Silicon Diffused Power Transistor

BUX86P BUX87P

GENERAL DESCRIPTION

High voltage, high speed glass passivated npn power transistors in a SOT82 envelope intended for use in converters, inverters, switching regulators, motor control systems and switching applications.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	TYP.	MA	AX.	UNIT
			BUX	86P	87P	
V _{CESM} V _{CEO}	Collector-emitter voltage peak value Collector-emitter voltage (open base)	$V_{BE} = 0 V$	-	800 400	1000 450	V V
I _C I _{CM} P _{tot}	Collector-emitter saturation voltage Collector current (DC) Collector current peak value Total power dissipation Fall time	$I_{c} = 0.2 \text{ A}; I_{B} = 20 \text{ mA}$ $T_{mb} \le 25 \degree \text{C}$ $I_{c} = 0.2 \text{ A}; I_{B(on)} = 20 \text{ mA}$	- - - - 0.28		1 .5 1 2	V Α W μs

PINNING - SOT82

DESCRIPTION
emitter
collector
base

PIN CONFIGURATION

SYMBOL

LIMITING VALUES

Limiting values in accordance with the Absolute Maximum Rating System (IEC 134)

SYMBOL	PARAMETER	CONDITIONS	MIN.	MA	λΧ .	UNIT
			BUX	86P	87P	
V _{CESM} V _{CEO}	Collector-emitter voltage peak value Collector-emitter voltage (open base)	$V_{BE} = 0 V$	-	800 400	1000 450	V V
V _{EBO} I _C I _{CM} I _B	Emitter-base voltage (open collector) Collector current (DC) Collector current (peak value) $t_p = 2$ ms Base current (DC)			0	5 .5 1 .2	V A A A
$\begin{matrix} \mathbf{I}_{BM} \\ -\mathbf{I}_{BM} \\ \mathbf{P}_{tot} \\ \mathbf{T}_{stg} \\ \mathbf{T}_{j} \end{matrix}$	Base current (peak value) Reverse base current (peak value) ¹ Total power dissipation Storage temperature Junction temperature	T _{mb} ≤ 25 °C	- - -40 -	0 4 15	.3 .3 2 50 50	v°℃°

¹ Turn-off current.

BUX86P BUX87P

THERMAL RESISTANCES

SYMBOL	PARAMETER	CONDITIONS	TYP.	MAX.	UNIT
R _{th j-mb}	Junction to mounting base		-	3	K/W
R _{th j-a}	Junction to ambient	in free air	100	-	K/W

STATIC CHARACTERISTICS

 T_{mb} = 25 °C unless otherwise specified

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
I _{CES}		$V_{BE} = 0 V; V_{CE} = V_{CESMmax}$	-	-	100	μA
ICES			-	-	1.0	mΑ
		$ T_i = 125 \ ^{\circ}C$				
I _{EBO}	Emitter cut-off current	$V_{EB} = 5 \text{ V}; \text{ I}_{C} = 0 \text{ A}$	-	-	1	mA
V _{CEsat}	Collector-emitter saturation voltages	$I_{c} = 0.1 \text{ A}; I_{B} = 10 \text{ mA}$	-	-	0.8	V
V _{CEsat}	_	$I_{c} = 0.2 \text{ A}; I_{B} = 20 \text{ mA}$	-	-	1	V
V _{BEsat}	Base-emitter saturation voltage	$I_{c} = 0.2 \text{ A}; I_{B} = 20 \text{ mA}$	-	-	1	V
h _{FE}	DC current gain	$I_{c} = 50 \text{ mÅ}; V_{ce} = 5 \text{ V}$	26	50	125	
V _{CEOsust}	Collector-emitter sustaining voltage	$I_c = 100 \text{ mA}$: BUX86P	400	-	-	V
		$I_{Boff} = 0; L = 25 \text{ mH}$ BUX87P	450	-	-	V

DYNAMIC CHARACTERISTICS

 T_{mb} = 25 °C unless otherwise specified

SYMBOL	PARAMETER	CONDITIONS	TYP.	MAX.	UNIT
	Switching times (resistive load).	$I_{c} = 0.2 \text{ A}; I_{Bon} = 20 \text{ mA}; -I_{Boff} = 40 \text{ mA};$ $V_{cc} = 250 \text{ V}$			
t _{on} t _s t _r	Turn-on time Turn-off storage time Turn-off fall time		0.25 2 0.28	0.5 3.5 -	μs μs μs
t _f	Turn-off fall time	$T_{mb} = 95 \ ^{\circ}C$	-	1.3	μs

t_p

0.01

IC =

0.2 A 0.1 A

50 mA

10

IB / mA

IC = 50 mA

0.1 A

0.2 A

15 IB / mA

20

25

15

20

t/s

D

1

Silicon Diffused Power Transistor

BUX86P BUX87P

30

Silicon Diffused Power Transistor

BUX86P BUX87P

 $\begin{array}{ll} I & Region \ of \ permissible \ DC \ operation. \\ II & Extension \ for \ repetitive \ pulse \ operation. \\ NB: & Mounted \ with \ heatsink \ compound \ and \\ 30 \pm 5 \ newton \ force \ on \ the \ centre \ of \ the \\ envelope. \end{array}$

4

BUX86P BUX87P

MECHANICAL DATA

Notes

Refer to mounting instructions for SOT82 envelopes.
Epoxy meets UL94 V0 at 1/8".

Silicon Diffused Power Transistor

BUX86P BUX87P

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	
or more of the limiting val operation of the device at	in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one ues may cause permanent damage to the device. These are stress ratings only and these or at any other conditions above those given in the Characteristics sections of applied. Exposure to limiting values for extended periods may affect device reliability.
Application information	
Where application information	ation is given, it is advisory and does not form part of the specification.
© Philips Electronics N.	V. 1997
All rights are reserved. R copyright owner.	eproduction in whole or in part is prohibited without the prior written consent of the
accurate and reliable and	d in this document does not form part of any quotation or contract, it is believed to be may be changed without notice. No liability will be accepted by the publisher for any Publication thereof does not convey nor imply any license under patent or other roperty rights.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.