Video ICs

Applications

VHS VCRs and camcorders.

Micro controller servo BU38905

The BU38905 is a serve controller for VCRs. It has a high-speed, 8-bit CPU and performs the processing required for the drum, capstan, FV and PV completely in software, allowing a large reduction in the number of external components required. It also has a high-performance linear amplifier so an interface IC is not required. Specialized hardware is included for items that require high-speed processing, to allow efficient utilization of the CPU. Timer and tuner functions are also built-in. The VCR control system can be performed by 1 chip.

VCR components

●Features
1)CPU
499 commands (69 types)
Memory-mapped I/O.
Minimum command execution time: 250ns (8MHz)
2)ROM capacity: 48152×8 bit.
3)RAM capacity: 896×8 bit.
4)Interrupts
Pattern generator: 2
Watchdog timer: 1
External interrupts: 2
FG interrupts: 5
Internal interrupts: 10
Two timers, one interval timer, two 0.5sec serial,
VISS, linear time counter, two PTGs
※ Multi-layer interrupts possible.
5)Free-running counter: 19 bit
With 8-bit capture for remote control.
6)PWM output: 12 bit×2
For tuner: 14 bit×1
7)Pattern generator
16 bits from FRC MSB used.
Output
Internai: 4 bit
External (PO): 4 bit
External (special purpose): 4 bit
8)Programmable pre-scaler
For CFG: 7 bit
9)Head amplifier/chroma rotary
Generated from pattern generator output.
10) Built-in AGC. Five-bits used to switch the gain control

registers for the CTL amplifier. 11)CTL counter: 1/30 or 1/25 12)Multiplication and division 24 bit \times 16 bit = 40 bit 16 bit ÷ 16 bit = 16 bit 13)Timer: 8 bit×2 14)Serial input/output: 8 bit×2 SIO2 has automatic transmission buffer. 15)VH PULSE VSYNC separated from composite synchronous signal. Pseudo V generated from pattern generator output. Superimposed pseudo H synchronized with the composite synchronous signal. 16)VISS/VASS VASS 0/1 discrimination VISS discrimination: every 8 bits Aspect discrimination: done in software D/A CTL switching 17)Standard I/O Parallel I/O (PIO): 32 bits Parallel output (PO): 3 bits Tri-state input (PI): 4 bits Tri-state output (PO): 4 bits 18)A/D converter: 8 bits×12 channels Automatic scanning. 19)Watchdog timer Setting period: 4 20)Time counter Interrupt generated every 0.5msec by dividing the

Interrupt generated every 0.5msec by dividing the 32.7kHz sub-clock.

Video ICs

21)Power save

Switch to sub-clock by external interrupt (etc.). Low-power mode.

22)Linear circuits

DFG : amplifier/comparator

CFG : amplifier/comparator

CTL : differential amplifier/comparator

DPG : comparator

Block diagram

100

ROHM

●Absolute maximum ratings (Ta=25℃)

Parameter	Symbol	Limits	Unit V	
Applied voltage	VDD, VDDA, VDDB	0.3~7.0* ²		
Input voltage	Vin	Vss-0.3~Voo+0.3	v	
Power dissipation	Pd	500*1	mW	
Storage temperature	Tstg		ů	

* 1 Reduced by 5mW for each increase in Ta of 1°C over 25°C. * 2 Use with Vss =Vssa =Vssa, and Vob =Voba=Vobb.

Recommended operating conditions

Parameter	Symbol	Limits	Unit	
Power supply voltage	VDD、 VDDA、 VDDB	4.5~5.5	V ·	
Clock frequency	Fcк	8	MHz	
Operating temperature	Topr	-25~75	°C	

rohm

7

Pin description

Pin No.	Pin name		Function	Pin No.	Pin name		Function	
1	Vss		Logic circuit GND	36	ADC2			
2	PO0*2	PTGVD0		37	ADC3			
3	PO1*2	PTGVD1	Parallel output and pattern output	38	ADC4		A/D converter	
4	PO2*2	PTGRD0		39	ADC5			
5	PO3*2	PTGRD1		40	ADC6			
6	PO4 * 2	FRC10	Parallel output and FRC output	41	ADC7			
7	PO5*2	PBCTL	Parallel output and PBCTL output	42	VDDB		PWM circuit power supply	
8	PO6*2	CS2	Parallel output and serial 2 chip select	43	Vsse		PWM circuit power GND	
9	SO2		Serial I/O2 data I/O	44	RESETB		Reset B	
10	SCK2		Serial I/O2 clock I/O	45	TEST		TEST mode input (normally GND)	
11	SI1		Serial I/O1 data input	46	PWM0			
12	SO1*1	PIO28	Serial I/O1 data I/O	47	PWM1		PWM output	
13	SCK1		Serial I/O1 clock I/O	48	PWM2			
14	AHSW*2	PO7	Parallel output and AHSW output	49	PIO36			
15	HAMPSW		Head amplifier switch output	50	PIO37			
16	CHROT		Chroma rotary switch output	51	PIO38		Parallel I/O	
17	CSYNC		Composite signal logic input	52	PIO39			
18	FV		Pseudo Vsync output	53	PIO8	ENVIN	Parallel I/O and ENVIN input	
19	EXT1	Pl4	Parallel input and external interrupt 1	54	PIO9			
20	EXT2(REM)		External interrupt 2	55	PIO10			
21	VHSW		VHSW output	56	PIO11		Parallel I/O	
22	VDDA		Linear, A/D circuit power supply	57	P1019			
23	DPGIN		Drum PG (PFG) comparator input	58	PIO20			
24	DFGIN		Drum FG amplifier input	59	PIO16			
25	DFGOUT		Drum FG amplifier output	60	VDD		Logic circuit power supply	
26	CFGOUT		Capstan FG amplifier output	61	PI017			
27	CFGIN		Capstan FG amplifier input	62	PIO18			
28	VREF		Internal bias and power-on reset	63	PIO21			
29	CTLAMP-		CTL amplifier - input	64	PIO22			
30	CTLAMPOUT	·	CTL amplifier output	65	PI023		Parallel I/O	
31	CTL-		CTL coil - connection	66	PIO24	1		
32	CTL+		CTL coil + connection	67	PIO25	1		
33	Vssa		Linear, A/D circuit GN()	68	PIO26	1		
34	ADC0			69	PIO27	1		
35	ADC1	1	A/D converter		PIO29	1		

102

Rohm

BU38905

Pin No.	Pin name	Function						
71	PIO30							
72	PIO31							
73	PIO32	Barallal 1/0	Parallel I/O					
74	PIO33							
75	PIO34							
76	PIO35							
77	CLOCKO1							
78	CLOCKI1	For connection of main oscillator						
79	CLOCKI2	For connection of sub oscillator						
80	CLOCKO2	For connection of sub-oscillator						

* 1 Output signal is xor. Does not become HI-z even if there is PIO input.
* 2 Output is or.

.

ROHM

1

●Electrical characteristics (Unless otherwise specified: Ta=25°C, Vpp=5V and fosc=8MHz)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	Measuremer Circuit
[Logic block]	·						
Circuit current	aal	-	10.0	25.0	mA	No load, when reset	Fig.1
<logic i="" o=""></logic>							
Output "H" voltage	Vн	4.0	4.5	-	V	I=2mA	Fig.3
Output "L" voltage	VL	-	0.5	1.0	v	I=2mA	Fig.3
Input "H" voltage	Viн	4.0	-		V		_
Input "L" voltage	ViL		-	1.0	V	1	- 1
Input "H" current	Ін		0	1.0	μA	Vin=V _{DD}	Fig.4
Input "L" current	, IL	-1.0	0	-	μA	Vin=0	Fig.4
<serial i="" o=""></serial>							
Input data hold	Тѕн	0.16	-	-	μS		_
Input data setup	Tss	0.16		— <u> </u>	μS		
Output data delay	TD	_	-	0.3	μS	Between clock and data	
[Linear block]	-						
Circuit current	lu lu	_	12.0	35.0	mA	No load	Fig.5
<dfg></dfg>							
Amplifier gain setting range	Gdfg	-		50	dB		_
Comparator threshold	VDFG	±80	±200	±360	тVрр		Fig.6
<dpg></dpg>							
Comparator threshold +	VDPG	+ 40	+100	+180	тVор	When positive polarity selected	Fig.7
Comparator threshold -	VDPG	- 40	-100	-180	тVор	When negative polarity selected	Fig.7
<cfg></cfg>							
Amplifier gain setting range	GCFG	_		50	dB		
Comparator threshold	Vcfg	±55	±135	±250	тVрр		Fig.8
<ctl></ctl>							
Comparator threshold	VCTL	±250	±480	± 8 50	mVop		Fig.10
AGC H threshold	VAGCH	920	1470	2000	mVop		Fig.10
AGC L threshold	VAGCL	500	930	1480	тVор		Fig.10
<vref></vref>							
VREF pin voltage	VREF	2.3	2.5	2.7	v	No load	Fig.9
[A/D block]						· · · · · · · · · · · · · · · · · · ·	
Linearity error	EL	-3	0	3	LSB	· · · · · · · · · · · · · · · · · · ·	Fig.11
[Power-save mode block]						Stop mode	
Circuit current 1	IDD1		10	25	μA	No load, 32kHz oscillation, Vop=3.0V	Fig.2
Circuit current 2	IDD2		0	10	μA	No load, 32kHz oscillation stopped	Fig.12

ONot designed for radiation resistance.

104

ROHM

Ŧ

Measurement circuit

BU38905

Fig.8

 (\land)

SW9

ROhm

.

Application example

Fig.13

106 **ROHM**

BU38905

rohm

Notes

- The contents described in this catalogue are correct as of March 1997.
- No unauthorized transmission or reproduction of this book, either in whole or in part, is permitted.
- The contents of this book are subject to change without notice. Always verify before use that the contents are the latest specifications. If, by any chance, a defect should arise in the equipment as a result of use without verification of the specifications, ROHM CO., LTD., can bear no responsibility whatsoever.
- Application circuit diagrams and circuit constants contained in this data book are shown as examples of standard use and operation. When designing for mass production, please pay careful attention to peripheral conditions.
- Any and all data, including, but not limited to application circuit diagrams, information, and various data, described in this catalogue are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO., LTD., disclaims any warranty that any use of such device shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes absolutely no liability in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices; other than for the buyer's right to use such devices itself, resell or otherwise dispose of the same; no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by ROHM CO., LTD., is granted to any such buyer.
- The products in this manual are manufactured with silicon as the main material.
- The products in this manual are not of radiation resistant design.

The products listed in this catalogue are designed to be used with ordinary electronic equipment or devices (such as audio-visual equipment, office-automation equipment, communications devices, electrical appliances, and electronic toys). Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers, or other safety devices) please be sure to consult with our sales representative in advance.

Note when exporting

- It is essential to obtain export permission when exporting any of the above products when it falls under the category of strategic material (or labor) as determined by foreign exchange or foreign trade control laws.
- Please be sure to consult with our sales representatives to ascertain whether any product is classified as a strategic material.