

Microcomputer Components

16-Bit CMOS Single-Chip Microcontroller 3 V Operation

Specification 01.96 Advance Information

C165 Revision History:		01.96 3 Volt Specification
Previous I	Releases:	07.95
Page	Subjects (changes since last revision)
2	SAF-C165	L25M added.
5 - 15	V _{CC} range	changed.
6	V _{OH} condit	ions changed, I_{PD} reduced, R_{RST} changed to I_{RST} .
10	t ₃₈ , t ₃₉ upd	ated.
13	t ₃₈ , t ₃₉ upd	ated.
14	t ₃₃ updated	ł.

Edition 01.96

Published by Siemens AG, Bereich Halbleiter, Marketing-Kommunikation Balanstraße 73, D-81541 München.

© Siemens AG 1996. All Rights Reserved.

As far as patents or other rights of third parties are concerned, liability is only assumed for components per se, not for applications, processes and circuits implemented within components or assemblies.

The information describes the type of component and shall not be considered as assured characteristics.

Terms of delivery and rights to change design reserved.

For questions on technology, delivery and prices please contact the Offices of Siemens Aktiengesellschaft in Germany or the Siemens Companies and Representatives worldwide.

Due to technical requirements components may contain dangerous substances. For information on the type in question please contact your nearest Siemens Office, Components Group.

Siemens AG is an approved CECC manufacturer.

SIEMENS

C16x-Family of High-Performance CMOS 16-Bit Microcontrollers

C165/3V

Advance Information

C165 16-Bit Microcontroller

Additional Specification for Operation at 3 V Supply

- High Performance 16-bit CPU with 4-Stage Pipeline
- 143 ns Instruction Cycle Time at 14 MHz CPU Clock
- 715 ns Multiplication (16 \times 16 bits), 1.43 μs Division (32 / 16 bit)
- Enhanced Boolean Bit Manipulation Facilities
- Additional Instructions to Support HLL and Operating Systems
- Register-Based Design with Multiple Variable Register Banks
- Single-Cycle Context Switching Support
- Up to 16 MBytes Linear Address Space for Code and Data
- 2 KBytes On-Chip RAM
- 4 KBytes On-Chip ROM (RM types only)
- Programmable External Bus Characteristics for Different Address Ranges
- 8-Bit or 16-Bit External Data Bus
- Multiplexed or Demultiplexed External Address/Data Buses
- Five Programmable Chip-Select Signals
- Hold- and Hold-Acknowledge Bus Arbitration Support
- 1024 Bytes On-Chip Special Function Register Area
- Idle and Power Down Modes
- 8-Channel Interrupt-Driven Single-Cycle Data Transfer Facilities via Peripheral Event Controller (PEC)
- 16-Priority-Level Interrupt System with 28 Sources, Sample-Rate down to 72 ns
- Two Multi-Functional General Purpose Timer Units with 5 Timers
- Two Serial Channels (Synchronous/Asynchronous and High-Speed-Synchronous)
- Programmable Watchdog Timer
- Up to 77 General Purpose I/O Lines
- Supported by a Wealth of Development Tools like C-Compilers, Macro-Assembler Packages, Emulators, Evaluation Boards, HLL-Debuggers, Simulators, Logic Analyzer Disassemblers, Programming Boards
- On-Chip Bootstrap Loader
- 100-Pin MQFP Package (EIAJ)
- 100-Pin TQFP Package (Thin QFP)

This document describes specific items relevant for operation at 3 V.

For functional descriptions please refer to the standard C165 data sheet.

This document describes the SAB-C165-L25M, the SAB-C165-L25F, the SAB-C165-R25M, the SAB-C165-RF and the SAF-C165-L25M.

For simplicity all versions are referred to by the term C165 throughout this document.

Introduction

The C165's technology, originally a 5 V technology, allows to run the device at supply voltages down to 2.7 V. This addendum specifies the characteristics of the C165 when operated at 3 V. The input and output levels are still TTL compatible, the power supply current is reduced. The timing characteristics, however, are effected by the reduced voltage differences between supply voltages and IO levels.

For this reason some timings are adjusted to the new circumstances and the operation at 3 V is limited to a CPU clock frequency of up to 14 MHz for the standard temperature range (0...70°C) and up to 12 MHz for the temperature range -40...85°C.

Туре	Ordering Code	Package	Function
SAB-C165-R25M	Q67121-D	P-MQFP-100-2	16-bit microcontroller with 2 KByte RAM and 4 KByte ROM Temperature range 0 to +70 ℃
SAB-C165-L25M	Q67121-C1005	P-MQFP-100-2	16-bit microcontroller with 2 KByte RAM Temperature range 0 to +70 ℃
SAF-C165-L25M	Q67123-C1007	P-MQFP-100-2	16-bit microcontroller with 2 KByte RAM Temperature range -40 to +85 ℃
SAB-C165-R25F	Q67121-D	P-TQFP-100-3	16-bit microcontroller with 2 KByte RAM and 4 KByte ROM Temperature range 0 to +70 ℃
SAB-C165-L25F	Q67121-C1004	P-TQFP-100-3	16-bit microcontroller with 2 KByte RAM Temperature range 0 to +70 ℃

Ordering Information:

Note: The ordering codes (Q67121-D...) for the Mask-ROM versions are defined for each product after verification of the respective ROM code.

Pin Configuration MQFP Package

(top view)

Figure 1

Pin Configuration TQFP Package

(top view)

Figure 2

Absolute Maximum Ratings

Ambient temperature under bias (T_A) :	
SAB-C165-L25M, SAB-C165-R25M, SAB-C165-L25F, SAB-C165-R25F	0 to +70 ℃
SAF-C165-L25M	40 to +85 ℃
Storage temperature (T_{ST})	− 65 to +150 °C
Voltage on $V_{\rm cc}$ pins with respect to ground ($V_{\rm ss}$)	–0.5 to +6.5 V
Voltage on any pin with respect to ground (V_{SS})	–0.5 to $V_{\rm CC}$ +0.5 V
Input current on any pin during overload condition	–10 to +10 mA
Absolute sum of all input currents during overload condition	100 mA
Power dissipation	1.5 W

Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During overload conditions (V_{IN} > V_{CC} or V_{IN} < V_{SS}) the voltage on pins with respect to ground (V_{SS}) must not exceed the values defined by the Absolute Maximum Ratings.

Parameter Interpretation

The parameters listed in the following partly represent the characteristics of the C165 and partly its demands on the system. To aid in interpreting the parameters right, when evaluating them for a design, they are marked in column "Symbol":

CC (Controller Characteristics):

The logic of the C165 will provide signals with the respective timing characteristics.

SR (**S**ystem **R**equirement):

The external system must provide signals with the respective timing characteristics to the C165.

DC Characteristics

 $\begin{array}{ll} V_{\rm CC} = 2.7 \ {\rm V} \ {\rm to} \ 3.6 \ {\rm V}; & V_{\rm SS} = 0 \ {\rm V} \\ T_{\rm A} = 0 \ {\rm to} \ +70 \ {\rm ^{\circ}C} & {\rm for} \ {\rm SAB-C165-L25M}, \ {\rm SAB-C165-R25F}, \ {\rm S$

Parameter	Sym	bol	Limit Values		Unit	Test Condition
			min.	max.		
Input low voltage	$V_{\rm IL}$	SR	- 0.5	0.8	V	-
Input high voltage (all except RSTIN and XTAL1)	V_{IH}	SR	2.0	V _{CC} + 0.5	V	-
Input high voltage RSTIN	$V_{\rm IH1}$	SR	0.6 V _{CC}	V _{cc} + 0.5	V	_
Input high voltage XTAL1	$V_{\rm IH2}$	SR	0.7 V _{CC}	V _{CC} + 0.5	V	-

Parameter	Symbol	Limit	Values	Unit	Test Condition
		min.	max.	1	
Output low voltage (PORT0, PORT1, Port 4, ALE, RD, WR, BHE, CLKOUT, RSTOUT)	V _{OL} CC	_	0.45	V	<i>I</i> _{OL} = 1.6 mA
Output low voltage (all other outputs)	V _{OL1} CC	_	0.45	V	<i>I</i> _{OL1} = 1.0 mA
Output high voltage (PORT0, PORT1, Port 4, ALE, RD, WR, BHE, CLKOUT, RSTOUT)	V _{OH} CC	0.9 V _{cc}	_	V	I _{OH} = - 500 μA
Output high voltage ¹⁾ (all other outputs)	V _{OH1} CC	0.9 V _{CC}	-	V V	I _{OH} = - 250 μA
Input leakage current (Port 5)	I _{OZ1} CC	-	±200	nA	$0.45 \mathrm{V} < V_{\mathrm{IN}} < V_{\mathrm{CC}}$
Input leakage current (all other)	I _{OZ2} CC	-	±500	nA	$0.45 \mathrm{V} < V_{\mathrm{IN}} < V_{\mathrm{CC}}$
RSTIN pullup current ²⁾	I _{RST} CC	5	40	μA	$V_{\rm CC}$ = 3 V, $V_{\rm IN}$ = 0.8 V
Read/Write inactive current ⁵⁾	I _{RWH} ³⁾	-	-10	μA	$V_{\rm OUT}$ = 2.4 V
Read/Write active current ⁵⁾	I _{RWL} ⁴⁾	-500	-	μΑ	$V_{\rm OUT} = V_{\rm OLmax}$
ALE inactive current ⁵⁾	I _{ALEL} 3)	-	20	μA	$V_{\rm OUT} = V_{\rm OLmax}$
ALE active current ⁵⁾	I _{ALEH} ⁴⁾	500	-	μA	$V_{\rm OUT}$ = 2.4 V
Port 6 inactive current ⁵⁾	I _{P6H} ³⁾	-	-10	μA	$V_{\rm OUT}$ = 2.4 V
Port 6 active current ⁵⁾	I _{P6L} ⁴⁾	-500	-	μA	$V_{\rm OUT} = V_{\rm OL1max}$
PORT0 configuration current ⁵⁾	I _{P0H} ³⁾	-	-5	μΑ	$V_{\rm IN}$ = 1.4 V
	I _{POL} ⁴⁾	-100	-	μA	$V_{\rm IN} = V_{\rm ILmax}$
XTAL1 input current		-	±20	μA	$0 V < V_{IN} < V_{CC}$
Pin capacitance ⁶⁾ (digital inputs/outputs)	C _{IO} CC	_	10	pF	f = 1 MHz $T_A = 25 \text{ °C}$
Power supply current	I _{CC}	-	10 + 1.5 * f _{CPU}	mA	$\overline{\text{RSTIN}} = V_{\text{IL2}}$ f _{CPU} in [MHz] ⁷
Idle mode supply current	I _{ID}	-	2 + 0.7 * f _{CPU}	mA	$\overline{\text{RSTIN}} = V_{\text{IH1}}$ f _{CPU} in [MHz] ⁷⁾
Power-down mode supply current	I _{PD}	-	30	μA	$V_{\rm CC} = V_{\rm CCmax}^{8)}$
	•	•			•

Notes

- 1) This specification is not valid for outputs which are switched to open drain mode. In this case the respective output will float and the voltage results from the external circuitry.
- ²⁾ The pullup device on the $\overline{\text{RSTIN}}$ input is a transistor rather than a real resistor. It is intended to drive current into an external capacitor in order to realize an automatic power on reset. After a short power shutdown the external capacitor may hold a low residual charge due to the nature of the pullup device. The test condition with $V_{\text{IN}} = 0.8$ V refers to this fact.
- ³⁾ The maximum current may be drawn while the respective signal line remains inactive.
- ⁴⁾ The minimum current must be drawn in order to drive the respective signal line active.
- ⁵⁾ This specification is only valid during Reset, or during Hold- or Adapt-mode. Port 6 pins are only affected, if they are used for CS output and the open drain function is not enabled.
- ⁶⁾ Not 100% tested, guaranteed by design characterization.
- ⁷⁾ The supply current is a function of the operating frequency. This dependency is illustrated in the figure below. These parameters are tested at V_{CCmax} and maximum CPU clock with all outputs disconnected and all inputs at V_{IL} or V_{IH}.
- ⁸⁾ This parameter is tested including leakage currents. All inputs (including pins configured as inputs) at 0 V to 0.1 V or at V_{CC} 0.1 V to V_{CC} , V_{REF} = 0 V, all outputs (including pins configured as outputs) disconnected.

Figure 3 Supply/Idle Current as a Function of Operating Frequency

AC Characteristics External Clock Drive XTAL1

 $V_{\rm CC}$ = 2.7 V to 3.6 V; $V_{\rm SS}$ = 0 V $T_{\rm A}$ = 0 to +70 °C for SAB-C165-L25M, SAB-C165-R25M, SAB-C165-L25F, SAB-C165-R25F

Parameter	Sym	bol	Max. CPU Clock = 14 MHz		Variable 1 / 2TCL =	Unit	
			min.	max.	min.	max.	
Oscillator period	t _{OSC}	SR	35.7	35.7	35.7	500	ns
High time	<i>t</i> ₁	SR	6 ¹⁾	_	6 ¹⁾	_	ns
Low time	<i>t</i> ₂	SR	6 ¹⁾	_	6 ¹⁾	_	ns
Rise time	<i>t</i> ₃	SR	-	5 ¹⁾	-	5 ¹⁾	ns
Fall time	<i>t</i> ₄	SR	-	5 ¹⁾	-	5 ¹⁾	ns

 $V_{\rm CC}$ = 2.7 V to 3.6 V; $V_{\rm SS}$ = 0 V $T_{\rm A}$ = -40 to +85 °C for SAF-C165-L25M

Parameter	Sym	bol	Max. CPU Clock = 12 MHz		Variable (1 / 2TCL =	Unit	
			min.	max.	min.	max.	
Oscillator period	t _{OSC}	SR	41.7	41.7	41.7	500	ns
High time	<i>t</i> ₁	SR	6 ¹⁾	_	6 ¹⁾	-	ns
Low time	<i>t</i> ₂	SR	6 ¹⁾	_	6 ¹⁾	-	ns
Rise time	t ₃	SR	-	5 ¹⁾	_	5 ¹⁾	ns
Fall time	t_4	SR	_	5 ¹⁾	-	5 ¹⁾	ns

 $^{\rm 1)}$ The clock input signal must reach the defined levels $V_{\rm IL}$ and $V_{\rm IH2}.$

Memory Cycle Variables

The timing tables below use three variables which are derived from the BUSCONx registers and represent the special characteristics of the programmed memory cycle. The following table describes, how these variables are to be computed.

Description	Symbol	Values
ALE Extension	t _A	TCL * <alectl> ¹⁾</alectl>
Memory Cycle Time Waitstates	t _C	2TCL * (15 - <mctc>)</mctc>
Memory Tristate Time	t _F	2TCL * (1 - <mttc>)</mttc>

The following notes apply to the next two timing tables

(Multiplexed Bus and Demultiplexed Bus):

¹⁾ RW-delay and t_A refer to the next following bus cycle.

 $\frac{2}{RD}$ Read data are latched with the same clock edge that triggers the address change and the rising RD edge. Therefore address changes before the end of RD have no impact on read cycles.

^{*)} The rising edges of \overline{CS} represent the worst case. The delay for falling edges is lower.

AC Characteristics Multiplexed Bus

$$\begin{split} V_{\rm CC} &= 2.7 \ \text{V to } 3.6 \ \text{V}; \ V_{\rm SS} = 0 \ \text{V} \\ T_{\rm A} &= 0 \ \text{to } +70 \ ^{\circ}\text{C} \qquad \text{for SAB-C165-L25M, SAB-C165-R25M, SAB-C165-L25F, SAB-C165-R25F} \\ T_{\rm A} &= -40 \ \text{to } +85 \ ^{\circ}\text{C} \qquad \text{for SAF-C165-L25M} \\ C_{\rm L} \ (\text{for PORT0, PORT1, Port 4, ALE, RD, WR, BHE, CLKOUT)} = 100 \ \text{pF} \\ C_{\rm L} \ (\text{for Port 6, CS}) &= 100 \ \text{pF} \\ \text{ALE cycle time} &= 6 \ \text{TCL} + 2t_{\rm A} + t_{\rm C} + t_{\rm F} \ (214.3/250 \ \text{ns at } 14/12 \ \text{MHz CPU clock without waitstates}) \end{split}$$

Parameter	Syr	nbol	= 1	CPU Clock 4 MHz o 70 °C)	1/2TCL=1	e CPU Clock 14 MHz, 070 °C 2 MHz, -4085°C	Unit
			min.	max.	min.	max.	
ALE high time	<i>t</i> ₅	CC	$16 + t_{A}$	-	TCL - 20 + <i>t</i> _A	-	ns
Address setup to ALE	t ₆	CC	$6 + t_A$	-	TCL - 30 + <i>t</i> _A	-	ns
Address hold after ALE	<i>t</i> ₇	CC	26 + t_{A}	-	TCL - 10 + <i>t</i> _A	_	ns

Parameter	Symbol		= 14 MHz		1/2TCL=11	CPU Clock 4 MHz, 070 °C 2 MHz, -4085°C	Unit
			min.	max.	min.	max.	
ALE falling edge to RD, WR (with RW-delay)	t ₈	CC	$26 + t_A$	-	TCL - 10 + <i>t</i> _A	-	ns
ALE falling edge to \overline{RD} , WR (no RW-delay)	t ₉	CC	$-10 + t_{A}$	-	$-10 + t_{A}$	-	ns
Address float after RD, WR (with RW-delay)	<i>t</i> ₁₀	CC	_	5	-	5	ns
Address float after RD, WR (no RW-delay)	<i>t</i> ₁₁	CC	_	41	-	TCL + 5	ns
RD, WR low time (with RW-delay)	<i>t</i> ₁₂	CC	51 + <i>t</i> _C	-	2TCL - 20 + <i>t</i> _C	-	ns
RD, WR low time (no RW-delay)	<i>t</i> ₁₃	СС	$87 + t_{\rm C}$	-	3TCL - 20 + <i>t</i> _C	-	ns
RD to valid data in (with RW-delay)	<i>t</i> ₁₄	SR	_	$41 + t_{\rm C}$	-	2TCL - 30 + <i>t</i> _C	ns
RD to valid data in (no RW-delay)	<i>t</i> ₁₅	SR	_	$77 + t_{\rm C}$	-	3TCL - 30 + <i>t</i> _C	ns
ALE low to valid data in	<i>t</i> ₁₆	SR	_	82 + t_{A} + t_{C}	-	3TCL - 25 + <i>t</i> _A + <i>t</i> _C	ns
Address to valid data in	<i>t</i> ₁₇	SR	_	98 + $2t_{A} + t_{C}$	-	4TCL - 45 + 2 t_{A} + t_{C}	ns
Data hold after RD rising edge	<i>t</i> ₁₈	SR	0	-	0	-	ns
Data float after RD	<i>t</i> ₁₉	SR	_	56 + <i>t</i> _F	_	2TCL - 15 + <i>t</i> _F	ns
Data valid to WR	<i>t</i> ₂₂	CC	$36 + t_{\rm C}$	-	2TCL - 35 + <i>t</i> _C	-	ns
Data hold after \overline{WR}	<i>t</i> ₂₃	CC	56 + <i>t</i> _F	-	2TCL - 15 + <i>t</i> _F	-	ns
$\frac{\text{ALE rising edge after }\overline{\text{RD}},}{\text{WR}}$	<i>t</i> ₂₅	CC	56 + <i>t</i> _F	-	2TCL - 15 + <i>t</i> _F	-	ns
Address hold after \overline{RD} , WR	<i>t</i> ₂₇	СС	56 + <i>t</i> _F	-	2TCL - 15 + <i>t</i> _F	-	ns
ALE falling edge to $\overline{\text{CS}}$	t ₃₈	СС	-5 - <i>t</i> _A	$20 - t_{\rm A}^{*)}$	-5 - <i>t</i> _A	$20 - t_{\rm A}^{*)}$	ns
CS low to Valid Data In	<i>t</i> ₃₉	SR	_	72 + $t_{\rm C}$ + $2t_{\rm A}$	-	3TCL - 35 + $t_{\rm C}$ +2 $t_{\rm A}$	ns

Parameter	Symbol	= 1	PU Clock 4 MHz 70 °C)	Variable 1/2TCL=114 1/2TCL=112	Unit	
		min.	max.	min.	max.	
$\overline{\text{CS}}$ hold after $\overline{\text{RD}}$, $\overline{\text{WR}}$	<i>t</i> ₄₀ CC	$\frac{1}{5}$ 87 + $t_{\rm F}$	-	3TCL - 20 + <i>t</i> _F	-	ns
ALE fall. edge to RdCS, WrCS (with RW delay)	<i>t</i> ₄₂ CC	$31 + t_A$	-	TCL - 5 + <i>t</i> _A	-	ns
ALE fall. edge to RdCS, WrCS (no RW delay)	<i>t</i> ₄₃ CC	$-5 + t_{A}$	-	-5 + <i>t</i> _A	-	ns
Address float after RdCS, WrCS (with RW delay)	<i>t</i> ₄₄ CC	; _	0	-	0	ns
Address float after RdCS, WrCS (no RW delay)	<i>t</i> ₄₅ CC	; _	36	-	TCL	ns
RdCS to Valid Data In (with RW delay)	t ₄₆ SR	_	$42 + t_{\rm C}$	-	2TCL - 30 + <i>t</i> _C	ns
RdCS to Valid Data In (no RW delay)	t ₄₇ SR	_	$77 + t_{\rm C}$	-	3TCL - 30 + <i>t</i> _C	ns
RdCS, WrCS Low Time (with RW delay)	<i>t</i> ₄₈ CC	$56 + t_{\rm C}$	-	2TCL - 15 + <i>t</i> _C	-	ns
RdCS, WrCS Low Time (no RW delay)	t ₄₉ CC	$\frac{1}{2}$ 92 + $t_{\rm C}$	-	3TCL - 15 + <i>t</i> _C	-	ns
Data valid to WrCS	<i>t</i> ₅₀ CC	$\frac{1}{2}$ 46 + $t_{\rm C}$	-	2TCL - 25 + <i>t</i> _C	-	ns
Data hold after RdCS	t ₅₁ SR	0	_	0	-	ns
Data float after RdCS	t ₅₂ SR	_	51 + <i>t</i> _F	_	2TCL - 20 + <i>t</i> _F	ns
Address hold after RdCS, WrCS	<i>t</i> ₅₄ CC	51 + <i>t</i> _F	-	2TCL - 20 + <i>t</i> _F	-	ns
Data hold after WrCS	<i>t</i> ₅₆ CC	$51 + t_{\rm F}$	-	2TCL - 20 + <i>t</i> _F	-	ns

AC Characteristics Demultiplexed Bus

 $V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}; V_{SS} = 0 \text{ V}$ $T_A = 0 \text{ to } +70 \text{ °C}$ for SAB-C165-L25M, SAB-C165-R25M, SAB-C165-L25F, SAB-C165-R25F $T_A = -40 \text{ to } +85 \text{ °C}$ for SAF-C165-L25M $C_L \text{ (for PORT0, PORT1, Port 4, ALE, RD, WR, BHE, CLKOUT)} = 100 \text{ pF}$

 $C_{\rm L}$ (for Port 6, $\overline{\rm CS}$) = 100 pF

ALE cycle time = 4 TCL + $2t_A$ + t_C + t_F (143/166.7 ns at 14/12 MHz CPU clock without waitstates)

Parameter	Symbol		= 1	PU Clock 4 MHz 70 °C)	Variable 1/2TCL=11 1/2TCL=112	Unit	
			min.	max.	min.	max.	
ALE high time	<i>t</i> ₅	СС	16 + <i>t</i> _A	-	TCL - 20 + <i>t</i> _A	_	ns
Address setup to ALE	t ₆	CC	$6 + t_A$	-	TCL - 30 + <i>t</i> _A	-	ns
ALE falling edge to RD, WR (with RW-delay)	t ₈	CC	$26 + t_A$	-	TCL - 10 + <i>t</i> _A	-	ns
ALE falling edge to \overline{RD} , WR (no RW-delay)	t ₉	CC	$-10 + t_{A}$	-	-10 + <i>t</i> _A	-	ns
RD, WR low time (with RW-delay)	<i>t</i> ₁₂	СС	51 + <i>t</i> _C	-	2TCL - 20 + <i>t</i> _C	-	ns
RD, WR low time (no RW-delay)	<i>t</i> ₁₃	СС	87 + $t_{\rm C}$	-	3TCL - 20 + <i>t</i> _C	-	ns
RD to valid data in (with RW-delay)	<i>t</i> ₁₄	SR	_	$41 + t_{\rm C}$	-	2TCL - 30 + <i>t</i> _C	ns
RD to valid data in (no RW-delay)	<i>t</i> ₁₅	SR	_	$77 + t_{\rm C}$	-	3TCL - 30 + <i>t</i> _C	ns
ALE low to valid data in	t ₁₆	SR	_	82 + $t_{\rm A}$ + $t_{\rm C}$	-	3TCL - 25 + $t_{A} + t_{C}$	ns
Address to valid data in	<i>t</i> ₁₇	SR	_	98 + $2t_{A} + t_{C}$	-	4TCL - 45 + 2 t_{A} + t_{C}	ns
Data hold after RD rising edge	<i>t</i> ₁₈	SR	0	-	0	-	ns
Data float after \overline{RD} rising edge (with RW-delay ¹⁾)	<i>t</i> ₂₀	SR	_	56 + <i>t</i> _F	-	2TCL - 15 + $2t_A + t_F^{(1)}$	ns
Data float after \overline{RD} rising edge (no RW-delay ¹⁾)	<i>t</i> ₂₁	SR	_	26 + <i>t</i> _F	-	TCL - 10 + $2t_A + t_F^{(1)}$	ns
Data valid to \overline{WR}	<i>t</i> ₂₂	CC	$36 + t_{\rm C}$	-	2TCL - 35 + <i>t</i> _C	-	ns

Parameter	Symbol		Max. CPU Clock = 14 MHz (0 to 70 °C)		Variable CPU Clock 1/2TCL=114 MHz, 070 °C 1/2TCL=112 MHz, -4085°C		Unit
			min.	max.	min.	max.	1
Data hold after WR	t ₂₄ (CC	26 + $t_{\rm F}$	-	TCL - 10 + <i>t</i> _F	_	ns
ALE rising edge after \overline{RD} , WR	t ₂₆ (CC	-10 + <i>t</i> _F	-	-10 + <i>t</i> _F	_	ns
Address hold after $\overline{\rm WR}^{2)}$	t ₂₈ (CC	0 + <i>t</i> _F	-	0 + <i>t</i> _F	-	ns
ALE falling edge to \overline{CS}	t ₃₈ (CC	-5 - <i>t</i> _A	$20 - t_{A}^{*)}$	-5 - <i>t</i> _A	20 - <i>t</i> _A *)	ns
CS low to Valid Data In	t ₃₉	SR	_	72 + $t_{\rm C}$ + $2t_{\rm A}$	-	3TCL - 35 + <i>t</i> _C +2 <i>t</i> _A	ns
$\overline{\text{CS}}$ hold after $\overline{\text{RD}}$, $\overline{\text{WR}}$	t ₄₁ (CC	16 + <i>t</i> _F	-	TCL - 20 + <i>t</i> _F	-	ns
ALE falling edge to RdCS, WrCS (with RW-delay)	t ₄₂ (CC	31 + t_A	-	TCL - 5 + <i>t</i> _A	-	ns
ALE falling edge to RdCS, WrCS (no RW-delay)	t ₄₃ (CC	$-5 + t_{A}$	-	-5 + <i>t</i> _A	-	ns
RdCS to Valid Data In (with RW-delay)	t ₄₆	SR	_	$42 + t_{\rm C}$	-	2TCL - 30 + <i>t</i> _C	ns
RdCS to Valid Data In (no RW-delay)	t ₄₇ \$	SR	_	$77 + t_{\rm C}$	-	3TCL - 30 + <i>t</i> _C	ns
RdCS, WrCS Low Time (with RW-delay)	t ₄₈ (CC	56 + $t_{\rm C}$	-	2TCL - 15 + <i>t</i> _C	-	ns
RdCS, WrCS Low Time (no RW-delay)	t ₄₉ (CC	92 + <i>t</i> _C	-	3TCL - 15 + <i>t</i> _C	-	ns
Data valid to WrCS	t ₅₀ (CC	$46 + t_{\rm C}$	-	2TCL - 25 + <i>t</i> _C	-	ns
Data hold after RdCS	t ₅₁ \$	SR	0	-	0	_	ns
Data float after RdCS (with RW-delay)	t ₅₃	SR	_	51 + <i>t</i> _F	-	2TCL - 20 + <i>t</i> _F	ns
Data float after RdCS (no RW-delay)	t ₆₈	SR	_	16 + <i>t</i> _F	-	TCL - 20 + <i>t</i> _F	ns
Address hold after RdCS, WrCS	t ₅₅ (CC	-5 + t _F	-	-5 + <i>t</i> _F	-	ns
Data hold after WrCS	t ₅₇ (CC	21 + <i>t</i> _F	-	TCL - 15 + <i>t</i> _F	-	ns

AC Characteristics CLKOUT and READY

 $V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}; V_{SS} = 0 \text{ V}$ $T_A = 0 \text{ to } +70 \text{ °C}$ for SAB-C165-L25M, SAB-C165-R25M, SAB-C165-L25F, SAB-C165-R25F $T_A = -40 \text{ to } +85 \text{ °C}$ for SAF-C165-L25M $C_L \text{ (for PORT0, PORT1, Port 4, ALE, RD, WR, BHE, CLKOUT)} = 100 \text{ pF}$ $C_L \text{ (for Port 6, CS)} = 100 \text{ pF}$

Parameter	Symbol		Max. CPU Clock = 14 MHz (0 to 70 °C)		Variable CPU Clock 1/2TCL=114 MHz, 070 °C 1/2TCL=112 MHz, -4085°C		Unit
			min.	max.	min.	max.	
CLKOUT cycle time	t ₂₉	CC	72	72	2TCL	2TCL	ns
CLKOUT high time	<i>t</i> ₃₀	CC	16	-	TCL – 20	-	ns
CLKOUT low time	t ₃₁	CC	21	-	TCL – 15	_	ns
CLKOUT rise time	t ₃₂	CC	-	15	-	15	ns
CLKOUT fall time	t ₃₃	CC	-	10	-	10	ns
CLKOUT rising edge to ALE falling edge	t ₃₄	CC	$-10 + t_{A}$	$5 + t_A$	$-10 + t_{A}$	$5 + t_A$	ns
Synchronous READY setup time to CLKOUT	<i>t</i> ₃₅	SR	20	-	20	-	ns
Synchronous READY hold time after CLKOUT	t ₃₆	SR	0	-	0	-	ns
Asynchronous READY	t ₃₇	SR	91	-	2TCL + 20	-	ns
Asynchronous READY setup time ¹⁾	t ₅₈	SR	20	-	20	-	ns
Asynchronous READY hold time ¹⁾	t ₅₉	SR	0	-	0	-	ns
Async. READY hold time after RD, WR high (Demultiplexed Bus) ²⁾	<i>t</i> ₆₀	SR	0	$ \begin{array}{c} 11 \\ + 2t_{\rm A} + t_{\rm C} \\ + t_{\rm F} ^{2)} \end{array} $	0	TCL - 25 + $2t_{A} + t_{C} + t_{F}$ 2)	ns

Notes

¹⁾ These timings are given for test purposes only, in order to assure recognition at a specific clock edge.

²⁾ Demultiplexed bus is the worst case. For multiplexed bus 2TCL are to be added to the maximum values. This adds even more time for deactivating READY.
The of a solution of the source for the theorem is the source of the source

The $2t_A$ and t_C refer to the next following bus cycle, t_F refers to the current bus cycle.

AC Characteristics External Bus Arbitration

 $V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}; V_{SS} = 0 \text{ V}$ $T_A = 0 \text{ to } +70 \text{ °C}$ for SAB-C165-L25M, SAB-C165-R25M, SAB-C165-L25F, SAB-C165-R25F $T_A = -40 \text{ to } +85 \text{ °C}$ for SAF-C165-L25M $C_L \text{ (for PORT0, PORT1, Port 4, ALE, RD, WR, BHE, CLKOUT)} = 100 \text{ pF}$ $C_L \text{ (for Port 6, CS)} = 100 \text{ pF}$

Parameter	Syn	nbol	Max. CPU Clock = 14 MHz (0 to 70 °C)		Variable CPU Clock 1/2TCL=114 MHz, 070 °C 1/2TCL=112 MHz, -4085°C		Unit
			min.	max.	min.	max.	
HOLD input setup time to CLKOUT	<i>t</i> ₆₁	SR	30	-	30	-	ns
CLKOUT to HLDA high or BREQ low delay	<i>t</i> ₆₂	CC	_	20	-	20	ns
CLKOUT to HLDA low or BREQ high delay	<i>t</i> ₆₃	CC	_	20	_	20	ns
CSx release	<i>t</i> ₆₄	CC	-	20	-	20	ns
CSx drive	<i>t</i> ₆₅	CC	-5	30	-5	30	ns
Other signals release	<i>t</i> ₆₆	CC	-	20	_	20	ns
Other signals drive	t ₆₇	CC	-5	30	-5	30	ns