

General Purpose Transistor Array

One Differentially Connected Pair and Three Isolated Transistor Arrays

The CA3146 is designed for general purpose, low power applications in the dc through VHF range.

- Guaranteed Base–Emitter Voltage Matching
- Operating Current Range Specified: 10 μA to 10 mA
- Five General Purpose Transistors in One Package

GENERAL PURPOSE TRANSISTOR ARRAY

CA3146

SEMICONDUCTOR TECHNICAL DATA

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector–Emitter Voltage	VCEO	130	Vdc
Collector–Base Voltage	VCBO	20	Vdc
Collector–Substrate Voltage	VCIO	20	Vdc
Emitter-Base Voltage	VEBO	5.0	Vdc
Collector Current	IC	50	mAdc
Operating Temperature Range	ТА	-40 to +85	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

ORDERING INFORMATION

Device	Operating Temperature Range	Package	
CA3146D	$T_A = -40^\circ$ to +85°C	SO-14	

Pin 13 is connected to substrate and must remain at the lowest circuit potential.

CA3146

ELECTRICAL CHARACTERISTICS

Characteristics	Symbol	Min	Тур	Max	Unit
STATIC CHARACTERISTICS					
Collector–Base Breakdown Voltage ($I_C = 10 \ \mu Adc$)	V(BR)CBO	40	89	-	Vdc
Collector–Emitter Breakdown Voltage (I _C = 1.0 mAdc)	V _(BR) CEO	35	45	-	Vdc
Collector–Substrate Breakdown Voltage ($I_{CI} = 10 \ \mu A$)	V _(BR) CIO	40	85	-	Vdc
Emitter–Base Breakdown Voltage (I _E = 10 μA)	V _{(BR)EBO}	5.0	-	-	Vdc
Collector–Base Cutoff Current ($V_{CB} = 10 \text{ Vdc}, I_E = 0$)	ІСВО	-	0.68	40	nAdc
DC Current Gain (I _C = 10 mAdc, V_{CE} = 5.0 Vdc) (I _C = 1.0 mAdc, V_{CE} = 5.0 Vdc)	hfe	-	171 188	-	-
Base–Emitter Voltage (V _{CE} = 5.0 Vdc, I _E = 1.0 mAdc)	VBE	_	0.7	-	Vdc
Collector–Emitter Saturation Voltage (I _C = 10 mA, I _B = 0.4 mA)	V _{CE(sat)}	-	0.28	0.5	Vdc
Magnitude of Input Offset Current $ I_{IO1} - I_{IO2} $ (V _{CE} = 5.0 Vdc, I _{C1} = I _{C2} = 1.0 mAdc)	liO	-	0.03	2.0	μAdc
Magnitude of Input Offset Voltage V _{BE1} = V _{BE2} (V _{CE} = 5.0 Vdc, I _E = 1.0 mAdc)	IVIOI	-	0.13	2.0	mVdc
DYNAMIC CHARACTERISTICS	I		1		
Low Frequency Noise Figure (V _{CE} = 5.0 Vdc, I _C = 100 μ Adc, R _S = 1.0 kΩ, f = 1.0 kHz)	NF	-	3.25	-	dB
Forward Current Transfer Ratio $(V_{CE} = 5.0 \text{ Vdc}, I_C = 1.0 \text{ mAdc}, f = 1.0 \text{ kHz})$	h _{fe}	-	201.5	-	-
Short Circuit Input Impedance $(V_{CE} = 5.0 \text{ Vdc}, I_C = 1.0 \text{ mAdc}, f = 1.0 \text{ kHz})$	h _{ie}	-	6.7	-	kΩ
Open Circuit Output Impedance (V _{CE} = 5.0 Vdc, I _C = 1.0 mAdc, f = 1.0 kHz)	h _{oe}	-	15.6	-	µmho
Reverse Voltage Transfer Ratio (V _{CE} = 5.0 Vdc, I _C = 1.0 mAdc, f = 1.0 kHz)	h _{re}	-	3.5	-	X10-4
Input Admittance $(V_{CE} = 5.0 \text{ Vdc}, I_C = 1.0 \text{ mAdc}, f = 1.0 \text{ kHz})$	Y _{ie}	-	0.14 + j0.16	-	mmho
Forward Transfer Admittance (V _{CE} = 5.0 Vdc, I _C = 1.0 mAdc, f = 1.0 kHz)	Y _{fe}	-	34.6 – j0.63	-	mmho
Reverse Transfer Admittance (V _{CE} = 5.0 Vdc, I _C = 1.0 mAdc, f = 1.0 kHz)	Y _{re}	-	62.0 – j59.4	-	µmho
Output Admittance (V _{CE} = 5.0 Vdc, I _C = 1.0 mAdc, f = 1.0 kHz)	Y _{oe}	-	0.16 + j0.14	-	mmho
Current–Gain – Bandwidth Product ($V_{CE} = 5.0 \text{ Vdc}, I_C = 3.0 \text{ mAdc}$)	fT	300	500	-	MHz
Emitter–Base Capacitance (V _{EB} = 5.0 Vdc, I _E = 0 mAdc)	C _{EB}	-	1.17	-	pF
Collector–Base Capacitance $(V_{CB} = 5.0 \text{ Vdc}, I_E = 0 \text{ mAdc})$	C _{CB}	-	0.68	-	pF
Collector–Substrate Capacitance ($V_{CS} = 5.0 \text{ Vdc}, I_{C} = 0 \text{ mAdc}$)	CCI	-	1.92	-	pF

CA3146

OUTLINE DIMENSIONS

CA3146

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attomey fees arising out of, directly or indirectly, any claim of personal injury or death Motorola was negligent regarding the design or manufacture of the part. Motorola and **M** are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315

MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609 INTERNET: http://Design-NET.com

 \Diamond

