Read/Write Amplifier for FDD **BH6626FS**

The BH6626FS is a read/write IC designed for floppy disk drives and has an internal active filter for memory systems in which saddle margins are important. Any of multiple write current settings can be selected, and both density switching and inner edge/outer edge switching are done internally.

Applications

Floppy disc drives (1MB and 2MB)

Features

- 1) Active filter switched internally.
- 2) Time domain filter with internal switch set according to transfer rate.
- 3) Density switching and inner track / outer track switching are done internally.

Parameter	Symbol	Limits	Unit	
Power supply voltage	Vcc	+7	V	
Operating temperature	TOPR	0~+70	°C	
Storage temperature	Тята	-55~+125	°C	
Digital input voltage	VI	-0.5~Vcc+0.3	v	
RW pin voltage	VRW	+15	v	
LVS output voltage	VLVS	Vcc+0.3	v	
ED pin voltage VER		Vcc+0.3	v	

650*

mW

Absolute maximum ratings (unless otherwise noted, Ta=25'C)

PD

* Reduced by 6.5mW for each increase in Ta of 1°C over 25°C.

Recommended operating conditions

Power dissipation

Parameter	Symbol	Min.	Тур.	Max.	Unit
Power supply voltage	Vcc	4.5	5.0	5.5	v

Block diagram

(Note) Use a short pattern for Vcc, and keep the impedance between Vcc and GND low by inserting a bypass capacitor.

ROHM

389

FDD read/write amplifier

FDD/HDD

ļ

l

Pin descriptions • Input/output circuits

Pin No.	Name	Equivalent circuit	Function
1	WCC		For connecting the write current adjustmen resistor Connect the write current adjustment resistor between this pin and Vcc. Setting this pin to the low level during reading switches MONI to differentiator output.
2	Vcc		Power supply pin
3	RW00		Active when SIDE0 and the read/write head connecting pin (pin 15, XS1) is at the high level (side 0)
4	RW01		Starts at RW00 during the start of writing (from reading to writing)
5	RW10		Active when the read/write head connecting pin (pin 15, XS1) is at the low level (side 1)
6	RW11		Starts at RW10 during the start of writing (from reading to writing)
7	ED0		Side 0 erase current sink
8	ED1		Side 1 erase current sink
390		ROHM	

i

BH6626FS

ROHM

BH6626FS

Pin No.	Name	Equivalent circuit	Function
16	DGND	· · · · · · · · · · · · · · · · · · ·	Digital ground
17	RDO		Read data output TTL high level = active
18	XWD		Write data input Operates at falling edge (Schmidt input)
19	NC		
20	XPS		Power save selector Low level = active

392

BH6626FS

Pin No.	Name	Equivalent circuit	Function
21	XLVS		External low level voltage detection pin Open collector output when low level voltage is detected. Switches to low level when Vcc drops below the specified voltage
22	MONI		Preamplifier output and differentiator output monitoring Monitor is switched with pin 1 (WCC)
23	AGND		Analog ground
24	RCC		Filter (LPF,BPF) cutoff frequency and TDF 1st M/M pulse width setting resistor connection

●Electrical characteristics (unless otherwise noted, Ta=25℃, Vcc=5V) Current consumption

Parameter	Symbol	Min.	Тур.	Max.	Unit		Conditions
Current consumption,Standby	ICCST	—	190	400	μA	*1	
Current consumption,Read	ICCR	-	28	40	mA	*1	·····
Current consumption,Write	ICCW	_	8.5	15	mA	*2	· · · · · · · · · · · · · · · · · · ·

*1 RRCC=2.0 [k Ω] (XHD=H) *2 RWCC=2.4 [k Ω] (When 2MB inner edge, XGR=high level, excluding IWR and IER)

ROHM

393

FDD read/write amplifier

FDD/HDD

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Threshold voltage 1	VTH1+		4.05	4.3	V	When supply volt. rises, int. LVS = write prot.
	VTH1-	3.6	3.85	4.1	V	When supply volt. falls, int. LVS = write prot.
Threshold voltage 2	VTH2+		3.92	4.17	V	When supply volt. rises, ext. LVS
	VTH2	3.47	3.72	3.97	v	When supply volt. fails, ext. LVS
Hysteresis voltage	VH	50	-	-	mV	
Output voltage, low level	VOL			0.40	V	Vcc=2.5 [V] IOL=0.2 [mA]
Output leak current	юн	_	- 1	10	μA	· · ·

Recovery time

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
POWER∙SAVE→READ	TR2	-		500	μs	by XPS
READ→ERASE	TR3	-		6	μs	by XEG
READ→WRITE	TR4		—	4	μs	by XWG
WRITE→READ	TR5E	_	_	20	μs	by XEG
	TR5W	_	-	160	μs	by XWG
SIDE0↔SIDE1	TR6	_	-	40	μs	by XS1
1MB↔2MB	TR7	-	-	40	μs	by XHD

Preamplifier

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Voltage gain 1	GVD1	43	46	49	dB	f=125[kHz], VIN=2.5[mVp-p] (differential.) (OPTION outer edge)
Voltage gain 2	GVD2	46	49	52	dB	f=125[kHz], VIN=2.5[mVp-p] (differential.) (1 MB/2 MB outer edge, OPTION inner edge
Voltage gain 3	GVD3	49	52	56	dB	f=125[kHz], VIN=1.5[mVp-p] (differential.) (1 MB/2 MB inner edge)
SIDE0↔SIDE1 crosstalk	GCTLK	50		-	dB	f=125[kHz], VIN=100[mVp-p] (differential.) * 3
Differential input resistance	RID	-	4	-	kΩ	Input resistance = 8.0 k Ω parallel, damping resistance = 8.0 k Ω
Input conversion noise voltage	VN	—	2.5	3.7	μ Vrms	f=500[Hz]~1[MHz]
Input sink current	ISINK	-	180	-	μA	
Differential input voltage amplitude tolerance 1	VIN1	_		5.0	mVp-p	5% distortion (sine wave input) (OPTION outer edge)
Differential input voltage amplitude tolerance 2	VIN2	-		3.5	mVp-p	5% distortion (sine wave input) (1 MB/2 MB outer edge, OPTION inner edge)
Differential input voltage amplitude tolerance 3	VIN3	_		2.0	mVp-p	5% distortion (sine wave input) (1 MB/2 MB = inner edge)
Common mode rejection ratio	CMRR	50		-	dB	f=125[kHz], VIN=100[mVp-p] *3
Power supply rejection ratio	PSRR	40		-	dB	f=250[kHz], VIN=100[mVp-p] *3

394

ROHM

Preamplifier/LPF/differentiator (BPF)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Filter • time constant accuracy	EFIL	-10		+10	%	*3
Total gain (preamplifier/ LPF/differentiator) 1	GVDD1	41.0	45.0	49.0	dB	f=250[kHz], VIN=2.5[mVp-p (differential) (2MB outer edge)
Total gain (preamplifier/ LPF/differentiator) 2	GVDD2	44.0	48.0	52.0	dB	f=250[kHz], VIN=2.5[mVp-p] (differential) (inner edge)
Total gain (preamplifier/ LPF/differentiator) 3	GVDD3	40.5	44.5	48.5	dB	f=250[kHz], VIN=2.5[mVp-p] (differential) (OPTION 2 outer edge)
Differentiator output peaking frequency setting range	fo	0.1	· _	0.5	MHz	Defined according to typical value in the settings

*3 RRCC=2.0 [kΩ] (XHD=L, XTR=H, FC=L)

Comparator and pulse shaper

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
TDF M/M pulse width accuracy 1	TDF1	-10		+10	%	1MB(TYP:2545[ns]) f=62.5[kHz]~125[kHz]
TDF M/M pulse width accuracy 2	TDF2	-10		+10	%	2MB. OPTION (TYP: 1280[ns]) f=62.5[kHz]~125[kHz] *4
RD pulse width	TRD	270	400	530	ns	Determination level: 1.5[V]
Rise time	TTLH	_	_	70	ns	Rise time between 0.4[V] and 2.0[V]
Fall time	TTHL	_	_	70	ns	Fall time between 2.0 [V] and 0.4[V]
Peak shift	P. S.	_	—	1.0	%	f=250[kHz], VIN=1[mVp-p](differential.)
Output "L" level voltage	VOL	_	_	0.5	V	
Output "H" level voltage	VOH	2.7		_	v	Level after 70[ns]rise from 0.4[V]

*4 RRCC=2.0 [kΩ]

Write circuit

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Write current adjustment range	IWR	2.0		20	mA0-p	· · · · · · · · · · · · · · · · · · ·
Write current accuracy	ACIW	-7.0		+7.0	%	*5
Write current pairability	∆iWR	-1.0	-	+1.0	%	RWCC=2.4[kΩ]
Write current supply voltage dependency	PSIW	-4.0	-0.8	+3.0	%/v	RWCC=2.4[kΩ]
Output saturation voltage	VSATRW		0.4	1.0	V	IWR=12[mA]
	ILKRW1	_	_	20	μA	Unselected side
Off-state leakage current	ILKRW2	_	-	50	μA	Selected side
Minimum write data pulse width	TWD	70	_	_	ns	
Write current switching ratio accuracy	ACIWTR	$\pm 10 \times (1 - \text{setting ratio})$		%	*6	

*5 RWCC=2.4 $[k\Omega]$, adapted for desired setting. *6 Error In setting ratio (reference: 1MB outer track)

395

.

FDD read/write amplifier

FDD/HDD

Erase output

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions			
Erase current adjustment range	IER	_] -	40	mA				
Output saturation voltage	VSATER	_	0.2	0.6	v	IER=40[mA]			
Output leakage current	IOH	_	—	10	μA	Off, ED0 = ED1 = Vcc			
ogic input						· · · · · ·			
Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions			
Input voltage, high level	VIH	2.0	—	-	V				
Input voltage, low level	VIL			0.8	v				
Input voltage hysteresis	VH	0.15	-	-	V	Applies to XWD, XWG, XEG, XS1			
Input current, low level	IIL1	_	50	100	μA	Vcc=5[V] VIL=GND Applies to XWG, XEG ,XHD			

Mode		1MB		21	ИB	OPTION1		OPTION2	
Transfer rate		250[kbps]		500[kbps]		500[kbps]		500[kbps]	
	XHD	Н		LOW		н		NO CARE	
Mode	ode FC		LOW		W	LOW		н	
	XGR	Н		NO CARE		LOW			
Track	XTR (XSWF)	Outer track LOW	Inner track HIGH	Outer track LOW	Inner track HIGH	Outer track LOW	Inner track HIGH	Outer track LOW	Inner track HIGH
Preamplifier gain [dB]		49	52	49	52	46	49	46	49
Filtor	fo [kHz]	197	210	378	415	350	400	350	
Filler	Characteristic.(Q)	A	A	A	В	С	A	(2
TDF	[nSEC]	25	545	12	280	1280			
Write current switching ratio		WCC	WCC ×0.733	WCC ×0.433	WCC ×0.318	wcc	WCC ×0.733		CC .733
	Trans Mode Track Preamplif Filter TDF	Transfer rate Mode XHD FC XGR Track XTR (XSWF) Preamplifier gain [dB] Filter fo [kHz] Filter [nSEC]	Transfer rate 250[I] Mode FC L0 Track XTR (XSWF) Outer track LOW Preamplifier gain [dB] 49 Filter fo [kHz] 197 Characteristic.(Q) A TDF [nSEC] 28	Transfer rate 250[kbps] Track XHD HI Mode FC LOW XGR HI Track XTR (XSWF) Outer track LOW Inner track HIGH Preamplifier gain [dB] 49 52 Filter fo [kHz] 197 210 Characteristic.(Q) A A TDF [nSEC] 2545	Transfer rate 250[kbps] 500[i Mode XHD HI L0 Mode FC LOW L0 XGR HI NO (i Track XTR (XSWF) Outer track LOW Inner track HIGH Outer track LOW Preamplifier gain [dB] 49 52 49 Filter fo [kHz] 197 210 378 TDF [nSEC] 2545 12 Write current switching ratio WCC WCC WCC	$\begin{tabular}{ c c c c } \hline Transfer rate & 250[kbps] & 500[kbps] \\ \hline \begin{tabular}{ c c c c c } \hline Track & XHD & HI & LOW \\ \hline FC & LOW & LOW \\ \hline FC & LOW & LOW \\ \hline \end{tabular} \\ \hline $	Transfer rate 250 [kbps] 500 [kbps] 500 [kbps] Mode XHD HI LOW H Mode FC LOW LOW LOW LOW XGR HI NO CARE Outer track Inner track Outer track LOW Uter track LOW Outer track Inner track Outer track LOW UW UW	Transfer rate 250[kbps] 500[kbps] 500[kbps] Mode XHD HI LOW HI Mode FC LOW LOW LOW LOW XGR HI NO CARE LOW Inner track Inner track	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Total filter peak frequency setting $f_0 = a / \ (\text{RRCC} \ [k \, \Omega] + 0.09) \ [\text{kHz}]$

(However, RRCC=2.0 [kΩ])

* 1 (A) Butterworth characteristics

(B) Chebyshev characteristics
(C) Refer to Option characteristics, filter characteristics

a = 412 1M outer track 439 1M inner track 790 2M outer track 867 2M inner track 732 outer track(with OPTION 1), OPTION 2 836 inner track (with OPTION 1)

TDF time constant setting

250 [kbps] : T = 939 × RRCC [k Ω] +667 [ns] 500 [kbps] : T = 403 × RRCC [k Ω] +474 [ns]

Write current setting

 $lwr = \frac{24.0}{RWCC [k\Omega]} [mA]$

396

Filter characteristic

Preamplifier-differentiator (BPF)-LPF

A. Total characteristic peak frequency (fo): 1 MB, 2 MB outer track OPTION inner edge

B. Total characteristic peak frequency (fo): 2 MB inner track

C. Total characteristic peak frequency (fo): OPTION outer track, OPTION2

ROHM

397

BH6626FS

Measurement circuit

Fig. 2

Circuit operation

(1) Read

The input signal from the head coils from each side of the disc is amplified by the preamplifier and then differentiated. The filter time constant can be set externally. After differentiation, the differential output is input to the comparator. The time domain filter detects zero cross, and the output is converted to read data. The monostable multivibrator width can be set externally, while the read data pulse width is a constant 400ns. (2) Write

Input write data are converted to toggle movements by the internal flip-flops, operating the write driver. The

write driver current is supplied by the write current generator, but the externally set current can be controlled according to density and by selecting inner track/outer track.

(3) Erase

An open collector output pin is used, and the erase current is set with a resistor between it and the head. (4) Power supply

When the low level voltage detector detects a drop in the supply voltage, writing and erasing are prohibited.

BH6626FS

Operation notes

(1) Use a short pattern for Vcc, and a sufficiently wide AGND and DGND. Keep the impedance between Vcc and GND low by inserting a bypass capacitor.

(2) Use a pattern that will minimize interference between digital signals and the head.

Electrical characteristic curves

ROHM

1.6MB outer track mode RWCC=2.4kΩ

ł

5

supply voltage

400

SSOP-A24

Notes

- The contents described in this catalogue are correct as of March 1997.
- No unauthorized transmission or reproduction of this book, either in whole or in part, is permitted.
- The contents of this book are subject to change without notice. Always verify before use that the contents are the latest specifications. If, by any chance, a defect should arise in the equipment as a result of use without verification of the specifications, ROHM CO., LTD., can bear no responsibility whatsoever.
- Application circuit diagrams and circuit constants contained in this data book are shown as examples of standard use and operation. When designing for mass production, please pay careful attention to peripheral conditions.
- Any and all data, including, but not limited to application circuit diagrams, information, and various data, described in this catalogue are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO., LTD., disclaims any warranty that any use of such device shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes absolutely no liability in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices; other than for the buyer's right to use such devices itself, resell or otherwise dispose of the same; no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by ROHM CO., LTD., is granted to any such buyer.
- The products in this manual are manufactured with silicon as the main material.
- The products in this manual are not of radiation resistant design.

The products listed in this catalogue are designed to be used with ordinary electronic equipment or devices (such as audio-visual equipment, office-automation equipment, communications devices, electrical appliances, and electronic toys). Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers, or other safety devices) please be sure to consult with our sales representatives in advance.

- Notes when exporting
 - It is essential to obtain export permission when exporting any of the above products when it falls under the category of strategic material (or labor) as determined by foreign exchange or foreign trade control laws.
 - Please be sure to consult with our sales representatives to ascertain whether any product is classified as a strategic material.