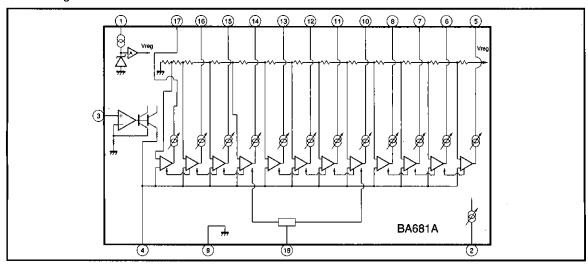
LED level meter driver, 12-point, power scale, dot or bar display BA681A

The BA681A is a monolithic IC for LED power meter applications. The display level range is 6mV_{rms} to 359mV_{rms} (typ.) divided into 12 points with repeated interval spacings of 3dB, 3dB and 4dB. The 0dB level is 180mV_{rms} (typ.) and the range is —30dB to +16dB. The constant current outputs can be set using external components allowing use of different color LEDs in various combinations.

Applications


Level meters for radio cassettes, car stereos, and home stereos

Features

- 1) 12-point power meter driver for bar/dot displays.
- Fixed-current outputs that can directly drive LEDs.
- Output current can be set using external resistors allowing different types of LEDs to be used in combination.
- 4) Built-in half-wave rectifier amplifier.

- LED on and off timing can be set using an external capacitor and resistor.
- With bar-type display, by connecting four LEDs in series, power consumption is reduced.
- 7) Each group of three LEDs is a 10dB step which is ideal for power meter applications.

Block diagram

●Absolute maximum ratings (Ta = 25℃)

Parameter	Symbol	Limits	Unit
Supply voltage	Vcc	15	٧
Power dissipation	Pd	1100 *	mW
Operating temperature	Topr	−25~75	°C
Storage temperature	Tstg	−55~125	r

^{*} Reduced by 11.0mW for each increase in Ta of 1°C over 25°C.

●Electrical characteristics (unless otherwise specified Ta = 25°C, Vcc = 12V, and f = 1kHz)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	Test Circuit	
Supply voltage range	Vcc	10	12	14	٧	When VF (LED) = 2V	Fig.1	
Quiescent current	lα	_	5	10	mA	V _{IN} =0V	Fig.1	
LED current setting range	ILED		_	20	mA	Set using R ₁ (see Fig. 3)	Fig.1	
Pin 5 LED current	1LED	12	15	18	mA	$R_1=27k\Omega$	Fig.1	
LED current deviation	ΔILED	-1.5	0	1.5	mA	R ₁ =27kΩ With respect to the pin 5 ILED value.	Fig.1	
Sensitivity	V _{IN}	0.12	0.18	0.24	V _{rms}	On level for comparator 10.	Fig.1	
Comparator level 1	V _{C1}	-31.5	-30	-28.5	dB	Pin 17 output	Fig.1	
Comparator level 2	Vcz	_	-27	_	dB	Pin 16 output (use VR1 to adjust the offset)	Fig.1	
Comparator level 3	Vca	-25.0	-24	-23.0	dB	Pin 15 output	Fig.1	
Comparator level 4	V _{C4}	-21.5	-20	-18.5	dB	Pin 14 output	Fig.1	
Comparator level 5	Vcs	-18.5	-17	-15.5	dB	Pin 13 output	Fig.1	
Comparator level 6	V _{C6}	15.5	-14	-12.5	dΒ	Pin 12 output	Fig.1	
Comparator level 7	V _{C7}	-11.0	-10	-9.0	dВ	Pin 11 output	Fig.1	
Comparator level 8	Vce	-8.0	- 7	-6.0	dB	Pin 10 output	Fig.1	
Comparator level 9	Vce	-5.0	-4	-3.0	dΒ	Pin 8 output	Fig 1	
Comparator level 10	V _{C10}	_	0	_	dB	Pin 7 output (Vcto level is 0dB)	Fig.1	
Comparator level 11	V _{C11}	2.0	3	4.0	фB	Pin 6 output	Fig.1	
Comparator level 12	V _{C12}	4.5	6	7:5	dB	Pin 5 output	Fig 1	

Comparator level vs. AC and DC input levels

Comparator level Vc	1	2	3	4	5	6	7	8	9	10	11	12
dB display (dB)	-30	-27	-24	-20	-17	-14	-10	7	-4	0	+3	+6
AC input level (mV _{rms})	5.7	8.0	11.4	18	25	36	57	80	114	180	254	359
DC input level (mV)	7.3	10.3	14.5	23	32	46	72	103	145	230	325	459

●Test circuit

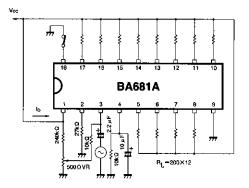
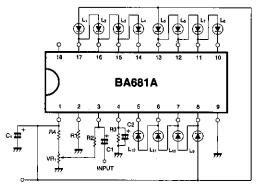



Fig. 1

● Application example

(1) Bar display connections

Note: Ensure that the voltage on the LED current output pins (5 to 6 and 10 to 17) is always 2V of more. If the voltage is below 2V, the current may drop significantly Take particular care when using high Vr LEDs in ber display applications.

(2) Dot display connections

Recommended values $R_1=27k\Omega \ (\text{green LED}) \text{ or } 39 \text{ to } 47k\Omega \ (\text{red LED})$ $R_2=10k\Omega \ \ C_1=2.2 \ \mu F$ $R_3=10k\Omega \ \ C_2=10 \ \mu F$ $R_4=240k\Omega \ \ C_3=10 \ \mu F$ $VR_1=500\Omega \ \ (\text{these values are the same for both bar and dot display)}$

Fig.2

External components

(1) LED current setting resistor (R₁)

This resistor sets the LED current value. Refer to Fig. 3 for the relationship between the value of this resistor and the current value. The recommended value is $27k\Omega$ for green LEDs, and $39k\Omega$ for red LEDs.

If the LED current is set too high, the allowable power dissipation of the package may be exceeded, so exercise due caution.

(2) Input coupling capacitor (C1)

This capacitor connects the BA681A to external input circuits. The recommended value is 2.2 μ F.

(3) Input bias resistor (R2)

This resistor is the input impedance. If the value is set too large, the DC bias voltage will increase, and the input offset will increase and have an effect on the comparators. The recommended value is $10k\,\Omega$.

(4) Resistor and capacitor that set the LED operation level discharge time constant (R_3 and C_2)

These components set the discharge time constant for LED operation level. The recommended values are R_3 = 10k Ω and C_2 = 10 μ F.

(5) Input offset adjustment resistors (R4 and VR1) These resistors are used to adjust the input offset for

These resistors are used to adjust the input offset for the rectifier amplifier.

The recommended values are $R_4=240k\,\Omega$, and $VR_1=500\,\Omega$. If the value of VR_1 is too high, adjustment becomes difficult, and if it is too small, adjustment may not be possible.

(6) Power supply capacitor (C3)

This capacitor stabilizes the power supply line.

The recommended value is 10 μ F. This capacitor will have no effect if its value is 1 μ F or less.

Operation notes

(1) LED connection

Connect the LEDs as indicated in Fig. 2. Note that the connection methods are different for bar and dot displays, and that in the case of bar display, pin 18 is open, while for dot display, pin 18 is connected to GND.

When using different color LEDs that have different current values (e.g. green for the lower 10 LEDs and red for the top two) set the value of the current to the larger LED current using the external resistor, and adjust the current value for LEDs that require a smaller current by connecting resistors in parallel them. If you wish to remove LEDs, do so from the lowest level (except when the 12th LED is not used for display alignment).

Be certain to short unused LEDs.

(2) LED current adjustment

The LED current is set using R_1 . The relationship between the value of R_1 and the typical LED current is given in Fig. 3.

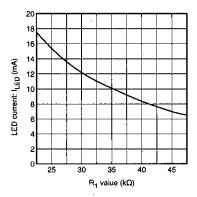


Fig. 3 LED current vs. R, setting

(3) Comparator voltage

In the case of the BA681A, the comparator voltage is the input voltage when about half LED current setting value (typ.) is flowing in an LED.

Therefore, if the LED current is set to 16mA, the comparator voltage is the value when 8mA is flowing in the LED.

(4) 0dB and input offset adjustment

First, adjust the input signal so that the 10th LED lights. This is the 0dB input signal level. Next, lower the input signal level to $-27 \mathrm{dB}$, and adjust the offset adjustment potentiometer VR1 so that the 2nd LED lights.

Repeat the 0dB and $-27\mathrm{dB}$ adjustments alternately to accurately set the levels.

The input level at which an LED lights is the comparator voltage.

(5) The BA681A GND (pin 9) and the external component earths should connected together at one point.

(6) Application example (display)

LED	V 12	V 11	V 10	> 0	V 8	V 7	V 6	V 5	V 4	V 3	V 2	V 1
50W	100	50	25	10	5	2.5	1	0.5	0.25	0.1	0.05	0.03
class	W	W	W	W	W	W	W	W	W	W	W	W
50W class	*	100 W	50 W	20 W	10 W	5 W	2 W	1 W	0.5 W	0.2 W	0.1 W	*
100W	200	100	50	20	10	5	2	1	0.5	0.2	0.1	0.06
class	W	W	W	W	W	W	W	W	W	W	W	W
200W	400	200	100	40	20	10	4	2	1	0.5	_	*
class	W	W	W	W	W	W	W	W	W	W	*	

^{*} Location of unused LEDs.

●Tape deck application example

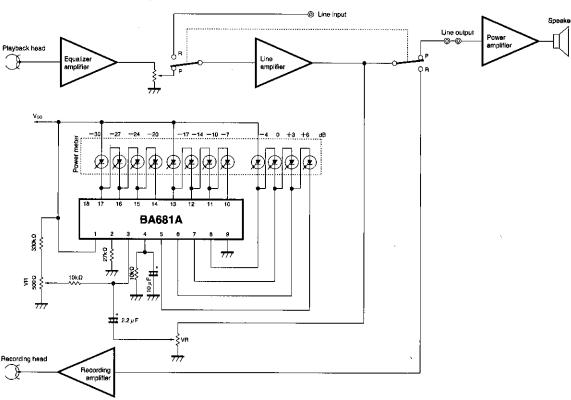
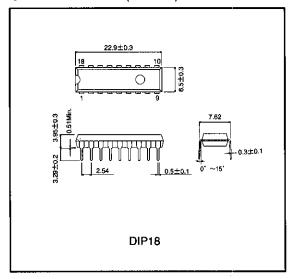



Fig. 4

●External dimensions (Unit: mm)

Notes

- The contents described in this catalogue are correct as of March 1997.
- No unauthorized transmission or reproduction of this book, either in whole or in part, is permitted.
- The contents of this book are subject to change without notice. Always verify before use that the contents are the latest specifications. If, by any chance, a defect should arise in the equipment as a result of use without verification of the specifications, ROHM CO., LTD., can bear no responsibility whatsoever.
- Application circuit diagrams and circuit constants contained in this data book are shown as examples of standard use and operation. When designing for mass production, please pay careful attention to peripheral conditions.
- Any and all data, including, but not limited to application circuit diagrams, information, and various data, described in this catalogue are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO., LTD., disclaims any warranty that any use of such device shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes absolutely no liability in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices; other than for the buyer's right to use such devices itself, resell or otherwise dispose of the same; no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by ROHM CO., LTD., is granted to any such buyer.
- The products in this manual are manufactured with silicon as the main material.
- The products in this manual are not of radiation resistant design.

The products listed in this catalogue are designed to be used with ordinary electronic equipment or devices (such as audio-visual equipment, office-automation equipment, communications devices, electrical appliances, and electronic toys). Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers, or other safety devices) please be sure to consult with our sales representatives in advance.

Notes when exporting

- It is essential to obtain export permission when exporting any of the above products when it falls under the category of strategic material (or labor) as determined by foreign exchange or foreign trade control laws.
- Please be sure to consult with our sales representatives to ascertain whether any product is classified as a strategic material.