output pins disconnected and with all peripherals disabled; XTAL1 driven with t_{CLCH} , $t_{CHCL} = 5$ ns, $V_{IL} = V_{SS} + 0.5$ V, $V_{IH} = V_{CC} - 0.5$ V; XTAL2 = N.C.; RESET = $\overline{EA} = V_{SS}$; Port0 = V_{CC} ; all other pins are disconnected;

6)	$I_{\rm CC Max}$ at other frequencies is given by:						
	C511/C511A/C513/C513A :	Active mode:	TBD				
		Idle mode:	TBD				
	C513A-H :	Active mode:	TBD				
		Idle mode:	TBD				
		· · · · · · · · · · · · · · · · · · ·	7 . 1				

where f_{OSC} is the oscillator frequency in MHz. I_{CC} values are given in mA and measured at V_{CC} = 5 V.

- ⁷⁾ This parameter is periodically sampled and not 100% tested.
- ⁸⁾ The typical I_{CC} values are periodically measured at T_{A} = +25 °C but not 100% tested.

AC Characteristics (applies to all C511/513 Family Microcontrollers)

 $V_{\rm CC}$ = 5 V + 10 %, - 15 %; $V_{\rm SS}$ = 0 V $T_{\rm A}$ = 0 °C to + 70 °C

(C_{L} for port 0, ALE and \overline{PSEN} outputs = 100 pF; C_{L} for all other outputs = 80 pF)

Program Memory Characteristics

Parameter	Symbol	Limit Values				Unit
		12 MHz Clock		Variable Clock 1/t _{CLCL} = 3.5 MHz to 12 MHz		
		min.	max.	min.	max.	
ALE pulse width	t _{LHLL}	127	-	$2t_{CLCL} - 40$	-	ns
Address setup to ALE	t _{AVLL}	43	-	$t_{\rm CLCL} - 40$	-	ns
Address hold after ALE	t _{LLAX}	60	-	$t_{\rm CLCL} - 23$	-	ns
ALE low to valid instr in	t _{LLIV}	-	233	-	$4t_{CLCL} - 100$	ns
ALE to PSEN	t _{LLPL}	58	-	$t_{\rm CLCL} - 25$	-	ns
PSEN pulse width	t _{PLPH}	215	-	$3t_{CLCL} - 35$	-	ns
PSEN to valid instr in	t _{PLIV}	-	150	-	$3t_{CLCL} - 100$	ns
Input instruction hold after PSEN	t _{PXIX}	0	-	0	-	ns
Input instruction float after PSEN	$t_{PXIZ}^{*)}$	-	63	-	$t_{\rm CLCL} - 20$	ns
Address valid after PSEN	t _{PXAV} *)	75	-	$t_{\rm CLCL} - 8$	-	ns
Address to valid instr in	<i>t</i> _{AVIV}	-	302	-	5 <i>t</i> _{CLCL} – 115	ns
Address float to PSEN	t _{AZPL}	0	_	0	_	ns

*) Interfacing the C511/513 microcontrollers to devices with float times up to 75 ns is permissible. This limited bus contention will not cause any damage to port 0 drivers.

External Data Memory Characteristics

Parameter	Symbol			Limit Values		Unit
		12 MHz Clock		Variable Clock 1/t _{CLCL} = 3.5 MHz to 12 MHz		
		min.	max.	min.	max.	
RD pulse width	t _{RLRH}	400	-	6 <i>t</i> _{CLCL} – 100	-	ns
WR pulse width	t _{wLWH}	400	-	6 <i>t</i> _{CLCL} – 100	-	ns
Address hold after ALE	t _{LLAX2}	132	-	2t _{CLCL} – 35	-	ns
RD to valid data in	t _{RLDV}	_	252	-	$5t_{CLCL} - 165$	ns
Data hold after RD	t _{RHDX}	0	-	0	-	ns
Data float after RD	t _{RHDZ}	-	97	-	$2t_{\text{CLCL}} - 70$	ns
ALE to valid data in	t _{LLDV}	-	517	-	8 <i>t</i> _{CLCL} – 150	ns
Address to valid data in	<i>t</i> _{AVDV}	_	585	-	9 <i>t</i> _{CLCL} – 165	ns
ALE to \overline{WR} or \overline{RD}	t _{LLWL}	200	300	$3t_{\text{CLCL}} - 50$	$3t_{CLCL}$ + 50	ns
Address valid to \overline{WR} or \overline{RD}	<i>t</i> _{AVWL}	203	-	$4t_{CLCL} - 130$	-	ns
\overline{WR} or \overline{RD} high to ALE high	t _{WHLH}	43	123	$t_{\rm CLCL} - 40$	$t_{\text{CLCL}} + 40$	ns
Data valid to WR transition	t _{QVWX}	33	-	$t_{\rm CLCL} - 50$	-	ns
Data setup before WR	t _{QVWH}	433	-	7 <i>t</i> _{CLCL} – 150	-	ns
Data hold after WR	t _{WHQX}	33	-	$t_{\rm CLCL} - 50$	-	ns
Address float after RD	t _{RLAZ}	-	0	-	0	ns

SSC Interface Characteristics

Parameter	Symbol	Limit Values 12 MHz Clock		Unit	
		min.	max.		
Clock Cycle Time : Master Mode	t _{SCLK}	666	_	ns	
Slave Mode	t _{SCLK}	600	-	ns	
Clock high time	t _{SCH}	250	_	ns	
Clock low time	t _{SCL}	250	_	ns	
Data output delay	t _D	_	100	ns	
Data output hold	t _{HO}	0	_	ns	
Data input setup	t _S	100	-	ns	
Data input hold	t _{HI}	100	-	ns	
TC bit set delay	t _{DTC}	_	16 <i>t</i> _{CLCL}	ns	

External Clock Characteristics

Parameter	Symbol		Limit Values	Unit	
		Freq	Variable Clock . = 3.5 MHz to 12 MHz		
		min.	max.		
Oscillator period	t _{CLCL}	83.3	285	ns	
High time	t _{CHCX}	20	$t_{\rm CLCL} - t_{\rm CLCX}$	ns	
Low time	t _{CLCX}	20	$t_{\rm CLCL} - t_{\rm CHCX}$	ns	
Rise time	t _{CLCH}	-	20	ns	
Fall time	t _{CHCL}	-	20	ns	

SIEMENS

Figure 13 Data Memory Write Cycle

Figure 14 SSC Timing

ROM Verification Characteristics (only ROM versions C511 / C511A / C513 / C513A)

Parameter	Symbol		Limit Values	Unit	
		min.	max.		
Address to valid data	<i>t</i> _{AVQV}	_	48t _{CLCL}	ns	
ENABLE to valid data	t _{ELQV}	_	48t _{CLCL}	ns	
Data float after ENABLE	t _{EHQZ}	0	48t _{CLCL}	ns	
Oscillator frequency	$1/t_{CLCL}$	4	6	MHz	

AC Characteristics of C513A-H Programming Interface

 $V_{\rm CC}$ = 5 V ± 10 %, $V_{\rm SS}$ = 0 V; $T_{\rm A}$ = +25 °C ± 10 °C; 1/tCLCL = 8 MHz

Parameter	Symbol		Limit Values	
		min.	max.	
ALE pulse width	t _{PLL}	60	-	ns
Address setup to ALE	t _{PAL}	20	-	ns
Address hold after ALE	t _{PLA}	20	-	ns
Address to valid data out	t _{PAD}	-	230	ns
PRD/PWR pulse width	t _{PCC}	250	-	ns
PRD to valid data out	t _{PRDV}	-	200	ns
Data hold after PWR	t _{PWDH}	0	-	ns
Data float after PRD	t _{PDZ}	-	40	ns
Chip select setup to ALE active	t _{PCS}	0	-	ns
Chip select hold after PRD/PWR inactive	t _{PCH}	0	-	ns
ALE to PWR or PRD	t _{PLC}	90	-	ns
PWR or PRD high to ALE high	t _{PCL}	20	-	ns
Data setup before PWR rising edge	t _{PWDS}	50	-	ns
Data hold after PWR rising edge	t _{PWDH}	0	-	ns
Data float after PCS	t _{PDF}	-	40	ns

SIEMENS

Figure 17 C513A-H Programming Interface Read Cycle

Figure 18 C513A-H Programming Interface Write Cycle

Reset Characteristics (C513A-H only)

Parameter	Symbol	Limit Values				Unit
		12 MHz Clock		Variable Clock 1/t _{CLCL} = 3.5 MHz to 12 MHz		
		min.	max.	min.	max.	
RESET pulse width	t _{RLRH}	10	-	10	-	ms

Figure 19 C513A-H Reset Pulse

Figure 20 AC Testing: Input, Output Waveforms

Figure 21 AC Testing: Float Waveforms

Figure 22 Recommended Oscillator Circuits for Crystal Oscillator