CHAPTER 8

Lighting

8.1 Fluorescent Lamp Control

Fluorescent Lamp Control

8.1.1 Efficient Fluorescent Lighting using Electronic Ballasts

This section provides a general background to fluorescent lamps and their control requirements, with emphasis placed on high frequency electronic ballasts and their advantages over conventional 50/60Hz "magnetic" ballasts. Simplified examples of popular electronic ballast topologies suitable for low cost / economy applications are introduced.

The fluorescent lamp.

A fluorescent tube is a low pressure mercury vapour discharge lamp containing an inert gas consisting of argon or krypton at low pressure (below 1 atmosphere) plus a small measured dose of mercury. There is a filament at each end which, when hot, emit electrons to sustain the discharge when the lamp is operating. The mercury vapour discharge produces ultraviolet light which is converted to visible light by the phosphors coating the inside of the glass tube. The glass blocks the exit of the ultraviolet radiation but allows the visible radiation through. See Fig. 1.

Fluorescent tubes exist in many shapes and sizes. Apart from the many compact types that have appeared on the market in recent years as energy efficient replacements for incandescent lamps, the traditional linear tubes range from 150mm 4W up to the very high output 2400mm 215W.

Modern fluorescent tubes incorporating the latest triphosphor technology (i.e. red, green and blue phosphors similar to those used in modern high brightness television picture tubes) possess efficacies of around 80 lumens per lamp Watt compared with 68 lumens per lamp Watt for the older most efficient "white" fluorescent tubes and around 12 lumens per Watt for an incandescent bulb. Moreover, the triphosphor lamps reveal colour and skin tones more accurately than the standard "white" lamps, which suffer from a deficiency in output at the red end of the spectrum. This results in a greenish hue and a suppression of red colours from anything illuminated by them.

The elimination of the traditional causes of criticism for fluorescent lighting means that this form of lighting is becoming more acceptable in wider applications than ever before. Adjustment of the ratios of the three phosphors can create colour appearances from a very warm, intimate, incandescent equivalent colour temperature of 2700K through the cool, clean, businesslike 4000K to the very cool daylight colour temperature of 6500K, all with high efficacies and good colour rendering properties. Before the availability of triphosphors, these qualities have always been mutually exclusive. You could either have high efficacy and poor colour rendering or poor efficacy and good colour rendering, but not both.

A non-operating fluorescent tube will appear as an open circuit, since there is no electrical connection from one end to the other. In order to "strike the arc", a high voltage must be applied across the lamp in order to ionise the gas within. This will instantly "cold start" the lamp and shorten its life by sputtering electron-emitting material from its cathodes.

However, if the cathodes (heaters) are first preheated to generate a space charge of electrons at each end of the lamp, the strike voltage is considerably reduced and lamp life will not be unduly compromised by the start-up.

As soon as arc current flows, the lamp's electrical impedance will drop. It now exhibits a negative impedance characteristic, where an increase in current is accompanied by a reduction in lamp voltage. There must therefore be a current limiting device in circuit to prevent the rapid onset of runaway and destruction of the lamp.

The lamp running current should ideally be sinusoidal to minimise the radiation of electromagnetic interference from the lamp and its supply wires. Sinusoidal lamp current also maximises lamp life. A peak current approaching twice the RMS current will prematurely deplete the electron emitting material from the lamp cathodes. (For a sinewave the peak value is only 1.414 times the RMS value.)

There should also be no D.C. component to the lamp current; that is, the positive and negative half cycles should be of equal duration. If this is not the case, the resulting partial rectification will result in premature depletion of the electron emitter from one of the lamp cathodes.

The ballast.

The requirements of a fluorescent lamp ballast are to:

- (a) Preheat the cathodes to induce electron emission.
- (b) Provide the starting voltage to initiate the discharge.
- (c) Limit the running current to the correct value.

There are several types of mains frequency "magnetic" ballast available. By far the most common circuit for 230V mains supplies has traditionally been the switchstart ballast (see Fig. 2), where lamp ballasting is provided by the choke. Other circuits include, in order of popularity, the semi-resonant circuit and the quickstart circuit.

The switchstart circuit has been widely adopted because of its simplicity, low cost and improved efficiency when compared with the alternative options mentioned above. Another reason is that the 230V mains voltage is sufficiently higher than the tube running voltage to allow the use of the simple series impedance ballast in almost all cases. Where this is not possible, for example in most 120V supplied circuits, the lamp is controlled by a quickstart circuit incorporating voltage step-up.

Switchstart ballast operation.

When the voltage is applied to the circuit, the lamp does not operate at first, so the full mains voltage appears across the starter via the choke and lamp cathodes.

The starter consists of bi metallic contacts sealed within a small discharge bulb with an inert gas filling such as argon or neon. The mains voltage causes a glow discharge within the starter which heats up the bi metallic contacts, causing them to close. This completes the circuit and allows preheat current to flow through the choke and both cathodes.

Since the glow discharge within the starter has now ceased, the bi metallic contacts cool down and open. Because the inductance of the choke tries to maintain current flow, the voltage across the lamp rises rapidly and strikes the lamp. If it does not, the starter's contacts close again and the cycle repeats.

Once the lamp has started, the choke controls its current and voltage to the correct levels. The lamp running current is enough to keep the cathodes (heaters) hot and emitting electrons without the need for separate heater supplies, which would otherwise be wasteful of energy. Since the lamp's running voltage is much lower than the mains voltage, there is now not enough voltage to cause a glow discharge in the starter, so it remains open circuit.

The power factor correction (PFC) capacitor draws leading current from the mains to compensate for the lagging current drawn by the lamp circuit.

Why electronic ballasts?

Electronic ballasts have been available for well over a decade. Recent leaps in performance, coupled with ever increasing energy costs, the increased awareness of the advantages they offer, the increasing environmental awareness of the consumer, and the increased acceptability of the new fluorescent light sources in existing and new applications, have seen an upsurge in electronic ballast use since the beginning of the 1990's.

Replacing the most efficient low loss mains frequency switchstart ballast with an electronic ballast leads to reduced energy consumption and improved performance. The reasons for this are detailed below.

Increased light output.

If the operating frequency is increased from 50Hz to above the audible limit of 20kHz, fluorescent lamps can produce around 10% more light for the same input power (see Fig. 3). Alternatively, the input power can be reduced for the same light output.

Flicker eliminated.

A fluorescent lamp operating at 50/60Hz will extinguish twice every cycle as the mains sinewave passes through zero. This produces 100/120Hz flicker which is noticeable or irritating to some people. It will also produce the well-known and potentially dangerous stroboscopic effects on rotating machinery.

If the lamp is operated at high frequency, however, it produces continuous light. This is because the time constant and hence the response time of the discharge is too slow for the lamp to have a chance to extinguish during each cycle. The output waveform of an electronic ballast will usually be slightly modulated by 100/120Hz "ripple". Provided this is kept to a reasonable level by filtering within the ballast, the drawbacks associated with 100/120Hz flicker are eliminated.

Audible noise eliminated.

Since electronic ballasts operate above the audible range, they do not suffer from the audible noise problems that can occur with mains frequency magnetic ballasts. The familiar buzzing noise is caused by vibrations in the laminations and coil of the choke. This can then excite vibrations in the steel body of the fitting which effectively amplifies the original noise.

Lower ballast power.

An electronic ballast will consume less power and therefore dissipate less heat than a mains frequency magnetic ballast. For example, for two 1500mm 58W energy-saving lamps, the typical ballast power dissipations might be 13W per ballast for two 50Hz magnetic ballasts compared with 9W for a single electronic ballast driving two lamps.

The energy-saving benefits of electronic ballasts have made it possible to obtain the same light output from fluorescent lamps as would be obtained using a conventional 50/60Hz magnetic ballast, for a total circuit power (i.e. lamp and ballast) that is actually less than the rated lamp power alone. This is due to two reasons.

Firstly, the lamp can be underrun at high frequency for the same light output. Secondly, the power consumed by the ballast can be so low that the total circuit power is still less than the rated power printed on the lamp. Because of this, energy cost reductions of 20 - 25% are achievable.

Extended lamp life.

An electronic ballast which "soft starts" the lamp (i.e. provides preheat to the cathodes before applying a controlled starting pulse) will dislodge a minimum quantity of material from the cathodes during starting. This will give longer lamp life when compared to the uncontrolled impulses to which the lamp is subjected in a switchstart circuit.

Versatile lamp control.

Electronic ballasts are available which permit lamp dimming. This gives substantial energy savings in situations where the lights are linked to an automatic control system which detects ambient light levels and adjusts lamp output to maintain a constant level of illumination. Lights may also be programmed to dim during intervals when areas are not in use, for example during lunch breaks.

Electronic ballasts can incorporate feedback to detect the operating conditions of the lamp(s) so that failed lamps can be switched off to avoid annoying flicker and possible ballast damage. They can also incorporate regulation, whereby a constant light output is maintained over a range of input voltages. Operation can be either from AC or DC supplies for emergency lighting applications.

Compact and light weight.

Owing to the high frequency of operation, the magnetic components in an electronic ballast are compact and lightweight with cores of ferrite material, whereas at mains frequency the ballast choke must be larger and heavier with bulkier copper windings and a core of laminated steel.

The shape and geometry of a mains frequency choke is determined by magnetic efficiency requirements, whereas the circuitry within an electronic ballast can be arranged to produce a very slim final package. This permits new levels of slimness and compactness for the final ballast.

Electronic ballast topologies.

The typical building blocks of an electronic ballast are shown in Fig. 4.

An increasing number of electronic ballasts are employing active power factor correction in the form of a boost converter between the rectifier and DC filter stages. (Figure 5 shows a simplified boost converter arrangement.) This obliges the ballast to draw current over most of each mains half cycle instead of the usual current spike that a rectifier / DC filter would demand at each peak of the voltage waveform. This reduces the harmonic content of the current and improves the power factor. It will also reduce the size of the electromagnetic interference (EMI) filter required, since filtering is now required at the higher harmonic frequencies of the boost converter switching frequency instead of at the mains frequency and harmonics of it.

Electronic ballasts take many forms. The simplest and most economical form might consist of a free-running self-oscillating circuit using bipolar transistors. This would be an open loop circuit (i.e. no feedback to detect lamp operating conditions).

More expensive options might contain a controlled oscillator in a closed loop circuit using MOSFETs. Here, features could include regulation for varying AC and DC supply voltages, adjustable lamp brightness, soft starting and a mechanism to detect and shut down failed lamps.

Blocking oscillator.

The most basic form of electronic ballast uses a blocking oscillator as shown in Fig. 6. Its use is restricted mainly to low voltage DC, low power ballasts as used in handlamps, leisure lighting and emergency lighting, where operation is only for short periods. This is because the lamp has a severely limited life when it is driven by a spiky waveform, rich in harmonics, such as that produced by this circuit. This topology might typically be used to operate tubes of 4W to 13W ratings only because of the excessive voltage and current stresses and switching losses that would be experienced by the transistor in higher power mains voltage versions.

Voltage step-up to drive the lamp from the low voltage supply is achieved by the turns ratio of the transformer primary and secondary, while oscillation is maintained by the positive feedback supplied by the auxiliary winding connected to the transistor's base. The values of R, C, transformer primary inductance L_{PRI} and the transistor parameters set the oscillation frequency and the mark / space ratio of the waveform (which should be 1:1 for the reason given in the first section).

No separate ballast inductor is required, since the only energy delivered to the lamp during the transistor's OFF time is what was stored in L_{PRI} during the preceding ON time. The transistor remains OFF and will not turn ON again until all the stored energy has been delivered to the load. Lamp power is therefore controlled by the amount of energy stored in the L_{PRI} during each ON period.

Unlike the blocking oscillator, mains powered electronic ballasts usually use two switching power transistors in a push pull or half bridge configuration. This can either be a self oscillating or a driven oscillator circuit. The driven oscillator option permits easier lamp control and dimming. The self oscillating option has cost advantages where the benefits of high frequency lighting are required without the necessity for lamp dimming.

The push pull inverter.

A push pull circuit can appear as a voltage fed inverter with series resonant load or a current fed inverter with parallel resonant load. In both cases a centre tapped transformer is required.

Voltage fed push pull inverter.

Figure 7 shows a simplified circuit. This example provides isolation of the output from the mains supply with a separate secondary winding.

In the voltage fed arrangement, the D.C. rail voltage is fed straight to the centre tap. Both ends of the winding are connected to zero volts via transistors, which are alternately switched on during operation. The alternate passage of current in opposite directions through each half of the primary winding induces a square wave voltage across the secondary.

Since the full D.C. rail voltage appears across half the primary winding at a time, twice this voltage will appear across the whole primary winding. This means that during each transistor's "off" period, it will experience a maximum theoretical V_{CE} of 2 x D.C. rail voltage.

When power is first applied, the secondary voltage should not be high enough to cold start the lamp, which should remain in the high impedance state. The only current flowing will be through the series resonant combination of L & C, and both lamp cathodes. This preheat current will be enough to initiate electron emission from the cathodes which will in turn lower the lamp striking voltage to a point where the voltage across the capacitor can then start the lamp (usually within a second).

After starting, the lamp voltage will drop and the current will be limited and filtered by L. C will help to filter out residual harmonic frequencies and its current will fall to negligible proportions at the fundamental operating frequency. The resulting lamp current will closely resemble a sinewave. The transistor base drives are derived from auxiliary windings on the transformer which provide the necessary positive feedback. An advantage with this transformer-based arrangement is the isolation it provides between the lamp and the mains supply.

Current fed parallel resonant push pull inverter.

The main difference with this circuit over the previous one is that the D.C. rail voltage is fed to the transformer centre tap via an inductor which acts as a current source. A capacitor C across the transformer primary forms a parallel resonant load in combination with the primary winding inductance (see Fig. 8). Instead of a square wave as in the voltage fed circuit, a full wave rectified sinewave appears at the centre tap whose theoretical peak amplitude is $\pi/2 \times V_{DC}$. Twice this amplitude appears across the whole winding for the same reason as in the voltage fed push pull circuit. Therefore the maximum theoretical $V_{CE} = \pi \times V_{DC}$.

Since each successive half sine produces current flow in opposite directions through the two half windings, a sinewave is produced across the whole winding whose peak to peak amplitude is $2\pi \times V_{\text{pc}}$.

The additional cost of the inductor might be regarded as a disadvantage. However, the beauty of current fed parallel resonant circuits, of which this is one example, is that they naturally produce a sinusoidal output, so selection of the ballast components for their harmonic filtering properties is no longer so important. This allows the use of a series ballast capacitor instead of the series L normally required.

Another benefit with this type of circuit is its ability to continue normal operation with varying or open circuit loads. This permits independent operation of parallel-connected lamps across the secondary, each with its own ballast capacitor, where failure of one or more lamps

will not affect the operation of the remaining lamps. This is unlike series-connected lamps, where the failure of one tube will disable all the tubes on that ballast.

Sinusoidal output topologies are very popular in the self oscillating low cost ballast market because of these advantages and the circuit simplicity.

The half bridge inverter.

The half bridge topology contains two npn transistors connected in series across the D.C. rail with the load connected to their mid point. The half bridge is so called because the return path for the load current is provided by two series-connected capacitors across the D.C. rail. (A full bridge circuit would have transistors in these positions also, but this arrangement is rarely used in electronic ballasts for fluorescent lamps. Although the required voltage rating of the transistors would be halved, this would not compensate for the increased cost of four power transistors instead of two, and the extra complication of controlling the timing of the switching of all four transistors.)

The two capacitors, which have a very low reactance and are essentially a short circuit at the ballast operating frequency, create a mid-point A.C. reference between the D.C. rails. This blocks the D.C. offset equal to half the rail voltage that would be applied to the lamp if the return path were merely taken to one of the rails.

Current fed parallel resonant half bridge inverter.

Figure 9 shows the simplified circuit. Transformer isolation is provided, and the sinusoidal output permits the use of ballast capacitors as for the current fed push pull topology. The series inductance L in each power supply line acts as the current source.

As each transistor conducts in turn, the current fed resonant load causes alternate polarity half sinewaves with peak voltages of $\pi/2 \times V_{DC}$ to appear at one end of the transformer primary. Each half sine appears across the non-conducting transistor. Therefore the maximum theoretical $V_{CE} = \pi/2 \times V_{DC}$.

The sum of these half sines produces a full sinewave with a peak to peak amplitude of $\pi x V_{DC}$. However, as the return current flows to the A.C. half rail created by the half bridge capacitors, only half this voltage appears across the primary, resulting in a peak to peak primary voltage of $\pi/2 x V_{DC}$.

Voltage fed half bridge inverter.

See Fig. 10. This circuit does not employ a transformer so output isolation is not provided. Feedback to drive the transistors is now supplied from two auxiliary windings on the current transformer CT1 in the lamp current path.

As this is a voltage fed circuit whose output is not naturally sinusoidal, lamp starting, ballasting and waveform shaping are provided by the series L and parallel C as for the voltage fed push pull circuit.

In the voltage fed half bridge circuit, since the transistors are "firmly anchored" to the supply rails without any current source series inductance, they will experience a maximum theoretical V_{CE} equal to the D.C. rail voltage.

Variation on the voltage fed half bridge circuit.

A variation on this circuit is shown in Fig. 11, where the two half bridge capacitors are replaced by the single D.C. blocking capacitor C2. This enables the load to be returned to the positive D.C. rail.

The circuit operates as follows:

On initial power-up, before the lamp has struck, C1, L and C2 form a series resonant circuit. C2 is larger than C1 so it looks like a short circuit compared to C1. C1 therefore dominates and dictates the resonant frequency in

combination with L. A high voltage is developed across C1 at resonance which starts the tube. At this point the tube voltage across C1 collapses and C2 then takes over in dictating a lower running frequency in combination with L.

This circuit is the one most commonly used in the electronically ballasted compact fluorescent lamps and it lends itself to driven as well as self oscillating circuits.

Summary.

The circuit examples presented in this Publication all use bipolar transistors, mainly for cost advantage reasons,

especially where high voltage devices up to 1000V rating and above are required. Ballast manufacturers have perfected many good, reliable designs using such devices in circuits based on the simplified topologies shown.

Popular topologies for low cost electronic ballasts have proved to be the current fed parallel resonant circuits. To summarise the reasons for this, they naturally produce the ideal sinewave output. This permits the use of simple ballast capacitors instead of inductors. The circuits also maintain safe operation with abnormal load conditions. Lamps can be operated in parallel, where the failure of one or more lamp will not disable the remaining lamps.

The current fed topologies require higher voltage transistors than the voltage fed topologies. For example, for the current fed half bridge topology, allowing for safety margins of around 400V for voltage spikes at start-up and 110% mains voltage, a 120V ballast would require transistors with typical voltage ratings of at least 700V. The ratings for 230V mains would typically be at least 950V, and for 277V mains typical voltage ratings of at least 1100V would be required.

The ratings for a current fed push pull topology would be 1000V, 1500V and 1700V respectively.

8.1.2 Electronic Ballasts - Philips Transistor Selection Guide

Section 8.1.1 provides an introduction to fluorescent lamps and the circuits required to operate them for maximum life and efficiency. Several simplified electronic ballast topologies are introduced.

This section lists those topologies with the theoretical voltage demands they place on the transistors, together with a selection table of suitable Philips transistors.

a) Voltage fed push pull inverter.

The D.C. rail voltage appears at the transformer centre tap.

Therefore $V_{c.t.} = V_{DC}$.

Half of the transformer's primary winding is energised with the full D.C. rail voltage at any one time. Therefore twice this voltage will appear across the whole winding (autotransformer effect). This voltage appears across each transistor in turn when it is non-conducting. So, during stable circuit operation and neglecting unforeseen voltage spikes:

 $V_{CE(max)} = 2 \times V_{DC}$.

b) Current fed push pull inverter.

The transformer centre tap is no longer connected directly to the D.C. rail. The voltage developed across the series inductor L as each transistor conducts results in a positive half sinewave at the centre tap whose average voltage is equal to the D.C. rail voltage. A half sine instead of a rectangular pulse is produced because of the resonant nature of the load.

Therefore $V_{c.t.(ave)} = V_{DC}$.

The peak value of this waveform can be shown by integration to be $\pi/2\ x$ its average value.

Therefore $V_{c.t.(pk)} = \pi/2 \times V_{c.t.(ave)} = \pi/2 \times V_{DC}$.

Each successive half sine is conducted through alternate halves of the primary, so twice this amplitude appears across the full primary. This gives a peak voltage of twice the peak centre tap voltage appearing across the non-conducting transistor (as for the voltage fed push pull circuit), so:

$$V_{CE(pk)} = \pi \times V_{DC}$$

c) Current fed half bridge inverter.

The transformer primary is driven from one end by the collector-emitter junction point of the two transistors. If this were a voltage fed circuit without any series L, the primary would be alternately connected to the positive and negative rails by the alternate transistor switching to produce a square wave with a peak to peak amplitude of V_{DC} . However, because this is a current fed resonant circuit, the conduction of each transistor will produce a half sine whose average voltage is equal to the D.C. rail voltage.

Therefore $V_{(ave)} = V_{DC}$.

By integrating it can be shown that the half sine will have a peak amplitude of $\pi/2 x$ its average value.

Therefore
$$V_{(pk)} = \pi/2 \times V_{(ave)} = \pi/2 \times V_{DC}$$
.

This voltage appears across the non-conducting transistor, so:

$$V_{CE(pk)} = \pi/2 \times V_{DC}$$
.

d) Voltage fed half bridge inverter.

As the transistors are now connected directly to the D.C. rails, their alternate switching will switch the transformer primary between the D.C. rails only.

Therefore $V_{(max)} = V_{DC}$.

As this voltage appears across the non-conducting transistor:

$$V_{CE(max)} = V_{DC}$$

Transistor selection guide.

This guide lists suitable transistors with maximum recommended output powers for the different topologies. It assumes that the ballast's D.C. rail is obtained from rectified and smoothed A.C. mains. If boost power factor correction is included which boosts the D.C. rail voltage to around 400V irrespective of mains voltage, the suggested transistors for 277V mains should be selected.

Г	OPOLOGY:	a) V. fed	P.P.	b) C. fed	P.P.	c) C. fed I	H.B.	d) V. fed	H.B.
A.C. SUPPLY:	120V	BUW84/85 BUX84/85 BUT211 BUT18A BUT12A BUW12A	35W 35W 90W 110W 140W 140W	BUX87P BUX85 BUT11A BUT18A BUT12A BUW12A	13W 55W 140W 170W 230W 230W	BUW84/85 BUX84/85 BUT211 BUT18A BUT12A BUW12A	25W 25W 70W 80W 110W 110W	BUW84/85 BUX84/85 BUT211 BUT18A BUT12A BUW12A	15W 15W 40W 55W 70W 70W
	230V	BUX87P BUW85 BUX85 BUT11A BUT18A BUT12A BUW12A	15W 70W 70W 170W 210W 280W 280W	BU1706A BU1706AX BU508A	230W 230W 360W	BUX87P BUW85 BUX85 BUT11A BUT18A BUT12A BUW12A	13W 55W 55W 140W 160W 220W 220W	BUW84/85 BUX84/85 BUT211 BUT18A BUT12A BUW12A	30W 30W 80W 100W 140W 140W
	277V & most boosted designs	BU1706A BU1706AX BU508A	170W 170W 280W	BU1706A BU1706AX	260W 260W	BU1706A BU1706AX BU508A	130W 130W 220W	BUW84/85 BUX84/85 BUT211 BUT18A BUT12A BUW12A	40W 40W 100W 125W 170W 170W

8.1.3 An Electronic Ballast - Base Drive Optimisation

This section investigates the transistor base drive circuit in a current fed half bridge ballast. (Fig. 1 shows the simplified circuit.) The effect on switching waveforms of progressing from a simple base drive circuit to the optimised solution will be shown.

Base drive requirements.

1. Each transistor must not be overdriven and oversaturated when conducting otherwise excessive base power dissipation will result. The time will also be increased in bringing the transistor out of saturation during turn-off, leading to increased switching losses.

2. The transistor must not be underdriven because this will result in excessive collector-to-emitter voltage (V_{cE}) during conduction, leading to excessive ON-state losses or inability to sustain oscillation. However, because the transistor is unsaturated, there will be less charge to extract from the base, resulting in a shorter storage time and faster turn-off.

3. Reliable and correct circuit operation should be maintained for all expected transistor gains, maximum and minimum load, maximum and minimum supply voltage and all component tolerances.

Base drive optimisation.

The transformer's auxiliary windings which provide base drive might contain just one or two turns each. In order to provide rapid transistor turn-off, their peak loaded output voltage would need to be such that the transistor 'sees' a turn-off voltage of around minus 5V. An approximation to this drive voltage could be arrived at empirically by increasing the number of auxiliary turns one by one. Any final voltage adjustment, if necessary, can be achieved by varying the base drive components.

Simple base drive.

In order to meet the requirements of non-saturation and rapid turn-off, the simplest base drive might consist of a resistor to limit the positive base current and a Schottky diode in parallel with it to discharge the base as quickly as possible. See Fig. 2.

A Schottky diode is specified for its fast switching and low forward voltage drop to best meet the rapid turn-off requirements. A 1A 40V device such as the BYV10-40 is ideally suited.

If the resistor is selected empirically so that the transistor is barely saturating, this simple circuit will work, but only for a given load current, supply voltage, transistor gain and base drive voltage from the transformer auxiliary winding. Altering any of these conditions will either cause underdriving of the transistor and, ultimately, cessation of oscillation, or else the transistor will be overdriven, causing increased collector current fall time and excessive switching losses.

For example, the resistor value was optimised for transistors with low gain limits. Fig. 3 shows the resulting $I_{\rm C}$ fall at transistor turn-off, while Fig. 4 shows the effect of replacing the transistor with a high gain limit sample. The shaded areas bounded by the $I_{\rm C}$ and $V_{\rm CE}$ curves represent transistor power dissipation during switching.

Lighting

Power Semiconductor Applications Philips Semiconductors

Improved circuit.

What is required is a means of providing enough base drive under worst case conditions of maximum load current, minimum supply voltage, minimum transistor gain and minimum base drive voltage, while avoiding excessive saturation in the opposite condition. This can be achieved by diverting excess positive base drive current into the collector path when the transistor is fully turned on. This requirement is partly met by a Baker Clamp arrangement as shown in Fig. 5.

When the transistor is fully conducting, $V_{\rm CE}$ will be at a minimum. This will bring $V_{\rm C}$ close to $V_{\rm B}$ so that any excess base drive will then flow through anti saturation diode D2 to the collector. As a first approximation, the single resistor R is divided equally into two and D2 taps its voltage from the mid point. Figs. 6 and 7 show the resulting $I_{\rm C}$ fall waveforms. Considerably reduced transistor saturation is evident.

With regard to the base waveforms, where the simple circuit produces more base drive current than is necessary, as shown in Fig. 8, the improved circuit reduces this to that shown in Fig. 9.

Ic (0.2 A/div)

To ensure correct operation under all conditions, base drive can be optimised by adjusting the ratio of the two resistors to vary the amount of tap-off voltage. With the base resistor divided equally into two, this particular circuit suffered from a lack of base drive at low supply voltage. Too much drive had been diverted away from the base. This was corrected by moving the tap-off point to the right to split the resistor two thirds to one third to reduce the amount of diverted base drive. Referring to Fig. 5, R1 becomes $2/3 \times R$ and R2 becomes $1/3 \times R$.

Figs. 11 and 12 show the optimised IC fall waveforms. A few cycles of the switching waveforms with optimised base drive are shown in Fig. 10.

Startup circuit.

The half bridge circuit as described so far cannot start of its own accord. Both transistors are off and will remain off when power is applied until one of them is artificially turned on to draw current through the transformer primary. This will then induce a voltage in the auxiliary windings which will provide the necessary base drive to maintain self oscillation. Startup is usually achieved using a diac such as the BR100/03. The circuit is shown in Fig. 13. When power is first applied, oscillator start-up is achieved as follows:

Transistors Q1 and Q2 are initially non conducting. Resistor R4, whose value will be several hundred kilohms, provides a high impedance path between Q2's collector and the positive rail to ensure that Q2 has the full D.C. rail voltage across it prior to start-up.

Capacitor C charges up via R1 until the breakover voltage of the diac D8 is reached. The diac breaks over and dumps the capacitor's charge into the base of Q2 to turn it on. Q2 draws current through the transformer primary. From now on, oscillation is maintained by the voltages induced on the auxiliary base drive windings.

Diode D1 discharges C every time Q2 turns on, thereby preventing the diac's breakover voltage being reached during normal circuit oscillation. This avoids repeated triggering of the diac when it is not required, so preventing oversaturation of Q2. (The length of time for C to charge to the diac's breakover voltage is much longer than the time between ON periods of Q2.) D4 and D5 provide reverse current protection for Q1 and Q2.

Acknowledgments

We are grateful for all the contributions from our colleagues within Philips and to the Application Laboratories in Eindhoven and Hamburg.

We would also like to thank Dr.P.H.Mellor of the University of Sheffield for contributing the application note of section 3.1.5.

The authors thank Mrs.R.Hayes for her considerable help in the preparation of this book.

The authors also thank Mr.D.F.Haslam for his assistance in the formatting and printing of the manuscripts.

Contributing Authors

N.Bennett	D.J.Harper	J.Oosterling
M.Bennion	W.Hettersheid	N.Pichowicz
D.Brown	J.v.d.Hooff	W.B.Rosink
C.Buethker	J.Houldsworth	D.C. de Ruiter
L.Burley	M.J.Humphreys	D.Sharples
G.M.Fry	P.H.Mellor	H.Simons
R.P.Gant	R.Miller	T.Stork
J.Gilliam	H.Misdom	D.Tebb
D.Grant	P.Moody	H.Verhees
N.J.Ham	S.A.Mulder	F.A.Woodworth
C.J.Hammerton	E.B.G. Nijhof	T.van de Wouw

This book was originally prepared by the Power Semiconductor Applications Laboratory, of the Philips Semiconductors product division, Hazel Grove:

M.J.Humphreys	D.Brown	L.Burley
C.J.Hammerton	R.Miller	

It was revised and updated, in 1994, by:

N.J.Ham

C.J.Hammerton

Preface

This book was prepared by the Power Semiconductor Applications Laboratory of the Philips Semiconductors product division, Hazel Grove. The book is intended as a guide to using power semiconductors both efficiently and reliably in power conversion applications. It is made up of eight main chapters each of which contains a number of application notes aimed at making it easier to select and use power semiconductors.

CHAPTER 1 forms an introduction to power semiconductors concentrating particularly on the two major power transistor technologies, Power MOSFETs and High Voltage Bipolar Transistors.

CHAPTER 2 is devoted to Switched Mode Power Supplies. It begins with a basic description of the most commonly used topologies and discusses the major issues surrounding the use of power semiconductors including rectifiers. Specific design examples are given as well as a look at designing the magnetic components. The end of this chapter describes resonant power supply technology.

CHAPTER 3 describes motion control in terms of ac, dc and stepper motor operation and control. This chapter looks only at transistor controls, phase control using thyristors and triacs is discussed separately in chapter 6.

CHAPTER 4 looks at television and monitor applications. A description of the operation of horizontal deflection circuits is given followed by transistor selection guides for both deflection and power supply applications. Deflection and power supply circuit examples are also given based on circuits designed by the Product Concept and Application Laboratories (Eindhoven).

CHAPTER 5 concentrates on automotive electronics looking in detail at the requirements for the electronic switches taking into consideration the harsh environment in which they must operate.

CHAPTER 6 reviews thyristor and triac applications from the basics of device technology and operation to the simple design rules which should be followed to achieve maximum reliability. Specific examples are given in this chapter for a number of the common applications.

CHAPTER 7 looks at the thermal considerations for power semiconductors in terms of power dissipation and junction temperature limits. Part of this chapter is devoted to worked examples showing how junction temperatures can be calculated to ensure the limits are not exceeded. Heatsink requirements and designs are also discussed in the second half of this chapter.

CHAPTER 8 is an introduction to the use of high voltage bipolar transistors in electronic lighting ballasts. Many of the possible topologies are described.

Table of Contents

CHAPTER 1 Introduction to Power Semiconductors	1
General	3
1.1.1 An Introduction To Power Devices	5
Power MOSFET	17
 1.2.1 PowerMOS Introduction	29 39 49 53 57 61 67
High Voltage Bipolar Transistor	77
 1.3.1 Introduction To High Voltage Bipolar Transistors 1.3.2 Effects of Base Drive on Switching Times 1.3.3 Using High Voltage Bipolar Transistors 1.3.4 Understanding The Data Sheet: High Voltage Transistors 	83 91
CHAPTER 2 Switched Mode Power Supplies	103
Using Power Semiconductors in Switched Mode Topologies	105
 2.1.1 An Introduction to Switched Mode Power Supply Topologies 2.1.2 The Power Supply Designer's Guide to High Voltage Transistors 2.1.3 Base Circuit Design for High Voltage Bipolar Transistors in Power Converters 	129
2.1.4 Isolated Power Semiconductors for High Frequency Power Supply Applications	
Output Rectification	159
 2.2.1 Fast Recovery Epitaxial Diodes for use in High Frequency Rectification 2.2.2 Schottky Diodes from Philips Semiconductors 2.2.3 An Introduction to Synchronous Rectifier Circuits using PowerMOS Transistors 	161 173 179

Design Examples	185
2.3.1 Mains Input 100 W Forward Converter SMPS: MOSFET and Bipolar Transistor Solutions featuring ETD Cores 2.3.2 Flexible, Low Cost, Self-Oscillating Power Supply using an ETD34 Two-Part Coil Former and 3C85 Ferrite	
Magnetics Design	205
2.4.1 Improved Ferrite Materials and Core Outlines for High Frequency Power Supplies	r 207
Resonant Power Supplies	217
2.5.1. An Introduction To Resonant Power Supplies 2.5.2. Resonant Power Supply Converters - The Solution For Mains Pollution Problems	
CHAPTER 3 Motor Control	241
AC Motor Control	243
 3.1.1 Noiseless A.C. Motor Control: Introduction to a 20 kHz System 3.1.2 The Effect of a MOSFET's Peak to Average Current Rating on Invertor Efficiency 3.1.3 MOSFETs and FREDFETs for Motor Drive Equipment 3.1.4 A Designers Guide to PowerMOS Devices for Motor Control 3.1.5 A 300V, 40A High Frequency Inverter Pole Using Paralleled FREDFET Modules 	251 253 259
DC Motor Control	283
3.2.1 Chopper circuits for DC motor control3.2.2 A switched-mode controller for DC motors3.2.3 Brushless DC Motor Systems	293
Stepper Motor Control	307
3.3.1 Stepper Motor Control	309
CHAPTER 4 Televisions and Monitors	317
Power Devices in TV & Monitor Applications (including selection guides)	319
4.1.1 An Introduction to Horizontal Deflection	

4.1.3 Philips HVT's for TV & Monitor Applications4.1.4 TV and Monitor Damper Diodes	
TV Deflection Circuit Examples	349
4.2.1 Application Information for the 16 kHz Black Line Picture Tubes	
SMPS Circuit Examples	377
4.3.1 A 70W Full Performance TV SMPS Using The TDA8380 4.3.2 A Synchronous 200W SMPS for 16 and 32 kHz TV	
Monitor Deflection Circuit Example	397
4.4.1 A Versatile 30 - 64 kHz Autosync Monitor	399
CHAPTER 5 Automotive Power Electronics	421
Automotive Motor Control (including selection guides)	423
5.1.1 Automotive Motor Control With Philips MOSFETS	425
Automotive Lamp Control (including selection guides)	433
5.2.1 Automotive Lamp Control With Philips MOSFETS	435
The TOPFET	443
5.3.1 An Introduction to the 3 pin TOPFET 5.3.2 An Introduction to the 5 pin TOPFET	447
5.3.3 BUK101-50DL - a Microcontroller compatible TOPFET 5.3.4 Protection with 5 pin TOPFETs	
5.3.5 Driving TOPFETs	
5.3.6 High Side PWM Lamp Dimmer using TOPFET	455
5.3.7 Linear Control with TOPFET	
5.3.8 PWM Control with TOPFET	
5.3.9 Isolated Drive for TOPFET	
5.3.10 3 pin and 5 pin TOPFET Leadforms	
5.3.11 TOPFET Input Voltage	
5.3.12 Negative Input and TOPFET	
5.3.13 Switching Inductive Loads with TOPFET 5.3.14 Driving DC Motors with TOPFET	
5.3.14 Driving DC Motors with TOFFET	
5.3.16 High Side Linear Drive with TOPFET	
U	-

Automotive Ignition	477
5.4.1 An Introduction to Electronic Automotive Ignition5.4.2 IGBTs for Automotive Ignition5.4.3 Electronic Switches for Automotive Ignition	481
CHAPTER 6 Power Control with Thyristors and Triacs	485
Using Thyristors and Triacs	487
 6.1.1 Introduction to Thyristors and Triacs 6.1.2 Using Thyristors and Triacs 6.1.3 The Peak Current Handling Capability of Thyristors 6.1.4 Understanding Thyristor and Triac Data 	497 505
Thyristor and Triac Applications	521
6.2.1 Triac Control of DC Inductive Loads6.2.2 Domestic Power Control with Triacs and Thyristors6.2.3 Design of a Time Proportional Temperature Controller	527
Hi-Com Triacs	547
6.3.1 Understanding Hi-Com Triacs 6.3.2 Using Hi-Com Triacs	
CHAPTER 7 Thermal Management	553
Thermal Considerations	555
7.1.1 Thermal Considerations for Power Semiconductors	
CHAPTER 8 Lighting	575
Fluorescent Lamp Control	577
 8.1.1 Efficient Fluorescent Lighting using Electronic Ballasts 8.1.2 Electronic Ballasts - Philips Transistor Selection Guide 8.1.3 An Electronic Ballast - Base Drive Optimisation 	587

Index

Airgap, transformer core, 111, 113 Anti saturation diode, 590 Asynchronous, 497 Automotive fans see motor control IGBT, 481, 483 ignition, 479, 481, 483 lamps, 435, 455 motor control, 425, 457, 459, 471, 475 resistive loads, 442 reverse battery, 452, 473, 479 screen heater, 442 seat heater, 442 solenoids, 469 TOPFET, 473 Avalanche, 61 Avalanche breakdown thyristor, 490 Avalanche multiplication, 134 Baker clamp, 138, 187, 190 Ballast electronic, 580 fluorescent lamp, 579 switchstart, 579 Base drive, 136 base inductor, 147 base inductor, diode assisted, 148 base resistor, 146 drive transformer, 145 drive transformer leakage inductance, 149 electronic ballast, 589 forward converter, 187 power converters, 141 speed-up capacitor, 143 Base inductor, 144, 147 Base inductor, diode assisted, 148 Boost converter, 109 continuous mode, 109 discontinuous mode, 109 output ripple, 109 Bootstrap, 303 Breakback voltage diac, 492 Breakdown voltage, 70 Breakover current diac, 492 Breakover voltage diac, 492, 592 thyristor, 490

Bridge circuits see Motor Control - AC Brushless motor, 301, 303 Buck-boost converter, 110 Buck converter, 108 - 109 Burst firing, 537 Burst pulses, 564 Capacitance junction, 29 Capacitor mains dropper, 544 CENELEC, 537 Charge carriers, 133 triac commutation, 549 Choke fluorescent lamp, 580 Choppers, 285 Clamp diode, 117 Clamp winding, 113 Commutation diode, 164 Hi-Com triac, 551 thyristor, 492 triac, 494, 523, 529 Compact fluorescent lamp, 585 Continuous mode see Switched Mode Power Supplies Continuous operation, 557 Converter (dc-dc) switched mode power supply, 107 Cookers, 537 Cooling forced, 572 natural, 570 Crest factor, 529 Critical electric field, 134 Cross regulation, 114, 117 Current fed resonant inverter, 589 Current Mode Control, 120 Current tail, 138, 143 Damper Diodes, 345, 367 forward recovery, 328, 348 losses. 347 outlines, 345 picture distortion, 328, 348 selection guide, 345 Darlington, 13 Data Sheets High Voltage Bipolar Transistor, 92,97,331 MÖSFET, 69

dc-dc converter, 119 Depletion region, 133 Desaturation networks, 86 Baker clamp, 91, 138 dl/dt triac, 531 Diac, 492, 500, 527, 530, 591 Diode, 6 double diffused. 162 epitaxial, 161 schottky, 173 structure, 161 Diode Modulator, 327, 367 Disc drives, 302 Discontinuous mode see Switched Mode Power Supplies Domestic Appliances, 527 Dropper capacitive, 544 resistive, 544, 545 Duty cycle, 561 EFD core see magnetics Efficiency Diodes see Damper Diodes Electric drill. 531 Electronic ballast, 580 base drive optimisation, 589 current fed half bridge, 584, 587, 589 current fed push pull, 583, 587 flyback, 582 transistor selection guide, 587 voltage fed half bridge, 584, 588 voltage fed push pull, 583, 587 EMC. 260. 455 see RFI, ESD TOPFET, 473 Emitter shorting triac, 549 Epitaxial diode, 161 characteristics, 163 dl/dt, 164 forward recovery, 168 lifetime control, 162 operating frequency, 165 passivation, 162 reverse leakage, 169 reverse recovery, 162, 164 reverse recovery softness, 167 selection guide, 171 snap-off, 167 softness factor, 167 stored charge, 162 technology, 162

ESD, 67 see Protection, ESD precautions, 67 ETD core see magnetics F-pack see isolated package Fall time, 143, 144 Fast Recovery Epitaxial Diode (FRED) see epitaxial diode FBSOA, 134 Ferrites see magnetics Flicker fluorescent lamp, 580 Fluorescent lamp, 579 colour rendering, 579 colour temperature, 579 efficacy, 579, 580 triphosphor, 579 Flyback converter, 110, 111, 113 advantages, 114 clamp winding, 113 continuous mode, 114 coupled inductor, 113 cross regulation, 114 diodes, 115 disadvantages, 114 discontinuous mode, 114 electronic ballast, 582 leakage inductance, 113 magnetics, 213 operation, 113 rectifier circuit, 180 self oscillating power supply, 199 synchronous rectifier, 156, 181 transformer core airgap, 111, 113 transistors, 115 Flyback converter (two transistor), 111, 114 Food mixer, 531 Forward converter, 111, 116 advantages, 116 clamp diode, 117 conduction loss, 197 continuous mode, 116 core loss, 116 core saturation, 117 cross regulation, 117 diodes, 118 disadvantages, 117 duty ratio, 117 ferrite cores, 116 magnetics, 213 magnetisation energy, 116, 117

operation, 116 output diodes, 117 output ripple, 116 rectifier circuit, 180 reset winding, 117 switched mode power supply, 187 switching frequency, 195 switching losses, 196 synchronous rectifier, 157, 181 transistors, 118 Forward converter (two transistor), 111, 117 Forward recovery, 168 FREDFET, 250, 253, 305 bridge circuit, 255 charge, 254 diode, 254 drive, 262 loss, 256 reverse recovery, 254 FREDFETs motor control, 259 Full bridge converter, 111, 125 advantages, 125 diodes, 126 disadvantages, 125 operation, 125 transistors, 126 Gate triac. 538 Gate drive forward converter, 195 Gold doping, 162, 169 GTO, 11 Guard ring schottky diode, 174 Half bridge, 253 Half bridge circuits see also Motor Control - AC Half bridge converter, 111, 122 advantages, 122 clamp diodes, 122 cross conduction, 122 diodes, 124 disadvantages, 122 electronic ballast, 584, 587, 589 flux symmetry, 122 magnetics, 214 operation, 122 synchronous rectifier, 157 transistor voltage, 122 transistors, 124 voltage doubling, 122 Heat dissipation, 567

Heat sink compound, 567 Heater controller, 544 Heaters, 537 Heatsink, 569 Heatsink compound, 514 Hi-Com triac, 519, 549, 551 commutation, 551 dlcom/dt, 552 gate trigger current, 552 inductive load control, 551 High side switch MOSFET, 44, 436 TOPFET, 430, 473 High Voltage Bipolar Transistor, 8, 79, 91, 141, 341 'bathtub' curves, 333 avalanche breakdown, 131 avalanche multiplication, 134 Baker clamp, 91, 138 base-emitter breakdown, 144 base drive, 83, 92, 96, 136, 336, 385 base drive circuit, 145 base inductor, 138, 144, 147 base inductor, diode assisted, 148 base resistor, 146 breakdown voltage, 79, 86, 92 carrier concentration, 151 carrier injection, 150 conductivity modulation, 135, 150 critical electric field, 134 current crowding, 135, 136 current limiting values, 132 current tail, 138, 143 current tails, 86, 91 d-type, 346 data sheet, 92, 97, 331 depletion region, 133 desaturation, 86, 88, 91 device construction, 79 dl/dt, 139 drive transformer, 145 drive transformer leakage inductance, 149 dV/dt, 139 electric field, 133 electronic ballast, 581, 585, 587, 589 Fact Sheets, 334 fall time, 86, 99, 143, 144 FBSOA, 92, 99, 134 hard turn-off, 86 horizontal deflection, 321, 331, 341 leakage current, 98 limiting values, 97 losses, 92, 333, 342 Miller capacitance, 139 operation, 150

optimum drive, 88 outlines, 332, 346 over current, 92, 98 over voltage, 92, 97 overdrive, 85, 88, 137, 138 passivation, 131 power limiting value, 132 process technology, 80 ratings, 97 RBSOA, 93, 99, 135, 138, 139 RC network, 148 reverse recovery, 143, 151 safe operating area, 99, 134 saturation, 150 saturation current, 79, 98, 341 secondary breakdown, 92, 133 smooth turn-off, 86 SMPS, 94, 339, 383 snubber, 139 space charge, 133 speed-up capacitor, 143 storage time, 86, 91, 92, 99, 138, 144, 342 sub emitter resistance, 135 switching, 80, 83, 86, 91, 98, 342 technology, 129, 149 thermal breakdown, 134 thermal runaway, 152 turn-off, 91, 92, 138, 142, 146, 151 turn-on, 91, 136, 141, 149, 150 underdrive, 85, 88 voltage limiting values, 130 Horizontal Deflection, 321, 367 base drive, 336 control ic, 401 d-type transistors, 346 damper diodes, 345, 367 diode modulator, 327, 347, 352, 367 drive circuit, 352, 365, 406 east-west correction, 325, 352, 367 line output transformer, 354 linearity correction, 323 operating cycle, 321, 332, 347 s-correction, 323, 352, 404 TDA2595, 364, 368 TDA4851, 400 TDA8433, 363, 369 test circuit, 321 transistors, 331, 341, 408 waveforms, 322 IGBT, 11, 305 automotive, 481, 483 clamped, 482, 484 ignition, 481, 483

Ignition automotive, 479, 481, 483 darlington, 483 Induction heating, 53 Induction motor see Motor Control - AC Inductive load see Solenoid Inrush current, 528, 530 Intrinsic silicon, 133 Inverter, 260, 273 see motor control ac current fed, 52, 53 switched mode power supply, 107 Irons, electric, 537 Isolated package, 154 stray capacitance, 154, 155 thermal resistance, 154 Isolation, 153 J-FET. 9 Junction temperature, 470, 557, 561 burst pulses, 564 non-rectangular pulse, 565 rectangular pulse, composite, 562 rectangular pulse, periodic, 561 rectangular pulse, single shot, 561 Lamp dimmer, 530 Lamps, 435 dl/dt, 438 inrush current, 438 MOSFET, 435 PWM control, 455 switch rate, 438 TOPFET, 455 Latching current thyristor, 490 Leakage inductance, 113, 200, 523 Lifetime control, 162 Lighting fluorescent, 579 phase control, 530 Logic Level FET motor control, 432 Logic level MOSFET, 436 Magnetics, 207 100W 100kHz forward converter, 197 100W 50kHz forward converter, 191 50W flyback converter, 199 core losses, 208 core materials, 207 EFD core, 210 ETD core, 199, 207

flyback converter, 213 forward converter, 213 half bridge converter, 214 power density, 211 push-pull converter, 213 switched mode power supply, 187 switching frequency, 215 transformer construction, 215 Mains Flicker, 537 Mains pollution, 225 pre-converter, 225 Mains transient, 544 Mesa glass, 162 Metal Oxide Varistor (MOV), 503 Miller capacitance, 139 Modelling, 236, 265 MOS Controlled Thyristor, 13 MOSFET, 9, 19, 153, 253 bootstrap, 303 breakdown voltage, 22, 70 capacitance, 30, 57, 72, 155, 156 capacitances, 24 characteristics, 23, 70 - 72 charge, 32, 57 data sheet, 69 dl/dt, 36 diode, 253 drive, 262, 264 drive circuit loss, 156 driving, 39, 250 dV/dt, 36, 39, 264 ESD, 67 gate-source protection, 264 gate charge, 195 gate drive, 195 gate resistor, 156 high side, 436 high side drive, 44 inductive load, 62 lamps, 435 leakage current, 71 linear mode, parallelling, 52 logic level, 37, 57, 305 loss, 26, 34 maximum current, 69 motor control, 259, 429 modelling, 265 on-resistance, 21, 71 package inductance, 49, 73 parallel operation, 26, 47, 49, 265 parasitic oscillations, 51 peak current rating, 251 Resonant supply, 53 reverse diode, 73 ruggedness, 61, 73

safe operating area, 25, 74 series operation, 53 SMPS, 339, 384 solenoid, 62 structure, 19 switching, 24, 29, 58, 73, 194, 262 switching loss, 196 synchronous rectifier, 179 thermal impedance, 74 thermal resistance, 70 threshold voltage, 21, 70 transconductance, 57, 72 turn-off, 34, 36 turn-on, 32, 34, 35, 155, 256 Motor, universal back EMF, 531 starting, 528 Motor Control - AC, 245, 273 anti-parallel diode, 253 antiparallel diode, 250 carrier frequency, 245 control, 248 current rating, 262 dc link, 249 diode, 261 diode recovery, 250 duty ratio, 246 efficiency, 262 EMC, 260 filter, 250 FREDFET, 250, 259, 276 gate drives, 249 half bridge, 245 inverter, 250, 260, 273 line voltage, 262 loss. 267 MOSFET, 259 Parallel MOSFETs, 276 peak current, 251 phase voltage, 262 power factor, 262 pulse width modulation, 245, 260 ripple, 246 short circuit, 251 signal isolation, 250 snubber, 276 speed control, 248 switching frequency, 246 three phase bridge, 246 underlap, 248 Motor Control - DC, 285, 293, 425 braking, 285, 299 brushless, 301 control, 290, 295, 303 current rating, 288

drive, 303 duty cycle, 286 efficiency, 293 FREDFÉT, 287 freewheel diode, 286 full bridge, 287 half bridge, 287 high side switch, 429 IGBT, 305 inrush, 430 inverter, 302 linear, 457, 475 logic level FET, 432 loss, 288 MOSFET, 287, 429 motor current, 295 overload, 430 permanent magnet, 293, 301 permanent magnet motor, 285 PWM, 286, 293, 459, 471 servo, 298 short circuit, 431 stall, 431 TOPFET, 430, 457, 459, 475 topologies, 286 torque, 285, 294 triac, 525 voltage rating, 288 Motor Control - Stepper, 309 bipolar, 310 chopper, 314 drive, 313 hybrid, 312 permanent magnet, 309 reluctance, 311 step angle, 309 unipolar, 310 Mounting, transistor, 154 Mounting base temperature, 557 Mounting torque, 514 Parasitic oscillation, 149 Passivation, 131, 162 PCB Design, 368, 419 Phase angle, 500 Phase control, 546 thyristors and triacs, 498 triac, 523 Phase voltage see motor control - ac Power dissipation, 557 see High Voltage Bipolar Transistor loss, MOSFET loss Power factor correction, 580 active, boost converted, 581

Power MOSFET see MOSFET Proportional control, 537 Protection ESD, 446, 448, 482 overvoltage, 446, 448, 469 reverse battery, 452, 473, 479 short circuit, 251, 446, 448 temperature, 446, 447, 471 TOPFET, 445, 447, 451 Pulse operation, 558 Pulse Width Modulation (PWM), 108 Push-pull converter, 111, 119 advantages, 119 clamp diodes, 119 cross conduction, 119 current mode control, 120 diodes, 121 disadvantages, 119 duty ratio, 119 electronic ballast, 582, 587 flux symmetry, 119, 120 magnetics, 213 multiple outputs, 119 operation, 119 output filter, 119 output ripple, 119 rectifier circuit, 180 switching frequency, 119 transformer, 119 transistor voltage, 119 transistors, 121 Qs (stored charge), 162 RBSOA, 93, 99, 135, 138, 139 Rectification, synchronous, 179 Reset winding, 117 Resistor mains dropper, 544, 545 Resonant power supply, 219, 225 modelling, 236 MOSFET, 52, 53 pre-converter, 225 Reverse leakage, 169 Reverse recovery, 143, 162 RFI, 154, 158, 167, 393, 396, 497, 529, 530, 537 Ruggedness MOSFET, 62, 73 schottky diode, 173 Safe Operating Area (SOA), 25, 74, 134, 557 forward biased, 92, 99, 134

reverse biased, 93, 99, 135, 138, 139

Saturable choke triac, 523 Schottky diode, 173 bulk leakage, 174 edge leakage, 174 guard ring, 174 reverse leakage, 174 ruggedness, 173 selection guide, 176 technology, 173 SCR see Thyristor Secondary breakdown, 133 Selection Guides BU25XXA, 331 BU25XXD, 331 damper diodes, 345 EPI diodes, 171 horizontal deflection, 343 MOSFETs driving heaters, 442 MOSFETs driving lamps, 441 MOSFETs driving motors, 426 Schottky diodes, 176 SMPS, 339 Self Oscillating Power Supply (SOPS) 50W microcomputer flyback converter, 199 ETD transformer, 199 Servo, 298 Single ended push-pull see half bridge converter Snap-off, 167 Snubber, 93, 139, 495, 502, 523, 529, 549 active, 279 Softness factor, 167 Solenoid TOPFET, 469, 473 turn off, 469, 473 Solid state relay, 501 SOT186, 154 SOT186A, 154 SOT199, 154 Space charge, 133 Speed-up capacitor, 143 Speed control thyristor, 531 triac, 527 Starter fluorescent lamp, 580 Startup circuit electronic ballast, 591 self oscillating power supply, 201 Static Induction Thyristor, 11 Stepdown converter, 109 Stepper motor, 309 Stepup converter, 109

Storage time, 144 Stored charge, 162 Suppression mains transient, 544 Switched Mode Power Supply (SMPS) see also self oscillating power supply 100W 100kHz MOSFET forward converter, 192 100W 500kHz half bridge converter, 153 100W 50kHz bipolar forward converter, 187 16 & 32 kHz TV, 389 asymmetrical, 111, 113 base circuit design, 149 boost converter, 109 buck-boost converter, 110 buck converter, 108 ceramic output filter, 153 continuous mode, 109, 379 control ic, 391 control loop, 108 core excitation, 113 core loss, 167 current mode control, 120 dc-dc converter, 119 diode loss, 166 diode reverse recovery effects, 166 diode reverse recovery softness, 167 diodes, 115, 118, 121, 124, 126 discontinuous mode, 109, 379 epitaxial diodes, 112, 161 flux swing, 111 flyback converter, 92, 111, 113, 123 forward converter, 111, 116, 379 full bridge converter, 111, 125 half bridge converter, 111, 122 high voltage bipolar transistor, 94, 112, 115. 118, 121, 124, 126, 129, 339, 383, 392 isolated, 113 isolated packages, 153 isolation, 108, 111 magnetics design, 191, 197 magnetisation energy, 113 mains filter, 380 mains input, 390 MOSFET, 112, 153, 33, 384 multiple output, 111, 156 non-isolated, 108 opto-coupler, 392 output rectifiers, 163 parasitic oscillation, 149 power-down, 136 power-up, 136, 137, 139 power MOSFET, 153, 339, 384 pulse width modulation, 108 push-pull converter, 111, 119

RBSOA failure, 139 rectification, 381, 392 rectification efficiency, 163 rectifier selection, 112 regulation, 108 reliability, 139 resonant see resonant power supply RFI, 154, 158, 167 schottky diode, 112, 154, 173 snubber, 93, 139, 383 soft start, 138 standby, 382 standby supply, 392 start-up, 391 stepdown, 109 stepup, 109 symmetrical, 111, 119, 122 synchronisation, 382 synchronous rectification, 156, 179 TDA8380, 381, 391 topologies, 107 topology output powers, 111 transformer, 111 transformer saturation, 138 transformers, 391 transistor current limiting value, 112 transistor mounting, 154 transistor selection, 112 transistor turn-off, 138 transistor turn-on, 136 transistor voltage limiting value, 112 transistors, 115, 118, 121, 124, 126 turns ratio, 111 TV & Monitors, 339, 379, 399 two transistor flyback, 111, 114 two transistor forward, 111, 117 Switching loss, 230 Synchronous, 497 Synchronous rectification, 156, 179 self driven, 181 transformer driven, 180 Temperature control, 537 Thermal continuous operation, 557, 568 intermittent operation, 568 non-rectangular pulse, 565 pulse operation, 558 rectangular pulse, composite, 562 rectangular pulse, periodic, 561 rectangular pulse, single shot, 561 single shot operation, 561 Thermal capacity, 558, 568

Thermal characteristics power semiconductors, 557 Thermal impedance, 74, 568 Thermal resistance, 70, 154, 557 Thermal time constant, 568 Thyristor, 10, 497, 509 'two transistor' model, 490 applications, 527 asynchronous control, 497 avalanche breakdown, 490 breakover voltage, 490, 509 cascading, 501 commutation, 492 control, 497 current rating, 511 dl/dt, 490 dlf/dt, 491 dV/dt, 490 energy handling, 505 external commutation, 493 full wave control, 499 fusing I²t, 503, 512 gate cathode resistor, 500 gate circuits, 500 gate current, 490 gate power, 492 gate requirements, 492 gate specifications, 512 gate triggering, 490 half wave control, 499 holding current, 490, 509 inductive loads, 500 inrush current, 503 latching current, 490, 509 leakage current, 490 load line, 492 mounting, 514 operation, 490 overcurrent, 503 peak current, 505 phase angle, 500 phase control, 498, 527 pulsed gate, 500 resistive loads, 498 resonant circuit, 493 reverse characteristic, 489 reverse recovery, 493 RFI, 497 self commutation, 493 series choke, 502 snubber, 502 speed controller, 531 static switching, 497 structure, 489 switching, 489

switching characteristics, 517 synchronous control, 497 temperature rating, 512 thermal specifications, 512 time proportional control, 497 transient protection, 502 trigger angle, 500 turn-off time, 494 turn-on, 490, 509 turn-on dl/dt, 502 varistor, 503 voltage rating, 510 Thyristor data, 509 Time proportional control, 537 TOPFET 3 pin, 445, 449, 461 5 pin, 447, 451, 457, 459, 463 driving, 449, 453, 461, 465, 467, 475 high side, 473, 475 lamps, 455 leadforms, 463 linear control, 451, 457 motor control, 430, 457, 459 negative input, 456, 465, 467 protection, 445, 447, 451, 469, 473 PWM control, 451, 455, 459 solenoids, 469 Transformer triac controlled, 523 Transformer core airgap, 111, 113 Transformers see magnetics Transient thermal impedance, 559 Transient thermal response, 154 Triac, 497, 510, 518 400Hz operation, 489, 518 applications, 527, 537 asynchronous control, 497 breakover voltage, 510 charge carriers, 549 commutating dl/dt, 494 commutating dV/dt, 494 commutation, 494, 518, 523, 529, 549 control, 497 dc inductive load, 523 dc motor control, 525 dl/dt, 531, 549 dlcom/dt, 523 dV/dt, 523, 549 emitter shorting, 549 full wave control, 499 fusing l²t, 503, 512 gate cathode resistor, 500 gate circuits, 500 gate current, 491

gate requirements, 492 gate resistor, 540, 545 gate sensitivity, 491 gate triggering, 538 holding current, 491, 510 Hi-Com, 549, 551 inductive loads, 500 inrush current, 503 isolated trigger, 501 latching current, 491, 510 operation, 491 overcurrent, 503 phase angle, 500 phase control, 498, 527, 546 protection, 544 pulse triggering, 492 pulsed gate, 500 quadrants, 491, 510 resistive loads, 498 RFI, 497 saturable choke, 523 series choke, 502 snubber, 495, 502, 523, 529, 549 speed controller, 527 static switching, 497 structure, 489 switching, 489 synchronous control, 497 transformer load, 523 transient protection, 502 trigger angle, 492, 500 triggering, 550 turn-on dl/dt, 502 varistor, 503 zero crossing, 537 Trigger angle, 500 TV & Monitors 16 kHz black line, 351 30-64 kHz autosync, 399 32 kHz black line, 361 damper diodes, 345, 367 diode modulator, 327, 367 EHT, 352 - 354, 368, 409, 410 high voltage bipolar transistor, 339, 341 horizontal deflection, 341 picture distortion, 348 power MOSFET, 339 SMPS, 339, 354, 379, 389, 399 vertical deflection, 358, 364, 402 Two transistor flyback converter, 111, 114 Two transistor forward converter, 111, 117 Universal motor

back EMF, 531

starting, 528

Vacuum cleaner, 527 Varistor, 503 Vertical Deflection, 358, 364, 402 Voltage doubling, 122

Water heaters, 537

Zero crossing, 537 Zero voltage switching, 537