DISCRETE SEMICONDUCTORS

Product specification

August 1986

BLW32

DESCRIPTION

N-P-N silicon planar epitaxial transistor primarily intended for use in linear **u.h.f. amplifiers** for television transmitters and transposers. The **excellent d.c. dissipation properties** for class-A operation are obtained by means of diffused emitter ballasting resistors and a multi-base area. The combination of optimum thermal design and the application of **gold sandwich metallization** realizes excellent reliability properties.

The transistor has a $\frac{1}{4}$ " capstan envelope with ceramic cap.

QUICK REFERENCE DATA

structure, providing an optimum temperature profile on the crystal

R.F. performance

MODE OF OPERATION	f _{vision} MHz	V _{CE} V	l _C mA	T _h °C	d _{im} ⁽¹⁾ dB	P _{o sync} ⁽¹⁾ W	G _p dB	
class-A; linear amplifier	860	25	150	70	-60	> 0,5	> 11	
	860	25	150	25	-60	typ. 0,63	typ. 12,2	

Note

1. Three-tone test method (vision carrier –8 dB, sound carrier –7 dB, sideband signal –16 dB), zero dB corresponds to peak sync level.

PIN CONFIGURATION

PINNING - SOT122A.

PIN	DESCRIPTION			
1	collector			
2	emitter			
3	base			
4	emitter			

PRODUCT SAFETY This device incorporates beryllium oxide, the dust of which is toxic. The device is entirely safe provided that the BeO disc is not damaged.

BLW32

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Collector-emitter voltage				
(peak value); V _{BE} = 0	V _{CESM}	max.	50	V
open base	V _{CEO}	max.	30	V
Emitter-base voltage (open collector)	V _{EBO}	max.	4	V
Collector current				
d.c. or average	Ι _C	max.	650	mA
(peak value); f > 1 MHz	I _{CM}	max.	1000	mA
Total power dissipation up to $T_{mb} = 25 \ ^{\circ}C$	P _{tot}	max.	10,8	W
Storage temperature	T _{stg}	–65 t	o +150	°C
Operating junction temperature	Τ _j	max.	200	°C

THERMAL RESISTANCE (see Fig.4)

From junction to mounting base (dissipation = 3,75 W; T_{mb} = 72,3 °C; i.e. T_h = 70 °C) From mounting base to heatsink

R _{th j-mb}	=	15,0	K/W
R _{th mb-h}	=	0,6	K/W

Example

Nominal class-A operation: V_{CE} = 25 V; I_C = 150 mA; T_h = 70 °C.

Fig.4 shows:	R _{th j-h}	max.	15,6	K/W
	Тj	max.	130	°C
Typical device:	R _{th j-h}	typ.	13,5	K/W
	Тi	typ.	120	°C

BLW32

BLW32

CHARACTERISTICS				
$T_j = 25 \text{ °C}$ unless otherwise specified				
Collector-emitter breakdown voltage				
$V_{BE} = 0; I_{C} = 2 \text{ mA}$	V _{(BR)CES}	>	50	V
open base; I _C = 15 mA	V _{(BR)CEO}	>	30	V
Emitter-base breakdown voltage				
open collector; I _E = 1 mA	V _{(BR)EBO}	>	4	V
Collector cut-off current				
$V_{BE} = 0; V_{CE} = 30 V$	I _{CES}	<	0,5	mA
V _{BE} = 0; V _{CE} = 30 V; T _j = 175 °C	I _{CES}	<	1,2	mA
D.C. current gain ⁽¹⁾			00	
I _C = 150 mA; V _{CE} = 25 V	h _{FE}	> typ.	20 40	
		typ.	40	
I _C = 150 mA; V _{CE} = 25 V; T _j = 175 °C	h _{FE}	<	120	
Collector-emitter saturation voltage (1)				
I _C = 300 mA; I _B = 30 mA	V _{CEsat}	typ.	500	mV
Transition frequency at f = 500 MHz $^{(2)}$				
–I _E = 150 mA; V _{CB} = 25 V	f _T	typ.	3,5	GHz
–I _E = 300 mA; V _{CB} = 25 V	f _T	typ.	3,4	GHz
Collector capacitance at f = 1 MHz				
$I_{E} = I_{e} = 0; V_{CB} = 25 V$	C _c	typ.	3,7	pF
Feedback capacitance at f = 1 MHz				
I _C = 10 mA; V _{CE} = 25 V	C _{re}	typ.	1,9	pF
Collector-stud capacitance	C _{cs}	typ.	1,2	pF

Notes

1. Measured under pulse conditions: $t_p \leq 300 \ \mu s; \ \delta \leq 0,02.$

2. Measured under pulse conditions: $t_p \leq 50~\mu s;~\delta \leq 0,01.$

August 1986

BLW32

APPLICATION INFORMATION

f _{vision} (MHz)	V _{CE} (V)	I _C (mA)	T _h (°C)	d _{im} (dB) ⁽¹⁾	P _{o sy}	nc (W) ⁽¹⁾	Gp	(dB)
860	25	150	70	-60	>	0,5	>	11
860	25	150	70	-60	typ.	0,58	typ.	12,2
860	25	150	25	-60	typ.	0,63	typ.	12,2

Note

1. Three-tone test method (vision carrier –8 dB, sound carrier –7 dB, sideband signal –16 dB), zero dB corresponds to peak sync level.

List of components:

C1 = C7 = 2 to 18 pF film dielectric trimmer (cat. no. 2222 809 05003)

C2 = C6 = C8 = 1 to 3,5 pF film dielectric trimmer (cat. no. 2222 809 05001) placed 24 mm, 17 mm and 45 mm respectively from transistor edge

C3 = 1,8 to 10 pF film dielectric trimmer (cat. no. 2222 809 05002)

C4 = C5 = 3 pF multilayer chip capacitor (ATC 100A-3RO-C-PX-50)

- C9 = C12 = 1 nF chip capacitor
- C10 = 100 nF polyester capacitor

C11 = C13 = 470 nF polyester capacitor

C14 = 10 nF polyester capacitor

C15 = 3,3 μ F/40 V solid aluminium electrolytic capacitor

L1 = stripline (5,0 mm \times 4,5 mm)

L2 = stripline (13,2 mm \times 4,5 mm)

- L3 = stripline (15,0 mm \times 4,5 mm)
- L4 = micro choke 0,47 μ H (cat. no. 4322 057 04770)
- L5 = 4 turns closely wound enamelled Cu wire (1,0 mm); int. dia. 5,5 mm; leads 2×4 mm
- L6 = stripline (37,0 mm \times 4,5 mm)
- L7 = stripline (13,5 mm \times 4,5 mm)

BLW32

BLW32

L1; L2; L3; L6 and L7 are striplines on a double Cu-clad printed-circuit board with PTFE fibre-glass dielectric ($\epsilon_r = 2,74$); thickness 1/16".

Component layout and printed-circuit board for 860 MHz test circuit are shown in Fig.9. For bias circuit see Fig.10.

The circuit and the components are situated on one side of the PTFE fibre-glass board, the other side being fully metallized to serve as earth. Earth connections are made by means of hollow rivets, whilst under the emitter leads Cu straps are used for a direct contact between upper and lower sheets.

BLW32

Information for wideband application from 470 to 860 MHz available on request.

1. Three-tone test method (vision carrier –8 dB, sound carrier –7 dB, sideband signal –16 dB), zero dB corresponds to peak sync level.

Intermodulation distortion of input signal \leq -75 dB.

 Two-tone test method (vision carrier 0 dB, sound carrier –7 dB), zero dB corresponds to peak sync level. Cross-modulation distortion (d_{cm}) is the voltage variation (%) of sound carrier when vision carrier is switched from 0 dB to –20 dB.

BLW32

Ruggedness

The BLW32 is capable of withstanding a load mismatch (VSWR = 50 through all phases) under the following conditions:

f = 860 MHz; V_{CE} = 25 V; I_C = 150 mA; T_h = 70 °C and P_L = 1 W.

PACKAGE OUTLINE

Studded ceramic package; 4 leads

BLW32

SOT122A

BLW32

DEFINITIONS

Data Sheet Status			
Objective specification	This data sheet contains target or goal specifications for product development.		
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.		
Product specification	This data sheet contains final product specifications.		
Limiting values			
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.			

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.