CGY2030M

# **DECT 0.6 W power amplifier**

## FEATURES

- 3.3 V supply voltage operation
- High efficiency
- 28 dBm output power
- Operation possible without negative supply
- SSOP16 package.

## APPLICATIONS

- 1.7 to 1.9 GHz transceivers for DECT applications
- 1.710 to 1.785 GHz transceivers for DCS1800 hand-held equipment.

## **ORDERING INFORMATION**

### GENERAL DESCRIPTION

The CGY2030M is a GaAs monolithic microwave 600 mW power amplifier designed for a 3.3 V supply voltage. When power control is not required, it can be operated without negative supply voltage. The IC is suitable for DECT and DCS1800 applications.

| TYPE NUMBER |        | PACKAGE                                                           |          |  |  |  |
|-------------|--------|-------------------------------------------------------------------|----------|--|--|--|
|             | NAME   | DESCRIPTION                                                       | VERSION  |  |  |  |
| CGY2030M    | SSOP16 | plastic shrink small outline package; 16 leads; body width 4.4 mm | SOT369-1 |  |  |  |

## **BLOCK DIAGRAM**



### Objective specification

# DECT 0.6 W power amplifier

### PINNING

| SYMBOL               | PIN       | DESCRIPTION                                           |
|----------------------|-----------|-------------------------------------------------------|
| V <sub>GGB</sub>     | 1         | gate bias input voltage fourth stage                  |
| GND                  | 2 to 4    | ground                                                |
| V <sub>DD2</sub>     | 5         | drain second stage and supply voltage 2               |
| GND                  | 6 and 7   | ground                                                |
| V <sub>DD1</sub>     | 8         | drain first stage and supply voltage 1                |
| RFI                  | 9         | PA input                                              |
| V <sub>GGA</sub>     | 10        | gate bias input voltage first second and third stages |
| GND                  | 11 and 12 | ground                                                |
| V <sub>DD3</sub>     | 13        | drain third stage and supply voltage 3                |
| GND                  | 14 and 15 | ground                                                |
| RFO/V <sub>DD4</sub> | 16        | PA output and supply voltage 4                        |

16 RFO/VDD4 V<sub>GGB</sub> 15 GND GND 2 GND [ 14 GND 3 13 V<sub>DD3</sub> GND CGY2030M 12 GND V<sub>DD2</sub> 5 GND 6 11 GND GND 10 VGGA 9 RFI V<sub>DD1</sub> MBG630 Fig.2 Pin configuration.

### FUNCTIONAL DESCRIPTION

The CGY2030M is a 4-stage GaAs MESFET power amplifier capable of delivering 600 mW (typ.) at 1.9 GHz into a 50  $\Omega$  load. Each amplifier stage has an open-drain configuration. The drains have to be loaded externally by adequate reactive circuits which must also provide a DC path to the supply.

The amplifier can be switched off by means of an external PNP or PMOS switch connected in series with the DC path from the supply to the amplifier drains. This switch can also be used to vary the actual supply voltage applied to the amplifier and hence, control the output power.

The amplifier bias is set via the gate control voltage input pins  $V_{GGA}$  and  $V_{GGB}$ . Two modes of operation are possible. In one mode, the pins  $V_{GGA}$  and  $V_{GGB}$  can simply be connected to the ground via resistors.

The amplifier biases itself internally to a negative voltage by action of the incoming RF signal. In this mode, power control cannot be achieved by varying the amplifier drain voltage, so that it is suitable only for applications where power control is not required such as DECT. If a negative bias is available, another mode of operation is possible. Optimum amplifier biasing can thus be achieved by providing adequate negative voltages at pins V<sub>GGA</sub> and V<sub>GGB</sub>. In this mode, the amplifier internal bias does not now depend on the incoming RF level, nor on the drain voltage, so that power control is possible by variation of the drain voltage.

## CGY2030M

# DECT 0.6 W power amplifier

# CGY2030M

### THERMAL CHARACTERISTICS

| SYMBOL              | PARAMETER                                               | VALUE | UNIT |  |
|---------------------|---------------------------------------------------------|-------|------|--|
| R <sub>th j-a</sub> | thermal resistance from junction to ambient in free air | tbf   | K/W  |  |

#### LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

| SYMBOL               | PARAMETER                                                       | CONDITIONS      | MIN. | TYP. | MAX. | UNIT |
|----------------------|-----------------------------------------------------------------|-----------------|------|------|------|------|
| V <sub>DD</sub>      | supply voltage                                                  |                 | _    | _    | 4.6  | V    |
| V <sub>DD-GG</sub>   | voltage difference between supply voltage and gate bias voltage | no input signal | -    | -    | -8   | V    |
| T <sub>ch(max)</sub> | maximum operating channel temperature                           |                 | _    | _    | +150 | ٥C   |
| T <sub>amb</sub>     | operating ambient temperature                                   |                 | -20  | -    | +85  | ٥C   |
| T <sub>stg</sub>     | storage temperature                                             |                 | -55  | -    | +125 | °C   |

### DC CHARACTERISTICS

 $T_{amb}$  = 25 °C; unless otherwise specified.

| SYMBOL                                                                        | PARAMETER                          | CONDITIONS | MIN. | TYP. | MAX. | UNIT |  |
|-------------------------------------------------------------------------------|------------------------------------|------------|------|------|------|------|--|
| V <sub>DD</sub>                                                               | operating drain voltage            |            | tbf  | 3.3  | tbf  | V    |  |
| MODE 1: with negative biasing                                                 |                                    |            |      |      |      |      |  |
| I <sub>DD</sub>                                                               | supply current                     |            | -    | -    | tbf  | mA   |  |
| V <sub>GGA</sub>                                                              | gate bias voltage for input stages |            | -    | -1.2 | _    | V    |  |
| V <sub>GGB</sub>                                                              | gate bias voltage for third stage  |            | -    | -1.8 | _    | V    |  |
| I <sub>GG</sub>                                                               | total gate current                 |            | -    | -    | 1.5  | mA   |  |
| MODE 2: without negative biasing, $V_{GGA}$ and $V_{GGB}$ connected to ground |                                    |            |      |      |      |      |  |
| I <sub>DD</sub>                                                               | supply current                     |            | -    | -    | tbf  | mA   |  |

# DECT 0.6 W power amplifier

## CGY2030M

### AC CHARACTERISTICS

 $V_{DD}$  = 3.3 V; f<sub>RF</sub> = 1900 MHz; P<sub>in</sub> = 0 dBm; T<sub>amb</sub> = 25 °C; unless otherwise specified.

| SYMBOL                                                                       | PARAMETER                               | CONDITIONS                     | MIN. | TYP. | MAX. | UNIT |  |  |
|------------------------------------------------------------------------------|-----------------------------------------|--------------------------------|------|------|------|------|--|--|
| f <sub>RF</sub>                                                              | RF input frequency                      |                                | 1700 | -    | 1900 | MHz  |  |  |
| δ                                                                            | duty factor                             |                                | _    | -    | 12.5 | %    |  |  |
| MODE 1: negative bias at pins V <sub>GGA</sub> and V <sub>GGB</sub> ; note 1 |                                         |                                |      |      |      |      |  |  |
| P <sub>out(RF)</sub>                                                         | RF output power                         |                                | tbf  | 28   | _    | dBm  |  |  |
| η                                                                            | DC to RF efficiency                     |                                | tbf  | 40   | -    | %    |  |  |
| H <sub>rej</sub>                                                             | second and third harmonics rejection    |                                | -    | 30   | -    | dBc  |  |  |
|                                                                              | stability (spurious levels)             | load VSWR 6 : 1;<br>all phases | -    | tbf  | _    | dBc  |  |  |
| P <sub>leak</sub>                                                            | RF leakage to output in power off state | $V_{DD} = 0 V$                 | -    | tbf  | -    | dBm  |  |  |
| MODE 2: V <sub>GGA</sub> and V <sub>GGB</sub> connected to ground            |                                         |                                |      |      |      |      |  |  |
| P <sub>out(RF)</sub>                                                         | RF output power                         |                                | tbf  | 27   | -    | dBm  |  |  |
| η                                                                            | DC to RF efficiency                     |                                | tbf  | 40   | -    | %    |  |  |
| P <sub>leak</sub>                                                            | RF leakage to output in power off state | $V_{DD} = 0 V$                 | -    | tbf  | -    | dBm  |  |  |

#### Note

1. Negative voltages  $V_{GGA}$  and  $V_{GGB}$  must be applied before supply voltage  $V_{DD}$ .

