DISCRETE SEMICONDUCTORS

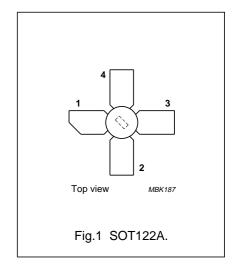
DATA SHEET

BFQ68 NPN 4 GHz wideband transistor

Product specification
File under Discrete Semiconductors, SC14

September 1995

BFQ68


DESCRIPTION

NPN transistor mounted in a four-lead dual-emitter SOT122A envelope with a ceramic cap. All leads are isolated from the stud. Diffused emitter-ballasting resistors and the application of gold sandwich metallization ensure an optimum temperature profile and excellent reliability properties. It features very high output voltage capabilities.

It is primarily intended for final stages in MATV system amplifiers, and is also suitable for use in low power band IV and V equipment.

PINNING

PIN	DESCRIPTION
1	collector
2	emitter
3	base
4	emitter

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	TYP.	MAX.	UNIT
V _{CEO}	collector-emitter voltage	open base	_	18	٧
I _C	collector current		_	300	mA
P _{tot}	total power dissipation	up to T _c = 110 °C	_	4.5	W
f _T	transition frequency	I_C = 240 mA; V_{CE} = 15 V; f = 500 MHz; T_j = 25 °C	4	_	GHz
Vo	output voltage	I_c = 240 mA; V_{CE} = 15 V; d_{im} = -60 dB; R_L = 75 Ω; $f_{(p+q-r)}$ = 793.25 MHz; T_{amb} = 25 °C	1.6	_	V
P _{L1}	output power at 1 dB gain compression	$I_c = 240 \text{ mA}; V_{CE} = 15 \text{ V}; R_L = 75 \Omega;$ $f = 800 \text{ MHz}; T_{amb} = 25 ^{\circ}\text{C}$	28	_	dBm
ITO	third order intercept point	I_c = 240 mA; V_{CE} = 15 V; R_L = 75 Ω; f = 800 MHz; T_{amb} = 25 °C	47	_	dBm

WARNING

Product and environmental safety - toxic materials

This product contains beryllium oxide. The product is entirely safe provided that the BeO disc is not damaged. All persons who handle, use or dispose of this product should be aware of its nature and of the necessary safety precautions. After use, dispose of as chemical or special waste according to the regulations applying at the location of the user. It must never be thrown out with the general or domestic waste.

Philips Semiconductors Product specification

NPN 4 GHz wideband transistor

BFQ68

LIMITING VALUES

In accordance with the Absolute Maximum System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{CBO}	collector-base voltage	open emitter	_	25	V
V _{CEO}	collector-emitter voltage	open base	_	18	V
V _{EBO}	emitter-base voltage	open collector	_	2	V
I _C	DC collector current		_	300	mA
P _{tot}	total power dissipation	up to T _c = 110 °C	_	4.5	W
T _{stg}	storage temperature		-65	150	°C
Tj	junction temperature		_	200	°C

THERMAL RESISTANCE

SYMBOL	PARAMETER	THERMAL RESISTANCE
R _{th j-c}	thermal resistance from junction to case	20 K/W

Product specification Philips Semiconductors

NPN 4 GHz wideband transistor

BFQ68

CHARACTERISTICS

T_i = 25 °C unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
I _{CBO}	collector cut-off current	I _E = 0; V _{CB} = 15 V	_	_	50	μΑ
h _{FE}	DC current gain	I _C = 240 mA; V _{CE} = 15 V	25	75	_	
f _T	transition frequency	I _C = 240 mA; V _{CE} = 15 V; f = 500 MHz	_	4	_	GHz
C _c	collector capacitance	I _E = i _e = 0; V _{CB} = 15 V; f = 1 MHz	_	3.8	_	pF
C _e	emitter capacitance	$I_C = I_C = 0$; $V_{EB} = 0.5 \text{ V}$; $f = 1 \text{ MHz}$	_	20	_	pF
C _{re}	feedback capacitance	I _C = 0; V _{CE} = 15 V; f = 1 MHz	_	2.3	_	pF
C _{cs}	collector-stud capacitance	note 1	_	0.8	_	pF
G _{UM}	maximum unilateral power gain (note 2)	I _C = 240 mA; V _{CE} = 15 V; f = 800 MHz; T _{amb} = 25 °C	_	13	_	dB
Vo	output voltage	note 3	_	1.6	_	V
P _{L1}	output power at 1 dB gain compression (see Fig.2)	I_C = 240 mA; V_{CE} = 15 V; R_L = 75 Ω; T_{amb} = 25 °C; measured at f = 800 MHz	_	28	_	dBm
ITO	third order intercept point (see Fig.2)	note 4	_	47	_	dBm

Notes

- 1. Measured with emitter and base grounded.
- 2. G_{UM} is the maximum unilateral power gain, assuming S_{12} is zero and

$$G_{UM} = 10 \log \frac{|S_{21}|^2}{(1-|S_{11}|^2)(1-|S_{22}|^2)} dB.$$

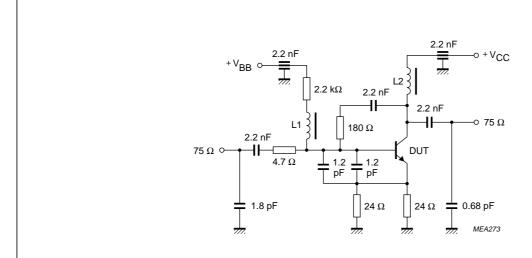
3. $d_{im} = -60 \text{ dB}$ (see Figs 2 and 7) (DIN 45004B); $I_C = 240 \text{ mA}$; $V_{CE} = 15 \text{ V}$; $R_L = 75 \Omega$; $T_{amb} = 25 ^{\circ}\text{C}$;

$$\begin{split} &V_p = V_o \text{ at } d_{im} = -60 \text{ dB; } f_p = 795.25 \text{ MHz;} \\ &V_q = V_o \ -6 \text{ dB; } f_q = 803.25 \text{ MHz;} \end{split}$$

$$V_{q} = V_{o} -6 \text{ dB}$$
; $f_{q} = 803.25 \text{ MHz}$

$$V_r = V_o -6 dB$$
; $f_r = 805.25 MHz$;

measured at $f_{(p+q-r)} = 793.25$ MHz.

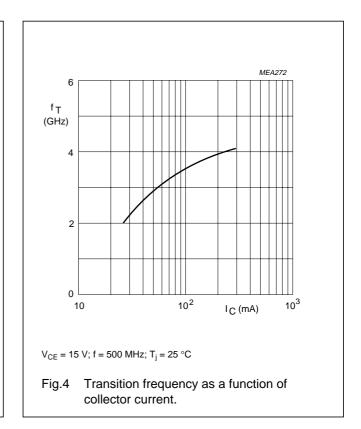

4. I_C = 240 mA; V_{CE} = 15 V; R_L = 75 Ω ; T_{amb} = 25 $^{\circ}C$;

$$P_p = ITO - 6 dB; f_p = 800 MHz;$$

$$P_q = ITO - 6 dB$$
; $f_q = 801 MHz$;

measured at $f_{(2q-p)}$ = 802 MHz and at $f_{(2p-q)}$ = 799 MHz.

BFQ68

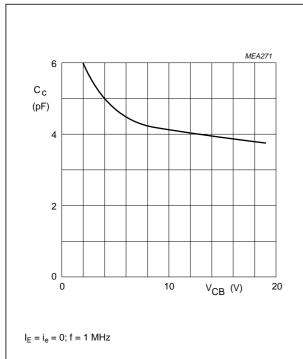
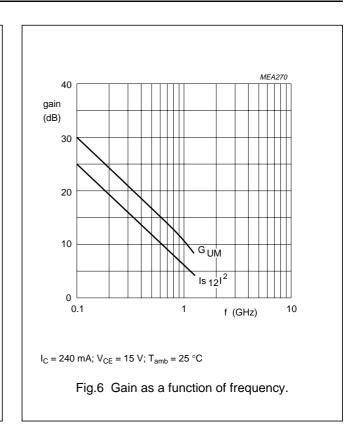
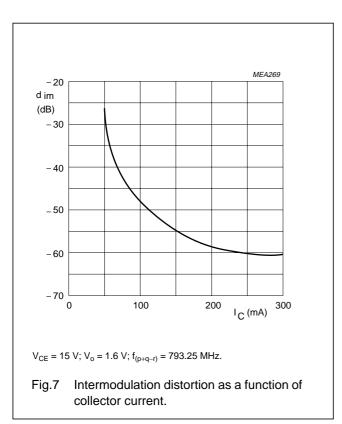

f = 40 to 860 MHz.

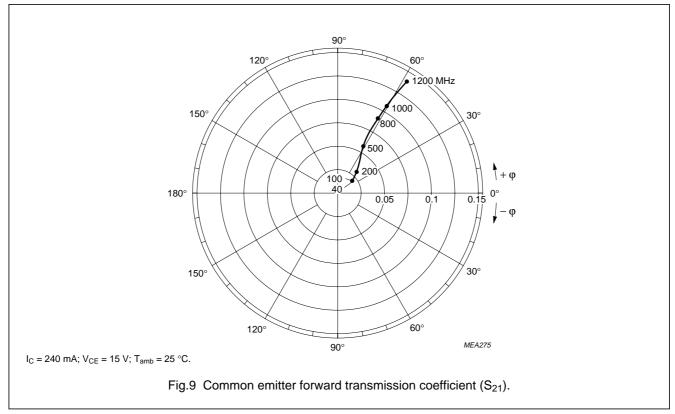
 $L1 = L2 = 5 \mu H$ Ferroxcube choke.

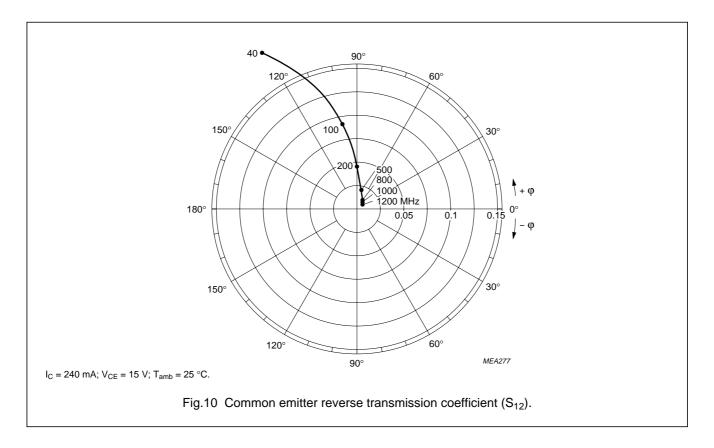
Fig.2 Intermodulation distortion MATV test circuit.

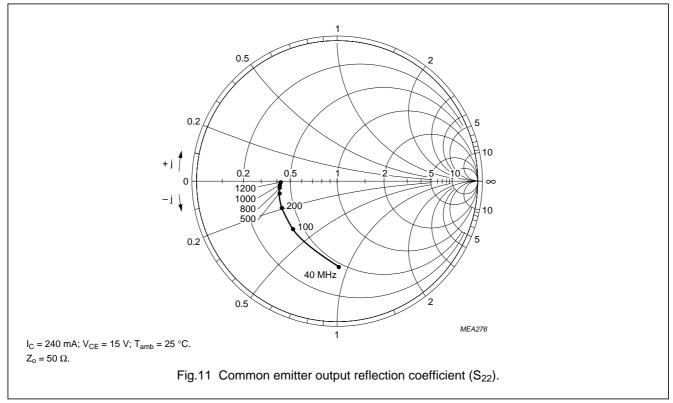
current.

BFQ68

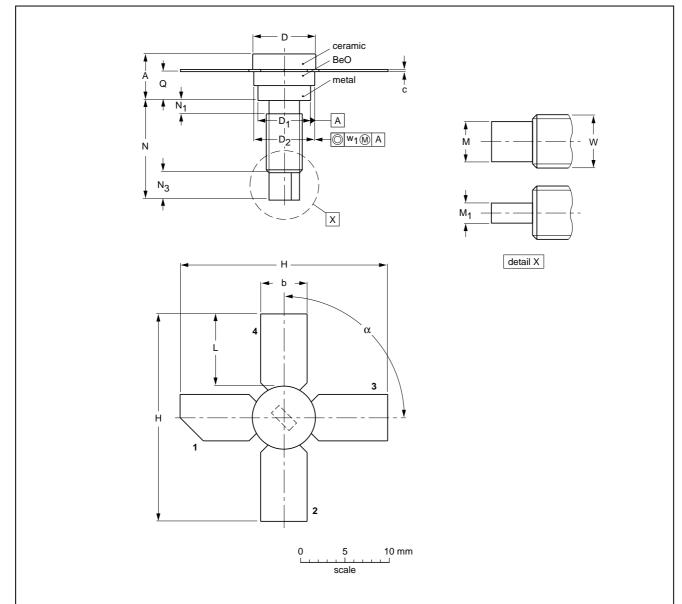





Fig.5 Collector capacitance as a function of collector-base voltage.




BFQ68

BFQ68



BFQ68

PACKAGE OUTLINE

Studded ceramic package; 4 leads

SOT122A

DIMENSIONS (millimetre dimensions are derived from the original inch dimensions)

UNIT	Α	b	С	D	D ₁	D ₂	н	L	М1	М	N	N ₁ max.	N ₃	Q	w	w ₁	α
mm	5.97 4.74	5.85 5.58	0.18 0.14	7.50 7.23	6.48 6.22	7.24 6.93	27.56 25.78	9.91 9.14	3.18 2.66	1.66 1.39	11.82 11.04	1.02	3.86 2.92	3.38 2.74	8-32 UNC	0.381	90°

OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	EIAJ	PROJECTION	1330E DATE
SOT122A					97-04-18

Philips Semiconductors Product specification

NPN 4 GHz wideband transistor

BFQ68

DEFINITIONS

Data Sheet Status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.