DISCRETE SEMICONDUCTORS

Product specification File under Discrete Semiconductors, SC14 December 1997

HILIP

PINNING

PIN

1

2

3

FEATURES

- Low current consumption
- Low noise figure
- Gold metallization ensures
 excellent reliability
- SOT323 envelope.

DESCRIPTION

NPN transistor in a plastic SOT323 envelope.

It is designed for use in RF amplifiers and oscillators in pagers and pocket phones with signal frequencies up to 2 GHz.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{CBO}	collector-base voltage	open emitter	_	-	8	V
V _{CEO}	collector-emitter voltage	open base	-	-	5	V
I _C	DC collector current		-	-	6.5	mA
P _{tot}	total power dissipation	up to $T_s = 170 \text{ °C}$; note 1	-	-	32	mW
h _{FE}	DC current gain	$I_{C} = 0.5 \text{ mA}; V_{CE} = 1 \text{ V}; T_{j} = 25 \text{ °C}$	50	80	200	
f _T	transition frequency	$I_C = 1 \text{ mA}; V_{CE} = 1 \text{ V}; f = 1 \text{ GHz};$ $T_{amb} = 25 \text{ °C}$	3.5	5	-	GHz
G _{UM}	maximum unilateral power gain	$I_{c} = 0.5 \text{ mA}; V_{CE} = 1 \text{ V}; f = 1 \text{ GHz}; T_{amb} = 25 \text{ °C}$	-	13	-	dB
F	noise figure	$I_{c} = 0.5 \text{ mA}; V_{CE} = 1 \text{ V}; f = 1 \text{ GHz}; T_{amb} = 25 \text{ °C}$	_	1.8	_	dB

DESCRIPTION

Code: N6

base

emitter

collector

LIMITING VALUES

In accordance with the Absolute Maximum System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{CBO}	collector-base voltage	open emitter	_	8	V
V _{CEO}	collector-emitter voltage	open base	_	5	V
V _{EBO}	emitter-base voltage	open collector	_	2	V
I _C	DC collector current		_	6.5	mA
P _{tot}	total power dissipation	up to $T_s = 170 \ ^{\circ}C$; note 1	-	32	mW
T _{stg}	storage temperature		-65	150	°C
Tj	junction temperature		-	175	°C

Note

1. T_s is the temperature at the soldering point of the collector tab.

3

1

Fig.1 SOT323.

Top view

2

MBC870

THERMAL RESISTANCE

SYMBOL	PARAMETER	CONDITIONS	THERMAL RESISTANCE
R _{th j-s}	thermal resistance from junction to soldering point	up to $T_s = 170 \ ^\circ C$; note 1	190 K/W

Note

1. T_s is the temperature at the soldering point of the collector tab.

CHARACTERISTICS

 T_j = 25 °C, unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
I _{CBO}	collector cut-off current	I _E = 0; V _{CB} = 5 V	-	_	50	nA
h _{FE}	DC current gain	$I_{C} = 0.5 \text{ mA}; V_{CE} = 1 \text{ V}$	50	80	200	
C _{re}	feedback capacitance	$I_{C} = 0; V_{CB} = 1 V; f = 1 MHz$	-	0.3	0.45	pF
f _T	transition frequency	$I_{C} = 1 \text{ mA}; V_{CE} = 1 \text{ V}; f = 1 \text{ GHz};$ $T_{amb} = 25 ^{\circ}\text{C}$	3.5	5	-	GHz
G _{UM}	maximum unilateral power gain (note 1)	I_{C} = 0.5 mA; V _{CE} = 1 V; f = 1 GHz; T _{amb} = 25 °C	-	13	-	dB
F	noise figure	$\Gamma_{s} = \Gamma_{opt}$; I _C = 0.5 mA; V _{CE} = 1 V; f = 1 GHz; T _{amb} = 25 °C	-	1.8	-	dB
		$\Gamma_{s} = \Gamma_{opt}$; I _C = 1 mA; V _{CE} = 1 V; f = 1 GHz; T _{amb} = 25 °C	_	2	-	dB

Note

1. G_{UM} is the maximum unilateral power gain, assuming S_{12} is zero and

$$G_{UM} = 10 \log \frac{|S_{21}|^2}{(1 - |S_{11}|^2)(1 - |S_{22}|^2)} dB.$$

In Figs 6 to 9, G_{UM} = maximum unilateral power gain; MSG = maximum stable gain; G_{max} = maximum available gain.

BFS25A

NPN 5 GHz wideband transistor

PACKAGE OUTLINE

SOT323

Product specification

NPN 5 GHz wideband transistor

BFS25A

DEFINITIONS

Data Sheet Status			
Objective specification	This data sheet contains target or goal specifications for product development.		
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.		
Product specification	This data sheet contains final product specifications.		
Limiting values			
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.			

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.