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APPLICATION NOTE 
68030 DRAM Controller Design Using Verilog HDL

by Phil Rauba, Motorola Field Applications Engineer

Purpose

This article is intended to give a hardware engineer insight
into the design methodology of using the Verilog Hardware
Descriptive Language (HDL), targeting Motorola’s field
Programmable Array (MPA) and H4C gate array families. The
advantage of using an HDL, such as Verilog, is the ability to
retarget the design to other device technologies, by only
resynthesizing the design description. A 68030 Dynamic Ram
Controller design was used to demonstrate the portability of
the Verilog language, and included all of the circuits necessary
to interface DRAM to a 68030 microprocessor including:
memory decoding, STERM generation, refresh request
generation, CAS before RAS refresh, burst address
sequencing, DRAM address multiplexing, and bus error
time–out.

Design Methodology

The DRAM Logic was designed with a synchronous state
machine design technique and described using the Verilog
Hardware Descriptive Language, with the intent of providing a
portable and easily maintainable design. The design tools
used for this project are listed in Appendix A. The steps
included in the design process include the system block
diagram definition, state diagram generation, Verilog HDL
logic definition, Verilog logic simulation, Verilog logic
synthesis, place and route, and Verilog post simulation.

Figure 4–1. Verilog Design Method
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The Verilog Design Methodology, Figure 4–1, illustrates the
design flow beginning with the generation of the Verilog RTL
source code. The DRAM design used a hierarchical module
development methodology, which partitioned the design into
eight submodules and instantiated each of the submodules
into the design through a top module description designated
as module glue68k. A stimulus module was also created that
provided the test bench for verification of simulation code. The
stimulus module included a 25MHz clock generator module, a
behavioral 68030 bus controller module, and the instantiation

of the top glue68k module, designated with the instance name
of u1. As each Verilog submodule was written, the code was
verified logically with the use of the stimulus module and the
waveform capabilities of the Verilog simulator.

Once the design was logically verified, the original Verilog
source code, that was used for simulation, was also used for
synthesis. Each module of the hierarchical design was
synthesized separately so that if a module needed to change,
only that module would have to be resynthesized, saving
considerable time by not having to resynthesize the entire
design.

Since different tools were used for the logic synthesis, when
targeting MPA and gate array, different methods were used
during the synthesis process. For MPA development, the
Exemplar tool was used for synthesizing each of the
submodules individually. When synthesizing the top glue68k
module, two passes were used with the Exemplar tools, one to
generate submodule connectivity and the other to read and
reformat the Verilog netlist. Empty submodules were
instantiated in the design during the first pass of the Exemplar
logic synthesizer with a Verilog netlist being generated. The
Verilog glue68k netlist was then edited to add the links to the
submodules by using the include command, referencing each
of the submodule’s file pathname. A final netlist was output
from the second pass of the synthesizer, which read the eight
Verilog netlists from the links in the top module, and
reformatted the file to an EDIF netlist.

For gate array development, Synopsys was used for
synthesis of the design. Each of the eight submodules and the
top module, glue68k were read into Synopsys and
synthesized all at one time without having the need to use the
include command.

The EDIF netlist is used by the MPA and gate array place
and route tools to generate the final design files. The MPA
design procedure was to create a project, select the target
device (MPA1036 181 pin PGA), input the EDIF netlist, place
and route the design, and back–annotate into a structural
Verilog netlist.

After placing and routing the DRAM MPA design, the
structural Verilog netlist was used for post simulation. The
structural Verilog netlist generated by the place and route
back–annotation tool, contains precise MPA1036 gate and
path delays to accurately predict the timing behavior of the
final placed and routed design. Post simulation is useful for
verifying and altering the design, if needed, before a printed
circuit board is required. For post simulation, a modified
version of the presimulation stimulus file was written to reflect
the net name changes that were incurred by use of the design
tools, but included the same clock and 68030 bus controller
test suites as before. Final simulation of the DRAM design
required the structural Verilog netlist module, the stimulus
module, and the Verilog MPA1000 series gate primitive library,
that was supplied with the MPA design system.
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System Description

Bursting is a feature in the newer generation of CISC/RISC
microprocessors that is comprised of a memory access of four
long words of 32 bits each. The DRAM burst cycle is initiated
by first generating a RAS cycle access and a CAS cycle
access for the first long word, and then fetching the next three
long words by generating only CAS cycles thereafter. The
intention of the burst cycle is to divide the RAS cycle
generation overhead of the first access amongst all four
longword fetches; thereby, providing an overall access
performance improvement as compared to single RAS
generation for each longword.

The system block diagram is shown in Figure 4–2 and
includes a 68030 microprocessor, a 16MByte dram array
using 4Mx4 DRAMs, data bus drivers, and the MPA (or gate
array). The MPA provides all of the DRAM interface circuitry
needed to support 68030 bursting.

MPA Functional Description

The block diagram functional description of the MPA is
shown in Figure 4–3 and shows all of the modules within the
design, including the refresh timing generator, the refresh
request state machine, the address decoder, the RAS/CAS
state machine, the RAS/CAS decoder logic, the burst control
state machine, the burst address generator, the DRAM
address multiplexer, and the bus error time–out state
machine.

MPA Timing Synchronization

As indicated in the MPA functional block diagram
Figure 4–2, the main clock for all the state machines is the
inverted 25MHz clock to the 68030. Since all of the output
timing out of the 68030 is referenced to the falling edge of the
processor’s 25MHz clock, the clock is inverted and is used for
clocking the MPA’s internal registers. A delay line (not shown)
will be needed for moving the assertion point of the address
strobe signal with respect to the internal clock skew within the
target device to prevent flip–flop metastable conditions. The
delay line value will be dependent on the actual clock skew
within the MPA or gate array.

Refresh Timing Generator

The refresh timing generator provides a 97.656KHz refresh
request square wave with a period of 10.24usec for the refresh
request state machine. The generator is comprised of a eight
bit free running up counter with a 25MHz clock source.

Refresh Request State Machine

The refresh state machine receives the 97.656KHz refresh
square wave and generates a ref_rq signal to the RAS/CAS
state machine. The refresh state machine requests a refresh
cycle only once when ref[7] is asserted high and inhibits the
request after the RAS/CAS state machine has initiated a CAS
before RAS refresh cycle.

Figure 4–2. MPU–DRAM Controller Interfacing
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Figure 4–3. MPA DRAM Controller Detail
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Figure 4–7 shows the refresh cycle that was initiated by the
rising edge of ref[7] and by the assertion of ref_rq to the
RAS/CAS Controller. The RAS/CAS Controller generates the
timing for a CAS before RAS refresh cycle in synchronization
with the refresh request state machine sequencing through
the request operation. At the end of the refresh cycle the
refresh request state machine is in the REFEND state waiting
for negation of ref[7].

Figure 4–4. Refresh Request State Diagram
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The DRAM Address decoder is used to decode the 68030
address 01xxxxxxh with qualification of address strobe to
generate a access request to the RAS/CAS state machine.
The dram_rq timing is shown in Figure 4–5.

RAS/CAS State Machine

The RAS/CAS State machine arbitrates between refresh
requests and 68030 access requests via signals, ref_rq and
dram_rq respectively. The arbitration between the two
requests occurs in the IDLE state, where refresh has the
highest priority. If a refresh request is pending the state
machine will take the refresh branch and generate a CAS
before RAS refresh timing sequence.

If a DRAM request is pending from the 68030 and a refresh
request is not present, the state machine will take the 68030

access branch and generate the RAS, MUX, and CAS timing
for a random access into the DRAM array. The assertion of
RAS latches the row address into the DRAMs, the MUX signal
will present the column address to the DRAM array, and the
CAS signal will then latch the column address into the
DRAMs. The signal cpu_ok will indicate to the burst controller
to start wait state generation. If a burst request sequence is
requested by the burst controller via the signal burst, the
RAS/CAS state machine will sequence through the burst
control states. For a full four long word burst, the burst address
generator will provide the column addresses for each of the
long word accesses. The RAS/CAS controller state machine
will exit bursting upon the negation of address strobe, and has
the capability of exiting a burst upon a premature ending of a
full four long word burst.

RAS/CAS Logic
The RAS/CAS logic is comprised of combinational logic

that encodes the CAS signals for selecting which byte lanes of
the DRAM array that are going to be accessed during a cycle.
For a CPU write access, the logic supports the misalignment
capabilities of the 68030, providing CAS signals only to the
bytes of the DRAM array that will be accessed for the write
operation. For a CPU read cycle all of the CAS signals will be
asserted. During refresh cycles all of the CAS and RAS lines
will be asserted.

Burst Control State Machine
The burst control state machine provides all of the bursting

control for a 68030 DRAM access and is synchronized to the
RAS/CAS controller. Upon the receipt of a dram_rq, the
RAS/CAS controller will generate RAS and CAS timing to the
DRAM array and will assert the signal cpu_ok, indicating to the
burst controller state machine to start a burst cycle. The burst
controller will leave an idle state and assert the i_cback signal
indicating a synchronous burst access. The burst controller
will then insert wait states during the burst operation and be
responsible for asserting i_sterm indicating the availability of
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DRAM data. The burst controller will also generate the
counting and load controls for the burst address generator and
provide the burst multiplexing control to the DRAM address
multiplexer.

Burst Address Generator

The burst address generator provides the two least
significant bits of the DRAM address during a 68030 burst
cycle. The burst controller will initiate the loading of the first
burst address into the burst address generator and then
control the incrementing of the addresses for the next three
long word accesses of the burst cycle.

The burst address generator sequences through the long
word addresses, which are generated from the ba(3:2)
signals. Entry into the counter state machine can occur at any
state and will be defined as the starting 68030 starting address
plus one. During the first long word access of the burst, the
first address will be supplied by the 68030; the next three long
word addresses will be supplied by the burst address
generator. After the first 68030 address, the address
generator will enter the state of the next address from the load
signal from the burst controller. The burst address generator
will then be incremented two more times for the next two long
word addresses.

DRAM Address MUX

The DRAM address MUX provides the row and column
addresses on a eleven bit multiplexed address bus to the
DRAM array. The 68030 provides the row address to the
DRAM array, and the column address of the first long word
access of a burst cycle. The two least significant bits of the
column address will be supplied by the burst address
generator for the next three long word accesses in the burst

cycle. Gating of the addresses onto the DRAM multiplexed
address bus is controlled by both the burst controller and the
RAS/CAS controller. The DRAM address MUX generates a
68030 burst access to long word address locations 01xxxxx0h
to 01xxxxxCh, when the starting 68030 address is 01xxxxx0h.

Bus Error Time–out

A bus error watch dog time–out function is provided by the
DRAM controller to keep the 68030 from locking up due to
accesses into unused memory. The bus error time–out
controller monitors the assertion of address strobe and will
generate a bus error to the 68030 if it has kept address strobe
asserted from 40.96 usec to 46.08 usec. This time–out may
vary depending on where the 68030 started a memory access
in relationship to ref[7] of the refresh timing generator. The bus
error time–out controller monitors ref[7] for its state transitions,
while watching the assertion of address strobe. If address
strobe is negated before reaching the state NOACK of the bus
error time–out state machine, a bus error will not generated.

System Timing

The system timing is shown in Figure 4–5 and gives the
overall operation of the modules within the DRAM design for a
DRAM array access. The diagram shows the logical
implementation of the design with zero propagation delay and
is meant to give a relationship of the signal handshaking
between the submodules of the design. The system timing
diagram shows a four long word burst read access to the
DRAM array and is comprised of a 14–7–7–7 burst for a total
of 35 cycles. The design has not been optimized for speed at
this time, with the intent of generating a reasonable amount of
logic for timing verification targeting lower cost designs using
slower DRAMs.

Signal

.ul.i_25mhz

lus.ul.i_as

l.i_sync_as

lus.ul.i_ds

.ul.dram_rq

.ul.i_cbreq

.ul.i_cback

s.ul.cpu_ok

ulus.ul.mux

us.ul.burst

.ul.i_sterm

lus.ul.i_oe

ulus.ul.dir

.ul.counten

s.ul.i_ras0

s.ul.i_cas0

ulus.ul.raz

ulus.ul.caz

225ns 975ns 1475ns 1975ns

1

0

0

1

0

1

1

0

0

0

1

1

1

0

1

1

0

0

Figure 4–5. DRAM Burst Timing
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Figure 4–7. Refresh Timing
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Figure 4–5, Figure 4–6 and Figure 4–7 timing diagrams are
logical simulations of the design copied from the Frontline
waveform timing analyzer and do not include final place and
route timings.

Verilog Coding Example
The following Verilog synthesis code describes the refresh

module:

module refresh (i_25mhz, ref_cycle,
timerclk, ref_rq);

input  i_25mhz;
output timerclk;
wire [7:0] temp;
reg   [7:0] ref;

assign timerclk=ref[7];

assign temp[0] = ~ref[0];
assign temp[1] = ref[1] ^ ref[0];
assign temp[2] = ref[2] ^ (&ref[1:0]);
assign temp[3] = ref[3] ^ (&ref[2:0]);
assign temp[4] = ref[4] ^ (&ref[3:0]);
assign temp[5] = ref[5] ^ (&ref[4:0]);
assign temp[6] = ref[6] ^ (&ref[5:0]);
assign temp[7] = ref[7] ^ (&ref[6:0]);

always @ (posedge i_25mhz)
begin
ref[0] = temp[0];

ref[1] = temp[1];
ref[2] = temp[2];
ref[3] = temp[3];
ref[4] = temp[4];
ref[5] = temp[5];
ref[6] = temp[6];
ref[7] = temp[7];
end

// Refresh request state machine

input ref_cycle;
reg  [1:0] ref_states;
output ref_rq;
reg  ref_rq;

parameter IDLE  = ’b00; // idle state
parameter REFRQ  = ’b01; // assert ref rqst
parameter REFEND = ’b10; // wait for end

always @ (posedge i_25mhz)
begin

case (ref_states)
IDLE:begin

if (ref[7])
begin
ref_states = REFRQ;
ref_rq = 1;
end

if (~ref[7])
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begin
ref_states = IDLE;
ref_rq = 0;
end

end
REFRQ:begin

if (ref_cycle)
begin
ref_states = REFEND;
ref_rq = 0;
end

if (~ref_cycle)
begin
ref_states = REFRQ;
ref_rq = 1;
end

end
REFEND:begin

if (~ref[7])
begin
ref_states = IDLE;
ref_rq = 0;
end

if (ref[7])
begin
ref_states = REFEND;
ref_rq = 0;
end

end
endcase

end
endmodule

Figure 4–8. Simulation Model

dir

i_oe

m_a(10:0)

i_ras(3:0)

i_cas(3:0)

i_we(3:0)

i_sterm

i_cback

i_berr

D
R

AM
 C

on
tro

lle
r

a(31:0)

siz(1:0)

i_as

i_ds

i_rw

i_cbreq

i_25mhz

68
03

0 
Bu

s 
C

on
tro

lle
r

Clock

MPA – Verilog Simulation
Figure 4–8 shows a block diagram of the Verilog stimulus

module used for logic simulation and includes the 25MHz
clock module for generating a system clock, the 68030 bus
controller module for generating the timing for a 68030 burst
cycle, and the glue68k DRAM Controller module. Figure 4–5
to Figure 4–7 show the results of the simulation, which was
run from 0ns to 10,000ns. The stimulus module included the
vectors for generating the 68030 bus signal timing for a burst
read cycle. Once the simulation code was verified logically by
the simulator and waveform analyzer, the code was
determined to be free from syntax errors and matched the

expected timing for the design. Note that at this point, the
design has not been verified with the gate and path delays
generated from the final place and route tool.

MPA – Exemplar Synthesis
Prior to synthesis, the MPA1000 libraries, that are supplied

with the MPA design system place and route software must be
properly installed into the directory pathname C:/exemplar/lib
and include the filenames p_mpa20.syn and p_mpa23.syn.
Exemplar will reference these libraries for gate type selection
when targeting a MPA1000 series part.

Although Exemplar has a graphical user interface, this
designer preferred to use DOS synthesis commands included
in (.bat) batch files. As the design was synthesized, the file
manager was used to navigate through the design’s
subdirectories and to synthesize by double clicking on the
batch file contained in a submodule’s directory.

The refresh submodule example is synthesized with the
DOS command “fpga refresh.v refresh.vg –target=p_mpa
–save –macro”. The save option stores all the optimization
passes of the logic synthesizer allowing the user to select the
best pass based on timing and cell count size. The macro
option is used for inhibiting the assignment of I/O pads to the
inputs and outputs of the submodules, reserving I/O pad
assignments to the top module. Each submodule of the design
is synthesized separately using the same command, but with
different filenames that are identical to the submodule name.
The top module glue68k is synthesized with “fpga glue68k.v
glue68k.vg –target=p_mpa –pass=2” and uses a control file
within its directory called glue68k.ctr, which includes the
command:

BUFFER_SIG IPCLK i_25mhz

to assign the signal i_25mhz to a clock tree within the
MPA1036. The glue68k.vg Verilog netlist is edited manually,
adding include commands to the end of the file to read in all
the Verilog netlists into the top hierarchical module during the
Exemplar reformat pass. The include command:

‘include “c:\fpga\refresh.vg”

reads in the refresh submodule into the glue68k.vg module
when the DOS command “fpga glue68k.vg glue68k.edif
–source=p_mpa –target=p_mpa –effort=reformat”, is
executed in the fpga directory with the glue68k.ctr control file
removed. The final design resulted in 440 gates including 44
DFs, 40 inputs. and 25 outputs , when targeted to a Motorola
Programmable Array.

The types of gates that were synthesized by the Exemplar
tool for the DRAM Controller design included:

AN2 INV ONE
BUFF IPBUF IPCLK
OPBUF DF ND2
OR2 DFR NR2
XN2 XR2

The synthesis times for the modules varied with the
complexity of the logic, but were relatively fast. For instance
the dram module, which is a fairly complex state machine
design, took seconds to synthesize as shown:
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Pass Cells Delay (ns) Min:Sec

1 153 28.8 00:13

2 93 8.4 00:10

3 155 28.8 00:18

4 88 18.0 00:09

5 153 27.6 00:14

6 88 18.0 00:08

7 155 28.8 00:15

8 88 18.0 00:08

9 187 26.4 00:21

10 98 9.6 00:35

11 91 16.8 00:33

The passes of the Exemplar synthesizer are related to
eleven different types of optimization algorithms. The best
pass for the dram module, based upon timing, is pass 2, with
an estimated gate delay of 8.4ns. In general all of the modules
synthesized in this design, had pass two consistently generate
the least amount of level delays. One may save some CPU
time by specifying that a particular pass be executed by the
Exemplar tool.

MPA Design System Place and Route

The design was processed by five steps using the MPA
design system graphical user interface: Set Tool Options,
Import, Autolayout, Generate Configuration, and Generate
Back–Annotation. The input to the place and route tool is an
EDIF netlist and requires the Exemplar EDIF netlist file
glue68k.edi to be renamed to glue68k.edn to be imported.

MPA design system options that are required to be selected
prior to place and route include: part number, package type,
and mode. For this design the part was a MPA1036HI, which is
a Motorola 181 pin, 8000 MPA equivalent gates, 3600  cell
array. The mode determines how the device will be configured
upon power up and reserves programming pins on the device
to prevent the place and route tools from assigning them to
user I/O. The mode selected for the design was “Boot From
ROM”, where the MPA loads its program from a serial ROM.
The Autolayout place and route option was set to use default
settings and provided adequate delay timings at 25MHz.
Optional parameter settings for high utilization and for
minimum delay, which are intended for compact and high
speed designs respectively.

The Autolayout tools at default settings, generated a design
that used 376 cells, utilizing 20.9% of the device, with an
estimated maximum frequency of 30.7MHz. With the minimum
delay option selected, the design routed with an estimated
maximum frequency of 39.4MHz. The user may experiment
with different option settings to generate faster designs, but for
this application the 30.5MHz output was adequate and was
used for the final design.

Pin assignments for the design can be viewed in the pin
report file glue68k.prp with a small section of the report shown
here:

I/O Pin report file
Definition: glue68k
Layout: glue68k

Format: Port Name, Net Name, Device Coord, Internal
Pad No, Package Pin Name

Port i_25mhz, net i_25mhz @ ( 36, 0)
IO pad 15 pin n8

Port i_sterm, net i_sterm @ ( 20, 0)
IO pad 8 pin p4

Port siz1, net siz1 @ ( 78, 40)
IO pad 166 pin h13

The Back–Annotation tool is used to generate a structural
Verilog netlist for post simulation and assigns the file
extension of .vba, which was renamed to .v for input into the
simulator. The designer can verify the final design with post
simulation or by viewing the timing report generated by the
Autolayout tool.

H4C Gate Array
The Verilog netlist files for the design were transferred on a

DOS disk to a Sun workstation. Synopsys was used to read in
the top hierarchical glue68k module and each of the
submodules of the design. The design was synthesized and
targeted to the H4C gate array family without any errors. The
combinational area of the design was 446 and the
noncombinational area was 344 ( 43 flip–flops using 8 gates
per flip–flops) with a total used area of 790.

The types of gates generated by Synopsys include:
AND2 INV2 NOR8H
AND2H INVB OA211H
AND3 MUX2A OA21H
AO22H MUX2I OA22H
AOI22H MUX2IH OAI211H
DFFP NAN2 OAI22H
DFFRP NAN3 ONDAI22H
EXNORA NAN4 OR2
EXORA NOR2B OR3
INV NOR2H OR4

One observation of the synthesized design was that the
Synopsys synthesizer added buffers to heavily loaded signals
to minimize the wire delays and edge rates in the design.
Another observation indicated that the gates that were
generated for the MPA and H4C gate array were quite similar
because of the fine grained nature of the MPA.

Final Simulation
The final placed and routed MPA design was post simulated

with the back–annotated structural Verilog netlist using the
Verilog simulator. Prior to post simulation, the MPA design
sys tem Ver i l og l i b ra ry f i l e , l oca ted i n t he pa th
C:\dpld\verilog\library.v was edited to enable Verilog XL
compliance with the command ’define XL_comp. Another
modification of the library needed to eliminate errors
encountered during post simulation was that the library
description of the module ONE was changed from:
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’ifdef XLcomp
pullup (strong1,strong0) (PU);

’endif
to:
ifdef XLcomp

pullup (strong1) (PU);
’endif

The structural Verilog netlist file glue68k.v was also edited
to declare the netlist as type back–annotated by enabling the
line: ’define source_back_annotation

The post stimulation file stimulus.v is similar to the
simulation file, but was edited to change input and output
names from lower case to upper case, caused by the
renaming of signals from the MPA design system
back–annotation tool. The following is a subset of Verilog
simulation module stimulus.v, that was used for the test bench
and includes a 25MHz free running clock:

/
‘timescale 1ns / 1ps
module stimulus ;
wire I_25MHZ;
...
wire DIR;

clk25   clockGen (I_25MHZ);
GLUE68K u1(I_25MHZ, I_AS, D_I_AS,

I_DS, I_RW, I_CBREQ, SIZ1,
SIZ0, L_A31, L_A30, L_A29,
L_A28, L_A27, L_A26, L_A25,
L_A24, L_A23, L_A22, L_A21,
L_A20, L_A19, L_A18, L_A17,
L_A16, L_A15, L_A14, L_A13,
L_A12, L_A11, L_A10, L_A9,
L_A8, L_A7, L_A6, L_A5,
L_A4, L_A3, L_A2, L_A1, L_A0,
I_CBACK, I_STERM, BCYCLE,
M_A10, M_A9, M_A8, M_A7,
M_A6, M_A5, M_A4, M_A3,
M_A2, M_A1, M_A0, I_CAS0,
I_CAS1, I_CAS2, I_CAS3, I_RAS0,
I_RAS1, I_RAS2, I_RAS3,
I_BERR, I_OE, DIR);

initial
begin

u1.B_A3 = 0;
u1.B_A2 = 0;

...

u1.CONTROL_VL8 = 0;
end

// simulate a 68030 DRAM burst cycle
initial
begin
#5 u1.L_A31 = 0; u1.L_A30 = 0;

 u1.L_A29 = 0; u1.L_A28 = 0;
...
end
endmodule
module clk25 (clock);
output clock;
reg  clock;
initial

#5 clock = 0;
always

#20 clock = ~clock;
endmodule

Frontline’s graphical user interface was invoked and a
project called glue68k.dgn was created. Setup of the simulator
included setting directory pathnames to the locations of the
Verilog source files stimulus.v and glue68k.v and of the MPA
design system Verilog library file library.v. The simulator was
setup for maximum delay type and to use the +heirinstport
command line option to allow the use of hierarchical
pathnames used in the glue68k hierarchical design. The
simulation was run and the timing of the design was verified
with the waveform analyzer as illustrated in Figure 4–9 and
Figure 4–10. Note that timing waveforms show accurate gate
and path delays within the MPA1036.

Appendix A – Design Tools
The design tools were selected for a 486 PC Platform and

included Frontline Design Automation, Inc’s PureSpeed
Verilog Simulator, Exemplar’s CORE–TD–DOS PC Topdown
Verilog Synthesizer, and MPA design system. The PC was
upgraded to 24MBytes of DRAM memory, of which 16MBytes
were the minimum required to run the Exemplar software. A
CD–ROM drive was used for loading the MPA design system
software. Waveforms included in this application note were
captured from Frontline’s waveform analysis tool for both
logical and post simulation figures.

For targeting H4C gate arrays, the design development tool
kit was Motorola’s Open Architecture CAD System (OACS).
Synopsys was used for Verilog logic synthesis on a Sun
platform in one of Motorola’s ASIC design centers.
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Signal
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lus.ul.I_AS
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Figure 4–9. DRAM Burst Timing Final Simulation

Figure 4–10. DRAM Burst Timing Final Simulation – Delay Example
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APPLICATION NOTE
Programming Multiple MPA1000 Devices

Using Serial Peripheral Interface (SPI)
by Ajay Matani, Motorola Field Applications Engineer

Introduction

Serial Peripheral Interface (SPI) is an efficient on–board
Serial Data Transfer mechanism supported by most of
Motorola Microcontrollers. MPA1000 series arrays offer
various modes of loading “ConfigWARE” (Configuration data
that defines MPA logic functionality and interconnect) data into
the device. This application note details a microcontroller MPA
configuration control interface using an SPI port.

Why Use SPI  for “ConfigWARE” Download?

In–system programmability is not a new concept, as most
SRAM based MPA’s provide a mechanism for the
Microprocessor to configure functionality. For embedded
systems, Hardware and Firmware constitute a typical system.
Sophisticated embedded systems like Laser Printers provide
support for downloading “SoftWARE” (as Fonts, Printer
Emulation etc.) for example; while FLASH EEPROMS allow
for “FirmWARE” upgrade as is a case in many new
PC–motherboards that have BIOS in FLASH. As shown in
Figure 4–11, flexibility offered by these different layers
decreases as we approach the HardWARE layer, which is
quite fixed.

Figure 4–11. Programming Flexibility
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“ConfigWARE” provides the flexibility to use the same
“HardWARE” to carry out different functionality. The time and
resources required to download “ConfigWARE” into the MPAs
becomes critical as device size and number of devices in a
system increase. It is also beneficial to store “ConfigWARE”
along with “FirmWARE” in non–volatile memory like FLASH,
Floppy, HDD or download over a Network connection.

Many of Motorola’s highly integrated  MCU devices  have
on–chip resources (such as RAM, PROM, serial ports etc.)
that enable independent boot–up and loading of  the
“ConfigWARE”. Considering that most of them also have SPI
support, it is worthwhile to examine efficient use of SPI for
downloading “ConfigWARE”.

MPA1000 Configuration Methods
Four basic methods are avai lable to download

“ConfigWARE” into the MPA devices; one Micro Mode with
typical peripheral bus interface and three BFR (Boot From
ROM) modes. The Micro Mode, BFR Mode(1) and BFR
Mode(3) support byte wide data transfer hence BFR Mode(2)
which supports serial data transfer is the only one we consider
for SPI interface. In fact, MPA configuration logic supports
8–bits at a time and thus accumulates the serial stream into a
byte before loading it in the internal RAM array. This
arrangement matches well with the SPI support of byte data
transfer at a time on the serial protocol.

BFR Mode(2)  operation is a very simple serial transfer
mechanism that uses 3 signals, CLK(clock in), DCLK(clock
out) and D0(data). This mode is intended to load from external
serial PROM devices like MPA17128 (page 2–52). The signal
relationships are as follows:

CLK  (up to 20Mhz) is the master clock used by configuration
logic. This could also be generated from the MPA internal Ring
Oscillator.

DCLK  is output from the MPA and can run as fast as 1/2 the
CLK frequency.

A simple way of looking at DCLK is to consider it as a Data
Strobe and clock for an Address Counter, where DCLK low to
high transition is the critical edge for both operations
(Figure 4–12). As each transition of DCLK is generated by a
rising edge of the CLK signal, manipulating CLK allows
controlling DCLK operation. D0 is data presented to the MPA.

Figure 4–12. ConfigWARE Download Timing
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NOTE: During “idle” phase of CLK, internal Reset or  Configuration
Sequence logic is being exercised. At the end of “active” phase of
CLK, new configuration data is read in. The “wait” phase of CLK is
created by stretching the CLK low phase of the active cycle. After
every “active” or “wait” condition, a “recover” cycle of CLK is needed.

By extending DCLK in its low state, wait states can be
inserted in the access of serial data on D0. This can be easily
achieved by keeping CLK in low state whenever needed. As
CLK is used by the configuration logic also, the suggested
clock stretching should be applied only during data access
cycles denoted by DCLK low state. Since the configuration
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logic is a static design, there is no minimum operational
frequency requirement allowing large number of wait states if
needed.

The window for which D0 should be stable with valid data is
defined by Figure 2–28, Figure 2–29 and the accompanying
table on page 2–26. This relatively narrow window
requirement is easily achievable.

Serial Peripheral Interface
SPI operation as well, is quite straightforward. The SPI on a

MCU can be configured as either a Master or a Slave. The
serial transfer operation is carried out on four lines, SCK
(Serial Clock), MOSI (Master Out Slave In), MISO (Master In
Slave Out) and SS/(Slave Select) supporting synchronous
bi–directional serial transfer of byte size data.

The primary difference between the Master and Slave
Mode is the source of SCK. Though transfers are
synchronous, SPI circuit is required to be a static design which
allows the SCK to have no maximum phase or period time
requirement. In Master Mode, the MCU based SPI circuit
sends a burst of 8–bits, synchronized to a prescaled internal
CPU clock.

The programmer’s model of SPI consists of SPDR (8–bit
SPI data register), SPCR (SPI control register) and SPSR
(SPI status register). Refer to MC68HC11RM/AD for detailed
discussion of SPI operation.

Once configured as a Master, writing to SPDR starts a
transfer of the data byte uninhibited, on the MOSI signal. The
data presented on MISO by the slave is de–serialized and
made available in the SPDR at the end of byte transfer. As
writing to the SPDR also starts a transfer sequence, there is
no facility to carry out hand shake with the slave apriori to the
transfer.

When SPI on a MCU device is configured as a slave, the
SCK supplied by the external master controls the flow of
transfer. MOSI now becomes input and MISO becomes
output. The SS/ signal plays an important role in this mode,

acting as a gate to the SCK. This facilitates selective transfer
to multiple slave using common SCK signal.

DESIGN APPROACH

This application note is based on a design implemented in a
working system with multiple MPA1036 devices daisy
chained. The requirement of this system is to provide a flexible
and efficient “ConfigWARE” download capability. The design
uses MC68HC11K4 MCU with external FLASH EEPROM to
store the “ConfigWARE”.

Various possibilities were considered to establish the lower
level handshake with MPA configuration logic. BFR Mode(2)
was chosen as it sacrifices only one  general purpose i/o signal
for configuration, namely DCLK.

The easiest, gluless and trivial method of interfacing an
MCU to an MPA device in BFR[2] is a single, 8–bit I/O port and
100% software controlled transfer. MCU software overhead
results in a long MPA subsystem start–up time if this method is
used. As the size of the MPA subsystem increases, this
problem is compounded. Using the MCU SPI hardware in
Slave Mode and a minimal amount of external logic, relatively
fast configuration times xan be acheived using a serial data
stream.

FUNCTIONAL DESCRIPTION

We have established the basic serial transfers in terms of
MPA BFR Mode(2) and SPI in our discussion up to this point,
but there are a few more functionalites that need to be
examined at system level. Consider that there are n   MPA
devices daisy chained as shown in Figure 3. The MCU
(MC68HC11 in this discussion) and  PAL device constitute the
controller.

The controller requires only three outputs (CLK, D0 and
RESET1/) to carry out the task. The POWRUPn signal may be
monitored to confirm the end of download sequence, though
any error condition may be detected alternatively by making
sure that exact number of bytes are downloaded.
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Figure 4–13. Multiple Daisy Chained MPA Devices
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Let us look at all the signals in detail.

Signals outside of the controller :

CLK Derived from PAL External clock input. Used
during reset and configuration sequence. Clock
stretching is used in this application during the
Configuration sequence to establish proper
handshake between the MPA and program
controlled sequence on the MCU.

RESET1 Output from MCUReset to the First MPA in the
daisy chain. The falling edge initiates reset
sequence. At the end of reset sequence, if the
signal is still asserted, configuration sequence is
delayed till the rising edge of signal is recognized.
Otherwise, the conf igurat ion sequence
immediately follows the reset sequence. CLK
must be active during these sequences.

RESETn Connect ENDn–1 to RESETn as configuration
logic keeps END low till the present device
completes the configuration sequence and lets
the next MPA device start its own reset and
configuration sequence.

BFR1 Output from MCU. Active low signal initiates
Reset and Configuration sequences. Acts same
as RESET1 except that the Configuration
sequence immediately follows the reset sequence

regardless of the state of BRF1 signal. (The use of
this signal is optional).

BFRn These are pulled up.

PWRUPn Last MPA END connects to all PWRUP signals.
When this signal on the MPA is low, all the user I/O
are disabled (in tri–state). A desirable condition
until all the devices are configured properly.

MEMCE Not used.

ERRn These output signal gets asserted during
configuration sequence if Device ID mismatch or
Checksum error is detected. They can be left
open as such error condition stops configuration
sequence and can be detected alternatively.

DCLK Input to PAL. Is the wired–or signal (requires
external pull–up) from all the MPA devices that
gets pulled low by the currently configuring device
during data transfer.

D0 Output from PAL. This is the data input to all the
MPA devices.

Signals inside  the controller (between MCU and PAL) :

E_CLK Output from MCU. System clock.

MISO Output from MCU. SPI data out of MCU in Slave
Mode.

4



Programming Multiple MPA1000 Devices

4–14
MOTOROLA MPA DATA — DL201 REV 1

GO_SPI Output from MCU. Sequence Master Control
output,  resets and enables configuration
sequence logic under program control.

XFR8 Output from MCU. Byte Transfer Control output,
initiates data transfer sequence logic under
program control. Also acts as Slave Select for SPI
logic with connection external to the MCU.

SCK Output from PAL. SPI clock input from MCU.
Controls bit data transfer out of SPI shift register.

CONTROL LOGIC IMPLEMENTATION
The MC68HC11K4 and a PAL22V10 device  is used for the

control logic.
The base clock for the circuit is the “E” clock from MCU that

is also used by the SPI logic internal to the MCU. Typical
frequencies for 8–bit MCUs for the system clock “E” are 4 Mhz
and as high as 25 Mhz for some 32–bit MCUs.

The circuit uses four inputs, three outputs and four state bits
on the PAL. One of the outputs, SCK is considered as a state
variable too. Refer to Appendix A, where the PAL design in
CUPL (need to check trade mark) source language  is
described. Appendix B lists the Boolean equations in
AND–OR form for each of output and state variable as
generated by CUPL assembler.

Two general purpose Output Port bits (GO_SPI and XFR8)
from the MCU are required besides the SPI signals.
Considering that data is flowing from MCU to the MPAs, only
data out signal (MISO in slave mode) of the SPI logic is used
along with the SCK and SS signals.

Appendix C l ists the assembly source code for
MC68HC11K4 MCU for the subroutines needed to carry out
the ConfigWARE download.

CONTROL FLOW

For ease of understanding, let us follow the firmware in
Appendix C to track the operation of control sequence.

The calling function to “LD_FPGA” is assumed to have set
the general purpose port bits to the correct direction and have
made a call to “RST_FPGA” which forces RESET1/. The first
thing LD_FPGA does is to call “EN_FPGA” which makes the
control logic ready by negating XFR8, correctly set up the SPI
on MCU, assert GO_SPI and negate RESET1/.

This forces the sequencer in the PAL to STATE S0 and stay
there till sequence begins when XFR8 is asserted (active low).
The CLK output of PAL keeps on toggling while in STATE S0,
defining the the “idle”  phase of of CLK (Fig. 4). Negated XFR8
also negates END state variable.

Next, LD_FPGA makes sure that the correct ConfigWARE
for the first device is made available (starting at address
$4000)  before it calls the “IM2FPGA” (Image to FPGA)
function. IM2FPGA calls “BY2FPGA” for the exact number of
times to download the complete image for a single FPGA
device. For FPGA1036 for example, the number is 14600
($3908) bytes as explained in Appendix D.

BY2FPGA is the lowest level routine that directly controls
the transfer of byte to the current FPGA device. The data byte
is written to the SPI data register and XFR8 is made active to
begin the transfer. While the sequencer in PAL and MPA
synchronize and carry out the transfer, the program waits for
SPI transfer to complete within a certain period of time. If the
code times out, it returns with error condition set. As only the
completion of SPI transfer is waited on, there is no need for
any external signals to indicate error conditions.
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k –––> l : Sodd>Seven, as DCLK is high
l –––> m : Sodd>Seven, as XFR8 is high
m –––> n : Seven>SF,   as DCLK is low
n –––> o : SF>SF,      as DCLK is low
o –––> p : SF>S0,      as DCLK is high (END set)
p –––> q : S0>S0,      as DCLK is high
q –––> r : S0>S0,      as DCLK is low but END is high
r –––> s : S0>S0,      as DCLK is low but END is high
s –––> t : S0>S0,      as DCLK is low, END is low but XFR8 is high
t –––> u : S0>S1,      as DCLK is low, END is low and XFR8 is low
u –––> g  catch the sequence at g again

Figure 4–14. System Training
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a –––> b : S0>S0,     as DCLK is high
b –––> c : S0>S0,     as DCLK is high
c –––> d : S0>S0,     as XFR8 is high
d –––> e : S0>S0,     as XFR8 is high
e –––> f : S0>S1,     as DCLK and XFR8 low
f –––> g : S1>S1,     as DCLK is low
g –––> h : S1>S2,     as DCLK is high
h –––> i : S2>S2,     as DCLK is high
i –––> j : S2>Sodd,   as DCLK is low
j –––> k : Sodd>Sodd, as DCLK is low
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NOTE:

For the normal transfer, the sequencer in the PAL  waits in
STATE S0 when MPA device is not ready for transfer as
indicated by DCLK high. When FPGA is ready to receive data,
it asserts DCLK low. State m/c responds by stopping the
transitions on CLK signal, forcing wait condition till MCU holds
XFR8 signal high. When MCU program sequence catches up
and asserts XFR8 low, STATE S1 is entered.

All odd numbered states are similar and correspond to the
time when DCLK is high. Except for STATE S0, all even
number states correspond to the time when DCLK is low. For a
byte transfer, XFR8 going low should run the sequencer from
STATE S0 to STATE SF in a sequence, and back to STATE
S0. When the state m/c is in STATE SF, END state variable
gets set on the next clock, indicating completion of a transfer.
Until XFR8 is negated by BY2MPA when it detects completion
of SPI transfer, the END condition forces the state m/c to stay
in STATE S0, even when the MPA is ready to receive the next

bit, indicated by DCLK low. This mechanism ensures that one
and only one byte is transferred on every MCU controlled
cycle of XFR8.

The new transfer will not start till program sequence makes
a new call to BY2MPA, which in turn will begin with XFR8
active. Timeout or SPI error condition, if any, makes
BY2FPGA return a non zero value indicating error. The
address value of the image byte of the erroneous transfer is
saved in SPI_ERR variable. IM2FPGA passes the error back
to LD_FPGA.

If there is no error,  LD_FPGA repeats the above process
for additional devices, making sure that the correct
ConfigWARE for that device is addressed.

If an error ocurrs, the sample code jumps to “LD_FERR”.
The handling of error is left to the calling routine and user
interface.
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APPENDIX A.

/***************************************************************************/
/*  MPA1000 series FPGA configuration logic with SPI                        */
/* HC11 companion PAL                                                      */
/***************************************************************************/
Device      p22v10lcc;
/***  Pin Assignments */
/* Clock and Inputs */
PIN  2 = MCEK; /* Input –  Register Clock */
PIN  3 = MISO; /* Input –  Serial data, HC11 */
PIN  4 = XFR8; /* Input –  Transfer control, HC11 */
PIN 11 = GO_SPI; /* Input –  Master Control,  HC11 */
PIN  6 = DCLK; /* Input –  CLK feedback from FPGA */

/* Outputs and State variables */
PIN 20 = CLK; /* Output – clock to FPGA */
PIN 21 = D0; /* Output – Data out to FPGA */
PIN 23 = ST3; /* State  – var 3 */
PIN 24 = ST2; /* State  – var 2 */
PIN 25 = ST1; /* State  – var 1 */
PIN 26 = ST0; /* Output – SPI clk to HC11 */

/* State  – var 0 (Dual function) */
PIN 27 = END; /* State  – End condition */

/*** Declarations and Intermediate Variable Definitions */
field count = [ST3..0]; /* declare counter bit field */
$define S0 ’b’0000 /* define counter states */
$define S1 ’b’0001
$define S2 ’b’0010
$define S3 ’b’0011
$define S4 ’b’0100
$define S5 ’b’0101
$define S6 ’b’0110
$define S7 ’b’0111
$define S8 ’b’1000
$define S9 ’b’1001
$define SA ’b’1010
$define SB ’b’1011
$define SC ’b’1100
$define SD ’b’1101
$define SE ’b’1110
$define SF ’b’1111

/*** Logic Equations */

CLK.d = !CLK &  DCLK
/* High if idle or restore state */

# !CLK & !DCLK & !(!ST3 & !ST2 & !ST1 & !ST0);
/* High if data ready in active state */

CLK.sp = ’b’0;
CLK.ar = ’b’0;

END.d = ST3 & ST2 & ST1 & ST0
# END & !XFR8;

    /* Count has expired but no new XFR8 */
END.ar = ’b’0;
END.sp = ’b’0;
 
D0 = !GO_SPI &  MISO /* active low GO_SPI */

#  GO_SPI & XFR8; /* Slave Select signal */
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ST0.ar = ’b’0;
ST1.ar = ’b’0;
ST2.ar = ’b’0;
ST3.ar = ’b’0;
 
ST0.sp = ’b’0;
ST1.sp = ’b’0;
ST2.sp = ’b’0;
ST3.sp = ’b’0;
 
ST0.oe = !GO_SPI; /* Master control */
 
sequence count { /* free running counter */
 
present S0 if    !DCLK & !END & !XFR8

  next S1;
if     DCLK
    # !DCLK &  END
    # !DCLK &  XFR8
  next S0;

 
present S1 if    !XFR8 &  DCLK

  next S2;
if    !XFR8 & !DCLK
  next S1;
if     XFR8
  next S0;

 
present S2 if    !XFR8 & !DCLK

  next S3;
if    !XFR8 &  DCLK
  next S2;
if     XFR8
  next S0;

 
present S3 if    !XFR8 &  DCLK

  next S4;
if    !XFR8 & !DCLK
  next S3;
if     XFR8
  next S0;

 
present S4 if    !XFR8 &  !DCLK

  next S5;
if    !XFR8 &  DCLK
  next S4;
if     XFR8
  next S0;

 
present S5 if    !XFR8 &  DCLK

  next S6;
if    !XFR8 & !DCLK
  next S5;
if     XFR8
  next S0;

 
present S6 if    !XFR8 & !DCLK

  next S7;
if    !XFR8 &  DCLK
  next S6;
if     XFR8
  next S0;
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present S7 if    !XFR8 &  DCLK
  next S8;
if    !XFR8 & !DCLK
  next S7;
if     XFR8
  next S0;

 
present S8 if    !XFR8 & !DCLK

  next S9;
if    !XFR8 &  DCLK
  next S8;
if     XFR8
  next S0;

 
present S9 if    !XFR8 &  DCLK

  next SA;
if    !XFR8 & !DCLK
  next S9;
if     XFR8
  next S0;

 
present SA if    !XFR8 & !DCLK

  next SB;
if    !XFR8 &  DCLK
  next SA;
if     XFR8
  next S0;

 
present SB if    !XFR8 &  DCLK

  next SC;
if    !XFR8 & !DCLK
  next SB;
if     XFR8
  next S0;

 
present SC if    !XFR8 & !DCLK

  next SD;
if    !XFR8 &  DCLK
  next SC;
if     XFR8
  next S0;

 
present SD if    !XFR8 &  DCLK

  next SE;
if    !XFR8 & !DCLK
  next SD;
if     XFR8
  next S0;

 
present SE if    !XFR8 & !DCLK

  next SF;
if    !XFR8 &  DCLK
  next SE;
if     XFR8
  next S0;

 
present SF if    !XFR8 &  DCLK

  next S0;
if    !XFR8 & !DCLK
  next SF;
if     XFR8
  next S0;

}
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APPENDIX B.

/***************************************************************************/
/*  LOGIC reduced to AND–OR equations (LISTING)                             */
/***************************************************************************/

CLK.d  =>
    !CLK & DCLK
  # !CLK & !DCLK & ST3
  # !CLK & !DCLK & ST2
  # !CLK & !DCLK & ST0
  # !CLK & !DCLK & ST1
D0 =>
    !GO_SPI & MISO
  # GO_SPI & XFR8
END.d  =>
    ST0 & ST1 & ST2 & ST3
  # END & !XFR8
ST0.d  =>
    !DCLK & !END & !ST0 & !ST1 & !ST2 & !ST3 & !XFR8
  # !DCLK & !ST0 & ST1 & ST2 & ST3 & !XFR8
  # !DCLK & ST0 & !ST2 & !ST3 & !XFR8
  # !DCLK & !ST0 & ST1 & !ST3 & !XFR8
  # !DCLK & !ST1 & ST2 & !XFR8
  # !DCLK & ST0 & ST1 & ST2 & !XFR8
  # !DCLK & !ST2 & ST3 & !XFR8
ST1.d  =>
    !DCLK & ST0 & ST1 & !XFR8
  # DCLK & ST0 & !ST1 & !XFR8
  # !ST0 & ST1 & !XFR8
ST2.d  =>
    !DCLK & ST0 & ST1 & ST2 & !XFR8
  # DCLK & ST0 & ST1 & !ST2 & !XFR8
  # !ST0 & ST1 & ST2 & !XFR8
  # !ST1 & ST2 & !XFR8
ST3.d  =>
    !DCLK & ST0 & ST1 & ST2 & ST3 & !XFR8
  # DCLK & ST0 & ST1 & ST2 & !ST3 & !XFR8
  # ST0 & ST1 & !ST2 & ST3 & !XFR8
  # !ST1 & ST3 & !XFR8
  # !ST0 & ST1 & ST3 & !XFR8

APPENDIX C.

;  Code Excerpts for HC11 using SPI to configure MPA1000 series FPGA

; ***************
; *     Define  *
; ***************
DDRD:  equ REGBS+$09  ; port D Data Direction reg
SPCR:  equ REGBS+$28  ; spi control reg
SPSR:  equ REGBS+$29  ; spi status reg
SPDR:  equ REGBS+$2A  ; spi data reg
PORTG: equ REGBS+$7E ; port G data reg
PORTH: equ REGBS+$7C ; port H data reg

CFG1:  equ $11 ; Page 1 image for memory mapper
CFG2:  equ $22 ; Page 2 image for memory mapper
; more or less depending on number of FPGA devices in chain
CFGn:  equ $ff ; Page n image for memory mapper
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; ***************
; *     RAM     *
; ***************

org $200 ; FLEXVAL ram area
SPI_ER: ds.b 2 ; Address of failed transfer if any
;SEC_IMG: ds.b 1 ; Sector image number for current 16K byte block

; in external FLASH EEPROM paged at address $4000
                        ; Consider writing to this address for proper page

; selection of the ConfigWARE image.
==============
; **********
; Enable FPGA Transfers via SPI
; Entry : none
; Exit : SPI is enabled as SLAVE
; : GO_SPI is active
; **********
EN_FPGA:

bset PORTH,#$00 ; make sure XFR8 is inactive (high)
bclr PORTH,#$04 ; assert GO_SPI
ldaa #$44 ; SPE = 1 and CPHA = 1, rest 0
staa SPCR ; to SPI control register
bset DDRD,#$04 ; MISO is made output PD[2]
bset PORTG,#$40 ; negate RESET1* at bit–6
rts

; **********
; Disable FPGA Transfers via SPI
; Entry : none
; Exit : SPI is disabled
; : GO_SPI is inactive
; **********
DI_FPGA:

bset PORTH,#$00 ; make sure XFR8 is inactive (high)
bset PORTH,#$04 ; negate GO_SPI (high)
bclr DDRD,#$04 ; MISO is made input again PD[2]
ldaa #$04 ; SPE = 0 and CPHA = 1, rest 0
staa SPCR ; to SPI control register
rts

; **********
; Transfer byte to FPGA via SPI (ignore SPI errors if any)
; Entry : x  = pointer to the byte
; Exit : a  = 0 if o.k.
; : a != 0 if time out
; : x  = x + 1 if o.k. else x is unchanged
; **********
BY2FPGA:

ldaa 0,x
staa SPDR ; write to SPI data register
bclr PORTH,#$01 ; XFR8 = low (active)
ldaa #$ff ; time out counter

BY2_F1:
tst SPSR ; check if spif is set
bmi BY2_F2 ; jump if transfer complete
deca ; not complete, decrement time out
bne BY2_F1 ; check for time out

BY2_F9:
stx SPI_ERR ; address at which error occurred
ldaa #$ff ; indicate error condition

BY2_F8:
bset PORTH,#$01 ; XFR8 = high (inactive)
rts
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BY2_F2:
tst SPDR ;  dummy read to clear SPIF bit in SPSR
ldaa SPSR
bne BY2_F9 ; some error ?
inx
bra BY2_F8 ; normal exit

; **********
; Transfer image to single FPGA (MPA1036 case)
; Entry : SEC_IMG has the current sector
; Exit : passes end condition of BY2FPGA to calling routine
; Notes : MPA1036 has 116800 bits
;                 14600 bytes as follows
;     5 bytes of header
; 14595 bytes of data as follows
;   139 rows containing
;   105 bytes/row
; address of byte after end of image
; $3908 (when starting address is $0 )

$7908 (in this code, as ConfigWARE image is at $4000 )
; **********
IM2FPGA:

ldx #$4000 ; start of image in FLASH
IM2_F1:

jsr BY2FPGA
tsta
beq IM2_F2 ; jump if no error
rts ; pass error up

IM2_F2:
cpx #$7908 ; end of image
bne IM2_F1 ; keep looping
rts ; return with a = 0

; **********
; Reset  FPGAs
; Entry : none
; Exit : FPGAs are forced into reset state
; **********
RST_FPGA:

bset PORTH,#$00 ; make sure XFR8 is inactive (high)
bset PORTH,#$04 ; negate GO_SPI
bclr PORTG,#$40 ; assert RESET1* at bit–6
rts

; **********
; Program FPGAs
; Entry  : none
; Exit   : FPGAs are loaded and active unless error
;    : In error case, a jump to LD_FERR  routine (not shown here) is
made.
; **********
LD_FPGA:

jsr EN_FPGA

LD_F1:
ldaa CFG1
staa SEC_IMG
jsr IM2FPGA ; do transfer
tsta
bne LD_FERR ; jump if error

LD_F2:
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ldaa CFG2
staa SEC_IMG
jsr IM2FPGA
tsta
bne LD_FERR ; jump if error

; more or less segments depending on number of FPGA devices in chain

LD_Fn:
ldaa CFGn
staa SEC_IMG
jsr IM2FPGA
tsta
bne LD_FERR ; jump if error

LD_END:
jsr DI_FPGA
rts

APPENDIX D.

ConfigWARE RAM Array Sizes for MPA1000 Device Family

MPA1016 MPA1036 MPA1064 MPA1100

HEADER (bytes) 5 5 5 5

ROWS 95 139 183 227

Bytes/Row 72 105 138 170

Total Bytes 6845 14600 25259 38595

Total Bytes (Hex) 1ABD 3908 62AB 96C3

RAM Array Size (Relative to MPA1016) 1.00 2.13 3.69 5.64

Number of Cells (Relative to MPA1016) 1.00 2.25 4.00 6.25
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APPLICATION NOTE
Effective Synthesis Techniques

for MPA1000 Devices
by Thomas G. Felske and Wanhao Li, Motorola Programmable Logic Products

Introduction

Logic synthesis has become an increasingly important
issue in the FPGA design area due to the rapid growth of the
FPGA design complexity. Many FPGA vendors offer synthesis
design flows for designers who prefer synthesis over
schematic design entry. This paper presents the critical
architectural components of the MPA device and HDL
techniques to achieve the best design performance from the
MPA10000 synthesis design flow. The synthesis design flow
includes Synopsys Design Compiler (Version 3.3b), Exemplar
Galileo (Version 3.1), and Mentor Autologic which all map to
the Motorola MPA1000 FPGA technology. Although this
application note focuses on the Synopsys tool, most of the
techniques are tool–independent and shall apply to the other
synthesis tools.

Direct Mapping For Design Compilers

One of the biggest advantage of using the MPA1000
synthesis flow is that the MPA architecture requires a single
mapping process for synthesis. The MPA1000 architecture is
fine–grained and each basic cell can be configured directly to
logic gates such as AND, OR, XOR, and Multiplexer. Since the
MPA technology mapping is very ASIC–like, the synthesis
tools can map the design with regular ASIC logic optimization
algorithms. Consequently, this provides an convenient FPGA
synthesis environment for designers who have ASIC
experience or want to retarget FPGA designs to an ASIC at a
later time. This is important to Motorola to be able to use the
same tool for both ASIC and FPGA design. It not only saves
designers from buying another tool but also prevents them
from having to learn another synthesis tool.

To re–target Synopsys’ Design Compiler from the FPGA
technology to ASIC, Design Compiler’s “.synopsys_dc.setup”
file is modified to link to the ASIC target library. Upon startup,
Design Compiler loads the library setup file to link to the
desired synthesis library. The command lines in the setup file
that link a target library are:

technology = ASIC or FPGA technology name

link_library = {technology + “.db”   ........}

target_library = {technology +”.db”}

search_path = {Regular Synopsys path   ASIC or  FPGA
library path}

Logic Optimization and Technology Mapping

MPA1000 Architecture Resources

When partitioning functional blocks at the system level, the
design capacity of the MPA device must be known to calculate
how many FPGAs may be required for the system design in
order to distribute the logic amongst the FPGAs. The
calculations are bound by the physical limitations of the MPA

device. The following sections define the physical limitations
of the MPA architecture for various design resources. The
limitations are related to the routing resources available to
connect to the clock and reset pins for IOBs, wire–or and
wire–and bus limits, clock resources, and set/reset resources
for registers.

Although most of the logic optimization is done at the
synthesis level, the MPA1000 backend system further
optimizes logic by stripping back logic of unused output pins or
signals, and optimizing inverters by cancelling out or pushing
the inversion into the driven macro’s input signal (bubble
pushing).

Clock Signal Resources

Clock resources can use up to eight dedicated clock pad
sites to connect to the dedicated clock tree resource.

The core array contains routing paths to go from primary
clock resources to regular routing resources and vice versa.
Therefore, the clock pins of the registers located inside core
array can be routed from either primary clock tree or
secondary  clock tree which are implemented by regular
routing resources. However, the clock pins of the I/O registers
can only be driven by primary clock resources. If a clock signal
is generated inside the core array, it can only drive registers
inside the core array unless the signal is connected to the
primary clock tree.

Regular routing signals inside the core array can be routed
to primary clock resources and back, some high–fanout
regular signals can be implemented with the primary clock tree
and improve both routing congestion and routing delays.
However, the designer must be aware of the limitation of the
total number of primary clock trees.

Due to potential routing resource limitation, the total
number of clock and reset signals (primary and secondary)
should not exceed 15. If the total number exceed 15,  place
and route is very likely to fail.

Only five different clock/reset signals are allowed in each
cell zone (10x10 cells) since each cell column is connected by
the same clock signal. Among the five signals, only two can
come from primary clock tree. In the I/O area, five I/O macros
are aligned as an I/O segment and connected to a cell zone.
Each I/O segment only allows 2 clock signals which need to
come from primary clock trees. In general, place and route
tools handle all the registers and clock signal placement to
make sure no violations occur. However, if the designer
changes or influences the cell or I/O placement manually by a
control file, the clock signal limitation has to be followed. For
instance, if all the I/O pins are fixed by a control “<design>.pat”
file, it will cause partition failure if three of the I/O pins inside a
I/O segment are driving three different clock signals.
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Three–State/WOR Resource

The MPA1000 devices offer real three–state signals only in
the I/O areas. Inside the core array, WOR structures are
supported instead of an three–state structure. The I/O macros
can utilize an WOR structure that connects to the P–bus
resource. The internal WOR bus requires the designer to
utilize the WPUP pull up macro with each bus and the PWPUP
pull up macro for each P–bus WOR structure.

IOB Resource

When a designer assigns “port_is_pad” attributes and
“insert_pads” to the top–level I/O “ports” that do not contain
instantiated I/O macros, each I/O port will be inferred as an I/O
macro. The default I/O inference for MPA1000 devices are:

clock input port IPCLK

regular input port IPBUF

regular output port OPBUF

three–state port OPTBUF

Each input macro  (IPBUF) can be configured as TTL or
CMOS levels. Each output macro (OPBUF) can be configured
into 3V/5V, high drive or low drive, slow slew or fast slew rate.
Those parameters can be inserted into the system through
several different ways.  The most convenient way is to use
Design Compiler’s “set attribute” command as follows:

set attribute {I/O instance name} attribute_name
attribute_value –type string

The I/O properties can also be inserted in a separate ASCII
control (<design>.pat) file which will input those properties
during the backend “import” stage. Refer to the on–line
documentation for details of the “<design>.pat” control file.

There are two I/O structures that cannot be inferred by an
behavior description; the open–drain structure and the
registers inside I/O macros. Designers who need to use these
two structures need to instantiate the desired macros. The
following is a VHDL example for an open–drain macro:

U01:  OPBUF  port map  (O=>internal_signal,
EXTOUT=>output_port);

A list of the special I/O macros with registers are in the
on–line manual for more details on the available macros.

Peripheral Bus Resources (to route to IOB clock/reset pins)

The MPA1000 architecture contains an eight bit bus that
runs the lengths of the chip next to the IOBs. This is the
peripheral bus or P–bus. This resource is used for an interface
resource for the IOB pins and global routing. This resource is
not automatically used by the routing tool and it is up to the
designer to instantiate the special P–bus macros for access to
and from the P–bus. The special buffers are the APBUF,
PABUF, PWPUP, APWBUF,  and APWINV. The prefix AP
refers to an Array to P–bus connection and visa versa for PA.
The W refers to the wire–or capability.

Set/Reset Resources

The internal core and the IOB registers have asynchronous
set and reset capability that are mutually exclusive. The
register contains a single pin that can be programmed for a set
or reset function. The dedicated low skew reset tree is

physically the same as the clock tree until the signal enters a
zone. There the port cell(s) direct the signal to either a clock
pin or reset/set pin.

MPA1000 Design Resources
The MPA1000 synthesis library contains special macros

that aid in the efficiency of the FPGA design. Efficiency shall
be described as guiding critical routes of the design to special
or dedicated routing resources, utilizing special function
macros optimized for the MPA architecture, and utilizing MPA
functional resources that can be only be structurally
instantiated from the MPA synthesis library. The following
sections describe the special types of macros that can be
found in the MPA synthesis libraries. These macros are for
specific design requirements. Please peruse the synthesis
libraries for more macro specific details.

Clock Tree macros

The clock tree macro resource consists of the IPCLK clock
pad macro and the ACLK internal clock buffer. The “ACLK”
macro must be instantiated by the designer to connect
internally generated clock signals to the primary clock tree. An
example of a structural description applying an internal clock
buffer signal to the primary clock tree.

(VHDL) Buffer_instance_name:  ACLK  port  map
(A=>clk_input,  Q=>clk_output);

( V E R ILO G ) Bu f f e r _ i ns tanc e_name  AC LK
(.A(clk_input), .Q(clk_output));

The “clk_output” signal will be driving register clock pins
from the primary clock tree.

There are only eight primary clock signals in a MPA1000
device. The total number of IPCLK and ACLK macros must
not exceed eight. If it does, partitioning failure will occur.

Three–state/WOR macros

To use WOR structures in the MPA1000 devices, There are
several macro resources. They are WBUF, WINV, WND2,
WOR2 for an internal WOR bus and there are several IO
macros that have the WOR capability that utilize the P–bus
resource. An example would be the IPWINV or APWBUF
macros. For each WOR bus created, an pull up macro must be
attached. The pull up resources are WPUP for the internal
WOR bus, and PWPUP for the P–bus pull up.  When creating
an internal or P–bus WOR structure, both the WOR buffer and
the pull up macros must be instantiated. Currently, there is not
a method to inference an WOR structure when using
Synopsys. The following is an VHDL example of an internal
WOR instantiation :

U01: WBUF port map (A=>sig1, W=>worbus);

U02: WBUF port map (A=>sig2, W=>worbus);

U03: WBUF port map (A=>sig3, W=>worbus);

U04: WPUP port map (W=>worbus);

The “WPUP” macro is necessary to pull up the wor bus
signal. The on–line documentation has more information on
how many “WPUP” macros should be placed on the wired–or
bus.

Three state functionality can be inferred in an HDL when it
will be used in the I/O area of the FPGA. The “m” signal in this
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example needs to be an external I/O signal which is assigned
“out port”  “ port is pad”  attributes . A three–state inference:

if (sli = ‘1’) then

m = e; else m = ‘z’;

IO macros

The MPA input output block (IOB) is a complex logic block
with data registers on the input and output data signals. The
registers cannot be inferred with RTL code, but can be
accessed through a structural description. In general when the
synthesis tool places pads onto the design’s peripheral
signals, the pad macros are simple pad buffers e.g. IPBUF
and OPBUF. To utilize the registers in the IOB, an structural
description must be used. There are more that seventy
different IOB macros. The on–line help describes the many
different types.

Clock Signals/Clock Tree Generation

Without careful attention, clock tree implementation can
cause problems for both synchronous and asynchronous
designs. There are several clock tree related issues, the HDL
designer should know :

• Design Compiler does have the capability to infer clock pads
for those assigned clock signals. Internal clock buffers
require a structural description.  However, Design Compiler
cannot insert internal clock buffers automatically. For
instance, a gated clock signal which needs to drive the clock
pins in I/O flip–flops will require an internal clock buffer to get
onto the primary clock tree. This is an MPA1000 architecture
limitation since the I/O register clock pins can only be
accessed from the dedicated clock tree. By structurally
inserting an internal clock buffer, the gated clock signal will
connect to the dedicated primary clock tree through the clock
buffer. Since the number of primary clocks (buffers and pads)
of MPA1000 is eight, it is important to limit the total number
of inferred clock pads/buffers and inserted clocks to eight.

• If a signal is assigned as an “input port” and as “clock”,
Synopsys will map the signal into a “IPCLK”. Even if the
designer doesn’t assign “clock” for an “input port” signal, if
the input signal is driving a clock input of a register directly,
it will also be assigned as an “IPCLK” macro automatically.
All the IPCLK pads will connect to the primary clock tree by
default. The designer must make sure that “don’t touch” was
assigned to all those primary clock trees. If Synopsys
“optimize” or “balance” the clock tree, it might generate many
secondary clock trees which ends up causing clock tree
routing problems.

• If an internally generated clock signals need to drive both
primary clock tree and a regular output pad, a separate
output macro “OPBUF” needs to be added to bring the signal
to an output pad. The following is a VHDL example:

clkbuf1:  aclk por t map (A=> in terna l_c lock ,
Q=>primary_clock);

outbuf1:  opbuf  port map (O=>internal_clock,
EXTOUT=>output_pad);

General HDL Techniques
The description of an design in an HDL is very important.

The synthesis tool interprets the description and then maps
the design to the target library. Performance of the design
depends on the interpretation of the HDL description and the
style of HDL coding. These influence the logic that will be
mapped to the design.

Synopsys does not optimize logic based on XOR logic
reduction (Mueller–Reed). However, since 50% of the
MPA1000 cells can be implemented as an “XOR”, the
designers can build macros based on XOR logic. The
outcome of the XOR based logic can potentially be faster and
use fewer number of cells.

• Merge registers into the I/O macros. Registers that are
directly connected to input macros or output macros with out
feedback can be pulled into an I/O location by instantiating
MPA I/O macros such as “OPDFR” and “OPDLR” in an HDL
design. If specialized I/O macros are not used, the register
resource will come from inside the core array area.

• For multiple clocks within a design, it is recommended to
implement a clock enable signal for the various registers and
have the registers all clocked with the top level clock.

• For state machines, an important issue when compiling a
state machine is that the one–hot state assignment
approach is very viable for a fine–grained architecture such
as the MPA1000. In general, Design Compiler supports five
types of state assignment: manual, auto, one–hot, binary,
and gray. The one–hot state assignment assigns one unique
flip–flop per state. In coarse–grained architectures such as
Xilinx 3000/4000, there are large combinational circuits
attached before the flip–flops in each block (CLB). One–hot
state assignment will cause significant penalties of areas for
3000/4000 architectures. On the other hand, the MPA1000
architecture has no combinational circuits attached to each
flip–flop within a cell. The area penalty is, therefore, minimal.
Since our both designs are utilizing less than 30% of the
cells, In general, it is recommended to use the one–hot state
assignment if timing is more critical than area. The “one–hot”
mode in most cases achieves faster timing due to its much
simplified combinational logic.

Synchronous Design Style
The synchronous design style is the preferred method of

design recommended by synthesis tool and FPGA vendors.
Few designers use the asynchronous design style since it can
result in a little bit faster performance in an ASIC or custom
design environment. In an FPGA environment, this
assumption can be false. In general, asynchronous clock
signals are not driven from primary clock resources and are
therefore implemented in an “secondary clock tree” in
MPA1000. The secondary clock trees use the regular routing
resources to route the signal and have significantly longer
clock delays and clock skews. The extra clock signals also
occupy routing resources such as ports and global busses that
result in increased routing congestion. All those combined, the
asynchronous design typically will not get the faster–speed
advantage the designer might expect.

The only asynchronous design styles suggested by
Synopsys are designs with gated–clock and designs with
asynchronous reset. Designers who use gated–clocks have to
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be aware of all the asynchronous clock tree problems that
exist.

The asynchronous reset, however, is a popular design style
and generally will not cause serious design problem since it is
usually implemented as a global signal and tends to be
mapped into primary clock/reset tree.

Area Estimation and Area Optimization

The designer should do some rough area estimations
before trying to fit the design into the target MPA device. The
rule of thumb is :

• The total number of cells (components) created by synthesis
should not exceed 40% of the total raw cells of each device
since some cells will be used as routing resources.  The
routability is usually design–specific. However, if there are
more high–fanout nets, the routability usually decreases.
There is still some chance to route designs with more than
40% cell utilization. However, the performance usually is not
as good and the probability of successful routing is much
lower.

• The total number of flip–flops should not exceed 80% of raw
flip–flops.

• The total number of clock/reset signals should not exceed
15.

• In general, device area is not a concern for FPGA unless it
cannot be fitted into a device. There are some techniques to
improve device areas:

• Instantiate special I/O macros to utilize registers inside I/O
macros. There are two registers available inside each I/O
macro. It will reduce the device area, reduce the required
routing resource, and help in synchronizing on/off–chip
timing.

• Use wired–or structure can reduce the number of gates.
However, special attention should be given to timing and
routability issues.

• Using the primary clock tree to implement high–fanout net
will not only improve the wiring delays but also save a lot of
routing resources. However, an active primary clock tree will
consume more power than an idle clock tree. If power
consumption is an important issue, designers should do
some calculations as to the trade offs of using the clock tree.

• Use Synopsys techniques of resource sharing and area
optimization options.

Techniques for Timing Optimization

In general, most of the timing improvement will come from
the design and HDL code changes. By knowing the behavior
of HDL compilers will generally lead to big improvements in
device timing. the following describes some of the common
timing optimization techniques used in HDL code structure
and design synthesis:

• Avoid long “if_elsif” or “case” statements. Each elsif or
“when” statement usually will add at least one logic level to
the circuit. A better technique would be to see if the
statements can be broken down and inserted into different
concurrent processes or blocks. The same thing applies to
the other statements inside each process. Since they are all
implemented sequentially, try to see if they can be

implemented as concurrent statements outside of the
process.

• Be aware of the default inferred latches and registers. Make
sure that the if/elsif statements always close with an “else”
statement if no latch element is expected.

• High–fanout nets usually cause very long wiring delays. Try
to reduce the number of fanouts if possible.

• Use clock file to differentiate slow clock and fast clock. It will
help timing–driven layout to optimize and report the right
critical paths.

• Use Synopsys “timing optimization” option.

Timing Analysis and Delay Estimation

Since FPGA place & route can take a long time for larger
designs, it is important to do timing analysis and delay
estimation during the synthesis stage to avoid many design
iterations. In general, accurate FPGA delay estimation is very
difficult to achieve due to large metal wire delays  and large
switching element delays. However, by using component
delays and wiring delays derived from statistical analysis,
some obvious problems can be identified and avoided in the
early design stages.

Critical path analysis is the most popular way to estimate
device frequency. The post–layout critical–path delays are
reported in the “timing file” (design.tim). The path delays in the
timing file include both the component and wiring delays. Each
level of logic in the critical path needs at least 1.2ns (0.7ns cell
delay and 0.5ns direct interconnect delay). In general, for
delay paths longer than 5 logic levels, the average delay for
each level of logic is between 2.5ns to 3.5ns.

To estimate the critical path delay, the designer should
count the levels of logic of the critical path by using the
“highlight_path” command to highlight the critical path.
Assuming the number of logic levels for the critical path is N,
the theoretical lower bound of the critical path delay (LD) can
be calculated with the following equation:

LD = 1.2 *N + setup + clk_to_q
For the MPA1000 family, the setup time is about 1ns while

the clk_to_q is about 1.5ns.

In a real design, the average delay for each level of logic is
around 3ns. Therefore, the expected delay (ED) for the critical
path should be:

ED = 3*N + setup + clk_to_q
General timing analysis guidelines for MPA1000 synthesis

designers are:

• If timing budget is smaller than or only slightly more than LD,
there is no chance to reach the timing goal. The designer
should try to modify the design by modifying the HDL code
structure, or modifying the timing budget to solve the
problem.

• If the timing budget is close to ED, the place&route tool has
a good chance to reach the timing goal. The designer should
utilize the timing optimization techniques in the Synopsys
environment and use timing driven layout options for the
place and route software. For a multiple clock system, the
slower clock usually will not create a critical path. However,
the software will not be able to differentiate the less critical
clock signal unless the designer creates a timing group for
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each clock in the “clock file”.  Please refer to the online
documentation for detailed information regarding the “clock
file” format.

• If the timing budget is far exceeding ED, the designer will
have a large slack time for the critical path. Even though
timing–driven layout is still suggested for place&route, the
designer may have some flexibility in using a less aggressive
timing goal to reduce run time and focus more on the area
optimization when synthesizing the design.

Behavioral vs. Structure Synthesis
In an traditional synthesis flow, structure design is generally

recommended at the top–level for constructing logic
hierarchies. Behavioral design, however, is usually much
easier and maintainable for designers. For example, in an
FPGA design, critical portions of the design utilized the
structural description method to capture specific logic
modules. One area that used an structural description was the
I/O logic module. Although some FPGA technology mappers
have the capability to do special mapping processes for the

I/O, such as mapping flip–flops into an I/O, it is generally much
more controllable to construct an I/O logic module with an
structural description. It is also easier to insert attributes to the
macros which are described structurally. The current
MPA1000 synthesis library includes a large variety of I/O
macros which have many combinations of input/output, clock,
flip–flop/latch, and delay elements. By instantiating I/O macros
directly from the MPA1000 library, the designer can avoid
some potential problems caused by the synthesis logic
inference process.

An interesting note when using an structural description is
that Design Compiler is still capable of optimizing the
structural description even it is supposed to be optimized by
the designer already. It can be concluded that the software is
usually capable of performing a much more thorough logic
optimization search compared to human beings under a
well–defined environment. In one example, an 20%
improvement was achieved by running optimization on hand
crafted structural modules.
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