
Controlling FPGA Configuration with a
Flash-Based Microcontroller

Introduction
SRAM-based FPGAs like the Atmel
AT6000 series come more and more
into use because of the many advan-
tages they offer. Their reconfigurability
allows the user to implement more gates
in his application than the FPGA actually
has, simply by loading the gates as
needed into the FPGA. This is also
called “Cache Logic .” For an efficient
use of cache logic, the FPGA must meet
the following requirements: partial re-
configurability, a fast reconfiguration
process and full architectural symmetry.

The FPGA can control and change its
configuration itself, but this can also be
done in a very elegant way by a micro-
controller. After the configuration proc-
ess or in-between two configuration cy-
cles it can be used for other purposes
and is not lost for the application. The
different options for space-saving reali-
zation, design protection or for fast, flex-

ible reconfiguration are shown in this ap-
plication note. The microcontroller used
here is the Atmel AT89C51 which is fully
compatible to the industry standard
i8031.

Configuration Data Transfer
between the FPGA and the
Microcontroller
The amount of information that makes
up the configuration information for the
FPGA is called a bitstream. It is a file
stored somewhere in a memory section.
Figure 1 shows how this bitstream is
structured:

The bitstream begins with a token, the
preamble, which indicates the beginning
of the header section that contains
global information concerning the whole
configuration cycle. This is followed by
the configuration information for the
core cells and by the I/O configuration.

8-Bit
Microcontroller
with Flash

Application
Note

0508A

Figure 1. Bitstream Structure

Microcontroller

 4-21

The postamble indicates the end of the bitstream.

These data are simply some data bytes that are sent one
after another to the FPGA as a text file is sent to a printer.
This is done in a serial or parallel fashion by implementing
a transfer protocol that is not much different from the
transfer protocol of a printer port.

The connections between an FPGA and a microcontroller
for serial data transport are shown in Figure 2. Only 7 lines
are used enabling full control of the configuration cycle.

11

75

74

M0

M1

M2

D0

CCLK

/CON

/CS

/CSOUT

/ERR

/CHECK

31

32

33

43

35

38

37

FPGA (PLCC84)

33

34

35

36

37

38

39

AT89C51

Port 0

Reboot

Vcc

Figure 2. Connecting an Atmel FPGA with the AT89C51.

The microcontroller can force a complete reset of the
whole FPGA by applying the mode 0 to the mode control
lines. The state entered by the FPGA is the same state it
will enter after power-up. All I/Os are in tristate mode. The
exact timing is shown in Figure 3.

After triggering the reboot cycle, the FPGA will pull the
/CON line to low. The microcontroller can check this line
and detect the end of the cycle.

After a reboot cycle /CS and /CON are held high for two
clock cycles. The microcontroller can then select an FPGA

/CCLK

I/Os

/CS

/CON

M0,1,2 XXX 0

30ns 2 clock cycles

Reboot Time

XXX

Figure 3. FPGA Reset Timing

4-22 Microcontroller

through the /CS line for configuration and start the configu-
ration cycle by pulling /CON low. With each clock pulse on
the CCLK line one bit of the bitstream transfers to the
FPGA. The first transferred bit is the LSB of the preamble,
the last transferred bit is the MSB of the postamble. To
ensure the correct function of the internal state machine of
the FPGA, 24 clock pulses are applied before and after a
configuration cycle, for correctly entering the standby state
between two configurations. These clock pulses are ap-
plied before /CON is pulled low and after /CON goes high.
With the transition from low to high the FPGA indicates

that the configuration cycle has ended. The exact timing is
shown in Figure 4.

This is the configuration mode 3 that is used for configur-
ing several cascaded FPGAs. In this case all lines are
brought to all FPGAs in parallel, except for the /CS lines.
These connect to the /CSOUT pins of the preceding
FPGAs in the chain. Only one bitstream that contains sev-
eral configurations is needed to serve all FPGAs. The
postambles are replaced by preambles to separate them.
When the first FPGA in the chain sees a new preamble
instead of a postamble, it will activate ist /CSOUT pin. The

M0,1,2

/CON

/CS

/CCLK

D0

Preamble LSB

3

Figure 4. FPGA Configuration Cycle Timing

11

75

74

31,30,29,
28,27,24,
23,22

M0

M1

M2

CCLK

/CON

/CS

/CSOUT

/ERR

/CHECK

32

33

43

35

38

37

D0..D7

FPGA

34

35

36

37

38

39

Port 1

AT89C51

Port 0

Reboot

Vcc

Figure 5. Parallel Data Transfer

Microcontroller

 4-23

next FPGA in the chain is ready to accept the new configu-
ration information, and so on.

Another possibility is to connect all /CS lines to the micro-
controller so that it can select the next FPGA to be config-
ured. All other lines are brought to all FPGAs in parallel. In
this case normal bitstreams are sufficient, not the special
bitstream that is explicitly generated and contains several
preambles as described above.

If an error occurs during configuration, the microcontroller
can detect this through the /ERR line. When the error is
detected from the FPGA, e.g., an invalid preamble, this
line will be pulled low to indicate the error to the microcon-
troller. When using several FPGAs the error lines can all
be connected since this is an open collector output that
can be WIRE-OR’ed. The microcontroller asserts the
/CHECK line to determine whether the FPGA is reconfig-
ured. It also compares the bitstream it receives with the
information that is already stored in the configuration
memory within the FPGA. In the case of a difference the
/ERR line is asserted.

If only reconfiguration of the FPGA without wanting error
detection, the number of lines are reduced to three. /CS is
tied to GND so that the FPGA is always selected. The mi-
crocontroller only has to provide the signals /CON, the
configuration clock CCLK, and the data line. This solution
uses the least board space.

With parallel data transfer, as shown in Figure 5, 8 data
lines instead of one are used to transfer one data byte in-
stead of one data bit per clock cycle. The configuration
time is therefore much shorter. For these data lines, the
normal data bus of the microcontroller is used, and the
data transfer is controlled through the /WR signal of the
controller. Reconfiguration of the FPGA is just like writing
to an external RAM.

For a system where reconfiguration of the FPGA makes
part of the regular system function this might be the most
flexible solution. In this mode 6 as illustrated in the data
book several FPGAs are cascaded as well. In this case, all
lines except for /CS are brought to all FPGAs in parallel.
/CS is connected to /CSOUT of the preceding FPGA in the
chain to configure several FPGAs with one bitstream. The
microcontroller can control the /CS pins to select the
FPGA to be reconfigured as in a memory-mapped ap-
proach. The exact timing is shown in Figure 6.

Options for Storing Configuration Data
For storing the configuration data within the system there
are different possibilities, each having its advantages and
disadvantages.

The first possibility consists of using the internal memory
of a controller to store the configuration information. At first
glance this might look like a waste but it offers distinctive
advantages that enable certain applications. The micro-
controller AT89C51 has an internal memory of 4 Kbytes,
so that a full configuration of the AT6002 and an additional
1.4 Kbytes of program are stored. In this case only two
chips make up the whole system which saves board
space. The configuration data is also protected by the lock
bits of the controller preventing it from being reverse-engi-
neered.

Another possibility is to store the data in a parallel flash or
EPROM memory that is handled by the microcontroller. If
a flash memory is used, the configurations are changed
through the serial link of the microcontroller simply by
downloading a new configuration into the flash memory.
Depending on the size of the memory, many configura-
tions are stored in the system. For example, for a 5000
gate FPGA, the AT6005, requires only 8 Kbytes of con-
figuration data. The address space of an AT89C51 con-
troller is 64 Kbytes of data memory. This amounts to eight

M0,1,2

/CON

/CS

/CCLK

D0..7

Preamble

6

Figure 6. FPGA Select Timing

4-24 Microcontroller

full configurations (or 40000 gates) or, more partial con-
figurations where the bitstream is much smaller depending
on how much is changed in a cycle.

The software controlling the FPGA configuration resides
within the internal memory of the microcontroller and only
needs to know the start address of the bitstreams. It can
detect the end itself by searching for the postamble. An-
other possibility might be a control program that after
power-up searches the whole data memory for preambles
(for bitstreams). Then the controller receives the com-
mand to download the second configuration into the third
FPGA by its serial interface, and downloads this configu-
ration into the FPGA, and so on. To control this approach,
careful system planning is necessary in order not to de-
stroy a working function.

When using parallel memories instead of serial memories,
the configuration is done very fast. Serial memories are
more space-efficient, but slower. In space-sensitive appli-
cations they can be a solution. There are serial memories
that are connected to an FPGA directly. They allow only
one configuration, and they are costly. When using a mi-
crocontroller, standard serial memories are used that are
cheaper and store more than one configuration. For exam-
ple, if an AT24C64 serial memory with 12C bus interface
is used, more than 3 full configurations for the AT6002 is
stored.

Software Examples
Provided that a configuration cycle has finished with the FPGA releasing the /CON line, a subroutine for transferring a
configuration bitstream to a FPGA is relatively simple. In the case of parallel data transfer it is seen as the following:

config: MOV DPTR, #200H ;start address bitstream
loopl: MOVX A, @DPTR ;load byte of bitstream

MOV P1, A ;output at port 1
SETB P0.5 ;one clock pulse high
CLR P0.5 ;clock low
INC DPTR ;next byte
JNB P0.1, error ;ERR is low?
JNB P0.4, loopl ;if CON is low, continue
RET ;configuration finished

error: do something. . .

In the case of serial data transfer a byte of the bitstream has to be converted from parallel to serial, but this is done with
ROTATE instructions:

RRC A ;first bit to carry
MOV P1.6, C ;output carry as data bit
RRC A ;second bit to carry
MOV P1.6, C ;output carry as data bit
RRC A ;third bit to carry
MOV P1.6, C ;output carry as data bit

. . .

A similar approach is applied in the case of a serial memory containing the configuration bitstreams. The microcontroller
assembles them to a byte. When configuring in serial mode, this bit is handed over directly to the FPGA.

When storing several configurations in the address space of a microcontroller, it is complicated and error-prone to change
the start addresses of the bitstreams within the microcontroller program. Another possibility is shown in the following code
example: a table of 8 start addresses is created and the microcontroller searches the address space for bitstreams. Each
time he finds a beginning, the start address is stored in the table. With this approach several configurations are stored at
variable locations. In this example it is assumed that every bitstream begins with the preamble and the control register
content is 00 hex (this is the second byte of the bitstream). This program is simply to show the principles applying. It is
also assumed that an AT89C51 with 4 Kbytes internal memory is used and the bitstreams are stored starting with address
1024 (0400 hex).

Microcontroller

 4-25

CONTABLE db 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
;space for 8 16-bit pointers

NUM_CONFIG db 0 ;number of configuration
PREAMBLE EQU #10110010B
POSTAMBLE EQU #01001101B
CONTROLREG EQU #00000000B ;adjust to desired value

detect: MOV DPTR, #0400H ;start searching at 0400
MOV R0, NUM_CONFIG ;actual config address is held in R0

loopl: MOV A, @DPTR ;load byte
INC DPTR ;next byte
MOV R1, DPH ;load high byte DPTR
CJNE R1, #10H, cont1 ;continue, if address below #1000H (that is,

;#4096D for a 89C51 that has 4KB of internal

;memory)
AJMP overrun ;else stop searching (end of memory)

cont1: CJNE A, PREAMBLE, loop1 ;preamble found?

MOV A, DPL, ;save DPTR low byte
MOV @R0, A
INC R0
MOV A, DPH ;save DPTR high byte
MOV @R0, A
INC R0 ;next pointer location

loop2: MOV A, @DPTR ;continue searching
INC DPTR ;next byte
MOV R1, DPH ;test end of memory
CJNE R1, #10H, cont2
AJMP overrun

cont2: CJNE A, CONTROLREG, loop2 ;control reg found?
loop3: MOV A, @DPTR ;yes, continue

INC DPTR ;next byte
CJNE A, POSTAMBLE, loop3 ;postamble found?
INC DPTR ;continue searching

MOV R1, DPH ;text end of memory

CJNE R1, #10H, cont3

AJMP overrun

AJMP loop1 ;for preamble

overrun RET ;end of subroutine

When it is known how many configurations are stored in the memory and where they are, they can be transferred to the
FPGA. for example, through commands received with the serial interface of the microcontroller.

A similar program can be written for storing the configuration data in serial memories, but here the bits have to be assem-
bled to bytes first in order to search for the preamble.

4-26 Microcontroller

Encryption and Security
SRAM-based FPGAs always receive their configuration
from the outside. Besides all advantages this offers, e.g.,
reconfigurability or testability, there can be problems with
security and protection of the design. When the configura-
tion is stored in a serial or parallel memory that is read
directly by the FPGA, this memory can be copied. In this
case no protection is available.

The problem is only half as difficult as it seems because
simply copying the configuration is not the whole job. This
can only be used to copy the system, but the logic function
of the FPGA is very difficult to deduce from the bitstream.
The relation between a certain bit in the bitstream and the
function it controls is very difficult to determine. Therefore,
the circuit realized with the FPGA is very difficult to re-
verse-engineer.

When using a microcontroller to configure the FPGA, ad-
ditional security mechanisms are implemented. The bit-
stream can be encrypted before storing it in the system
memory so that the microcontroller decrypts the bitstream
before sending it to the FPGA. The key is hidden within the
microcontroller or with external means, e.g., a smartcard
or identification number.

Even with very basic operations a high degree of security
is reached. For example, if all bits of the bitstream are in-
verted the configuration bitstream is useless for the FPGA.
Another way is to exchange some bytes with others
through a table. This is a very easy and therefore fast op-
eration that will slightly slow down the configuration proc-
ess and will result in a high level of protection.

Using the option indicated above (storing the configuration
information within the internal memory of the controller)
has other advantages. With the lock bits of the controller
access to the memory can be inhibited even when the mi-
crocontroller is put on a programmer. With the chip-erase
function of the Atmel microcontrollers, the whole memory
array can be erased in 10ms when the part of the system
is accessed, e.g., by opening the case or entering a wrong
identification number three times. This also works when
the configuration is not stored within the microcontroller,
but only the key number is stored.

There are still weak points in the system. These are made
up by the data and control lines between the FPGA and
the microcontroller. They are sampled with a logic ana-
lyzer and the configuration information is extracted from
the timing diagram. This is difficult, but not impossible.
One needs to know the parts that are used in the system;

the right key or identification number, and a running sys-
tem for analyzing it. Only then the configuration for one
given moment is known. It does not infer that the system
can be copied. If partial reconfiguration is used, the design
can be partitioned in two or more parts. The major part is
transferred unencrypted and some few cells of central im-
portance are transferred at another point of time or from
the outside. A system that changes itself frequently is
much harder to copy or reverse-engineer. Other tricks
such as custom-marking the FPGA (so it is thought to be
an ASIC), additional power and ground pins help to dis-
guise the identity of the used part. By implementing all
these methods, the process of copying the design is com-
plicated, but there is no absolute security.

Conclusion
The following table shows the different options for parallel
or serial configurations in conjunction with parallel or serial
configuration storage. The given configuration times are
for full configuration of an AT6005 without encryption. An
AT89C51 microcontroller with a clock frequency of 24
MHz is used. For assessing the necessary board space, it
was assumed that the microcontrollers are used with QFP
packages and the memories are used in SOIC or TSOP
packages.

Connection to
FPGA Serial Serial Parallel Parallel

External
Memory Serial Parallel Serial Parallel

Space
Requirements 199mm2 329mm2 199mm2 329mm2

Configuration
Time 93ms 61ms 61ms 30ms

The space requirements are mainly determined by the
chosen memory. It is difficult to assess the board space
required by parallel or serial wiring. Either one will be de-
termined by application requirements, that is, fast recon-
figuration or small space. Configuration time is more de-
pendent on the connection between the controller and the
FPGA; the memory connection is not as important.

It is obvious that controlling the configuration of FPGAs
with the help of microcontrollers is implemented very eas-
ily. When a controller is already in use within the system,
only one additional port is required, and some space in the
flash memory that might already be in the system as well.
Flexibility in the design is increased and additional fea-
tures can easily be implemented.

Microcontroller

 4-27

