Dual 4-Stage Binary Ripple Counter # **High-Performance Silicon-Gate CMOS** The MC54/74HC393 is identical in pinout to the LS393. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs. This device consists of two independent 4–bit binary ripple counters with parallel outputs from each counter stage. A \div 256 counter can be obtained by cascading the two binary counters. Internal flip-flops are triggered by high-to-low transitions of the clock input. Reset for the counters is asynchronous and active-high. State changes of the Q outputs do not occur simultaneously because of internal ripple delays. Therefore, decoded output signals are subject to decoding spikes and should not be used as clocks or as strobes except when gated with the Clock of the HC393. - Output Drive Capability: 10 LSTTL Loads - · Outputs Directly Interface to CMOS, NMOS, and TTL - Operating Voltage Range: 2 to 6 V - Low Input Current: 1 μA - High Noise Immunity Characteristic of CMOS Devices - In Compliance with the Requirements Defined by JEDEC Standard No. 7A - Chip Complexity: 236 FETs or 59 Equivalent Gates #### LOGIC DIAGRAM ## MC54/74HC393 | Inp | | | |-------|-------|------------| | Clock | Reset | Outputs | | Χ | Н | L | | Н | L | No Change | | L | L | No Change | | _ | L | No Change | | ~ | L | Advance to | | | | Next State | #### **MAXIMUM RATINGS*** | Symbol | Parameter | Value | Unit | |------------------|---|--------------------------------|------| | VCC | DC Supply Voltage (Referenced to GND) | - 0.5 to + 7.0 | V | | V _{in} | DC Input Voltage (Referenced to GND) | - 1.5 to V _{CC} + 1.5 | V | | V _{out} | DC Output Voltage (Referenced to GND) | -0.5 to V _{CC} + 0.5 | V | | l _{in} | DC Input Current, per Pin | ± 20 | mA | | l _{out} | DC Output Current, per Pin | ± 25 | mA | | Icc | DC Supply Current, V _{CC} and GND Pins | ± 50 | mA | | PD | Power Dissipation in Still Air, Plastic or Ceramic DIP† SOIC Package† | 750
500 | mW | | T _{stg} | Storage Temperature | - 65 to + 150 | °C | | TL | Lead Temperature, 1 mm from Case for 10 Seconds
(Plastic or SOIC DIP)
(Ceramic DIP) | 260
300 | °C | This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND \leq (V_{in} or V_{out}) \leq VCC. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open. Ceramic DIP: - 10 mW/°C from 100° to 125°C SOIC Package: - 7 mW/°C from 65° to 125°C For high frequency or heavy load considerations, see Chapter 2 of the Motorola High-Speed CMOS Data Book (DL129/D). #### RECOMMENDED OPERATING CONDITIONS | Symbol | Parameter | | | Max | Unit | |------------------------------------|--|---|-------------|--------------------|------| | Vcc | DC Supply Voltage (Referenced to GND) | | | 6.0 | V | | V _{in} , V _{out} | DC Input Voltage, Output Voltage (Referenced to GND) | | | Vcc | V | | TA | Operating Temperature, All Package Types | | | + 125 | °C | | t _r , t _f | Input Rise and Fall Time
(Figure 1) | V _{CC} = 2.0 V
V _{CC} = 4.5 V
V _{CC} = 6.0 V | 0
0
0 | 1000
500
400 | ns | ## DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND) | | | | | Guaranteed Limit | | | | |-----------------|--|---|-------------------|--------------------|--------------------|--------------------|------| | Symbol | Parameter | Test Conditions | V _{CC} | – 55 to
25°C | ≤ 85°C | ≤ 125°C | Unit | | VIH | Minimum High-Level Input
Voltage | $V_{out} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$
$ I_{out} \le 20 \mu\text{A}$ | 2.0
4.5
6.0 | 1.5
3.15
4.2 | 1.5
3.15
4.2 | 1.5
3.15
4.2 | V | | VIL | Maximum Low–Level Input
Voltage | $V_{out} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$
$ I_{out} \le 20 \mu\text{A}$ | 2.0
4.5
6.0 | 0.3
0.9
1.2 | 0.3
0.9
1.2 | 0.3
0.9
1.2 | ٧ | | VOH | Minimum High–Level Output
Voltage | $V_{in} = V_{IH} \text{ or } V_{IL}$
$ I_{out} \le 20 \mu\text{A}$ | 2.0
4.5
6.0 | 1.9
4.4
5.9 | 1.9
4.4
5.9 | 1.9
4.4
5.9 | V | | | | $V_{\text{in}} = V_{\text{IH}} \text{ or } V_{\text{IL}} I_{\text{out}} \le 4.0 \text{ mA}$
$ I_{\text{out}} \le 5.2 \text{ mA}$ | 4.5
6.0 | 3.98
5.48 | 3.84
5.34 | 3.70
5.20 | | | V _{OL} | Maximum Low–Level Output
Voltage | $V_{in} = V_{IH} \text{ or } V_{IL}$
$ I_{out} \le 20 \mu\text{A}$ | 2.0
4.5
6.0 | 0.1
0.1
0.1 | 0.1
0.1
0.1 | 0.1
0.1
0.1 | ٧ | | | | $V_{\text{in}} = V_{\text{IH}} \text{ or } V_{\text{IL}} I_{\text{out}} \le 4.0 \text{ mA}$
$ I_{\text{out}} \le 5.2 \text{ mA}$ | 4.5
6.0 | 0.26
0.26 | 0.33
0.33 | 0.40
0.40 | | | l _{in} | Maximum Input Leakage Current | $V_{in} = V_{CC}$ or GND | 6.0 | ± 0.1 | ± 1.0 | ± 1.0 | μΑ | | ICC | Maximum Quiescent Supply Current (per Package) | V _{in} = V _{CC} or GND
I _{out} = 0 μA | 6.0 | 8 | 80 | 160 | μΑ | NOTE: Information on typical parametric values can be found in Chapter 2 of the Motorola High-Speed CMOS Data Book (DL129/D). ^{*} Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended Operating Conditions. [†]Derating — Plastic DIP: – 10 mW/°C from 65° to 125°C ### AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_f = t_f = 6 \text{ ns}$) | | | | Guaranteed Limit | | | | |--|--|-------------------|------------------|-----------------|-----------------|------| | Symbol | Parameter | V _{CC} | – 55 to
25°C | ≤ 85°C | ≤ 125°C | Unit | | f _{max} | Maximum Clock Frequency (50% Duty Cycle) (Figures 1 and 3) | 2.0
4.5
6.0 | 5.4
27
32 | 4.4
22
26 | 3.6
18
21 | MHz | | tPLH,
tPHL | Maximum Propagation Delay, Clock to Q1 (Figures 1 and 3) | 2.0
4.5
6.0 | 120
24
20 | 150
30
26 | 180
36
31 | ns | | tPLH,
tPHL | Maximum Propagation Delay, Clock to Q2 (Figures 1 and 3) | 2.0
4.5
6.0 | 190
38
32 | 240
48
41 | 285
57
48 | ns | | tPLH,
tPHL | Maximum Propagation Delay, Clock to Q3 (Figures 1 and 3) | 2.0
4.5
6.0 | 240
48
41 | 300
60
51 | 360
72
61 | ns | | t _{PLH} ,
t _{PHL} | Maximum Propagation Delay, Clock to Q4 (Figures 1 and 3) | 2.0
4.5
6.0 | 290
58
49 | 365
73
62 | 435
87
74 | ns | | [†] PHL | Maximum Propagation Delay, Reset to any Q (Figures 2 and 3) | 2.0
4.5
6.0 | 165
33
28 | 205
41
35 | 250
50
43 | ns | | tTLH,
tTHL | Maximum Output Transition Time, Any Output (Figures 1 and 3) | 2.0
4.5
6.0 | 75
15
13 | 95
19
16 | 110
22
19 | ns | | C _{in} | Maximum Input Capacitance | _ | 10 | 10 | 10 | pF | #### NOTES: - 1. For propagation delays with loads other than 50 pF, see Chapter 2 of the Motorola High-Speed CMOS Data Book (DL129/D). - 2. Information on typical parametric values can be found in Chapter 2 of the Motorola High-Speed CMOS Data Book (DL129/D). | | | Typical @ 25°C, V _{CC} = 5.0 V | | |----------|--|---|----| | C_{PD} | Power Dissipation Capacitance (Per Counter)* | 40 | pF | ^{*} Used to determine the no–load dynamic power consumption: P_D = C_{PD} V_{CC}²f + I_{CC} V_{CC}. For load considerations, see Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D). #### **TIMING REQUIREMENTS** (Input $t_r = t_f = 6 \text{ ns}$) | | | | Guaranteed Limit | | | | |---------------------------------|---|-------------------|--------------------|--------------------|--------------------|------| | Symbol | Parameter | V _{CC} | – 55 to
25°C | ≤ 85°C | ≤ 125°C | Unit | | t _{rec} | Minimum Recovery Time, Reset Inactive to Clock (Figure 2) | 2.0
4.5
6.0 | 50
10
9 | 65
13
11 | 75
15
13 | ns | | t _W | Minimum Pulse Width, Clock
(Figure 1) | 2.0
4.5
6.0 | 80
16
14 | 100
20
17 | 120
24
20 | ns | | t _W | Minimum Pulse Width, Reset
(Figure 2) | 2.0
4.5
6.0 | 125
25
21 | 155
31
26 | 190
38
32 | ns | | t _r , t _f | Maximum Input Rise and Fall Times
(Figure 1) | 2.0
4.5
6.0 | 1000
500
400 | 1000
500
400 | 1000
500
400 | ns | NOTE: Information on typical parametric values can be found in Chapter 2 of the Motorola High-Speed CMOS Data Book (DL129/D). #### **PIN DESCRIPTIONS** #### **INPUTS** #### **Clock (Pins 1, 13)** Clock input. The internal flip-flops are toggled and the counter state advances on high-to-low transitions of the clock input. #### **CONTROL INPUTS** #### **Reset (Pins 2, 12)** Active-high, asynchronous reset. A separate reset is pro- vided for each counter. A high at the Reset input prevents counting and forces all four outputs low. #### **OUTPUTS** #### Q1, Q2, Q3, Q4 (Pins 3, 4, 5, 6, 8, 9, 10, 11) Parallel binary outputs Q4 is the most significant bit. ### **SWITCHING WAVEFORMS** Figure 1. * Includes all probe and jig capacitance Figure 3. Test Circuit Figure 2. #### **EXPANDED LOGIC DIAGRAM** #### **TIMING DIAGRAM** #### **COUNT SEQUENCE** | | Outputs | | | | | |-------|---------|----|----|----|--| | Count | Q4 | Q3 | Q2 | Q1 | | | 0 | L | L | L | L | | | 1 | L | L | L | Н | | | 2 | L | L | Н | L | | | 3 | L | L | Н | Н | | | 4 | L | Н | L | L | | | 5 | L | Н | L | Н | | | 6 | L | Н | Н | L | | | 7 | L | Н | Н | Н | | | 8 | Н | L | L | L | | | 9 | Н | L | L | Н | | | 10 | Н | L | Н | L | | | 11 | Н | L | Н | Н | | | 12 | Н | Н | L | L | | | 13 | Н | Н | L | Н | | | 14 | Н | Н | Н | L | | | 15 | Н | Н | Н | H | | #### **OUTLINE DIMENSIONS** - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. - 3. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. - DIMESNION F MAY NARROW TO 0.76 (0.030) WHERE THE LEAD ENTERS THE CERAMIC | | INCHES | | MILLIN | IETERS | | |-----|--------|-------|----------|--------|--| | DIM | MIN | MAX | MIN | MAX | | | Α | 0.750 | 0.785 | 19.05 | 19.94 | | | В | 0.245 | 0.280 | 6.23 | 7.11 | | | С | 0.155 | 0.200 | 3.94 | 5.08 | | | D | 0.015 | 0.020 | 0.39 | 0.50 | | | F | 0.055 | 0.065 | 1.40 | 1.65 | | | G | 0.100 | BSC | 2.54 | BSC | | | J | 0.008 | 0.015 | 0.21 | 0.38 | | | K | 0.125 | 0.170 | 3.18 | 4.31 | | | L | 0.300 | BSC | 7.62 BSC | | | | M | 0° | 15° | 0° | 15° | | | N | 0.020 | 0.040 | 0.51 | 1.01 | | #### **N SUFFIX** PLASTIC DIP PACKAGE CASE 646-06 #### NOTES: - LEADS WITHIN 0.13 (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION. - DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. - DIMENSION B DOES NOT INCLUDE MOLD FLASH. 4. ROUNDED CORNERS OPTIONAL. | | INC | HES | MILLIN | IETERS | |-----|-----------|-------|--------|--------| | DIM | MIN | MAX | MIN | MAX | | Α | 0.715 | 0.770 | 18.16 | 19.56 | | В | 0.240 | 0.260 | 6.10 | 6.60 | | С | 0.145 | 0.185 | 3.69 | 4.69 | | D | 0.015 | 0.021 | 0.38 | 0.53 | | F | 0.040 | 0.070 | 1.02 | 1.78 | | G | 0.100 BSC | | 2.54 | BSC | | Н | 0.052 | 0.095 | 1.32 | 2.41 | | J | 0.008 | 0.015 | 0.20 | 0.38 | | K | 0.115 | 0.135 | 2.92 | 3.43 | | L | 0.300 | BSC | 7.62 | BSC | | M | 0° | 10° | 0° | 10° | | N | 0.015 | 0.039 | 0.39 | 1.01 | - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI - Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. - DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. MAXIMUM MOLD PROTRUSION 0.15 (0.006) - PER SIDE. - DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. | | MILLIMETERS | | INC | HES | |-----|-------------|------|-------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 8.55 | 8.75 | 0.337 | 0.344 | | В | 3.80 | 4.00 | 0.150 | 0.157 | | С | 1.35 | 1.75 | 0.054 | 0.068 | | D | 0.35 | 0.49 | 0.014 | 0.019 | | F | 0.40 | 1.25 | 0.016 | 0.049 | | G | 1.27 | BSC | 0.050 | BSC | | J | 0.19 | 0.25 | 0.008 | 0.009 | | K | 0.10 | 0.25 | 0.004 | 0.009 | | M | 0° | 7° | 0° | 7° | | P | 5.80 | 6.20 | 0.228 | 0.244 | | R | 0.25 | 0.50 | 0.010 | 0.019 | Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola describe and tooroey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and How to reach us: USA/EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 MFAX: RMFAX0@email.sps.mot.com -TOUCHTONE (602) 244-6609 INTERNET: http://Design-NET.com JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315 **HONG KONG**: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298 MC54/74HC393/D