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INTRODUCTION TO
PROGRAMMABLE MACRO
LOGIC DESIGN CONCEPTS
Programmable Macro Logic (PML), an
extension of the Programmable Logic Array
(PLA) concept combines a programming or
fuse array with an array of wide input NAND
gates wherein each gate folds back upon
itself and all other such NAND gates. This is
called a foldback NAND structure and its
basic elements have been outlined previously
(Cavlan1, Wong2, Gheissari and Safari3).

The choice of an internal NAND logic cell is
appropriate because the cell is functionally
complete, requiring but a single cell type to
generate any Boolean function. A cell within
the PLHS501 may be configured to
accommodate from one to 32 inputs from the
outside world, and up to 72 inputs from within
the chip. Because the user can select either
direct or inverted input variables, and either a
direct or complemented output, the NAND
function can generate, with a single pass
through the programming array, the basic
four logic functions of AND, OR, NAND,
NOR. all these basic functions, can be
extremely wide, of course (see Figure 1).
This convenient structure allows efficient
exploitation of all widely used minimization
techniques (Karnaugh Maps,
Quine-McClusky, Boolean Algebra, etc.).

The obvious extensions to additional
combinational functions for decoding,
multiplexing and general Boolean functions is
straightforward. Adding feedback to the
system expands the range of realizable
functions to include sequential as well as
combinational functions. Figure 2 illustrates
the basic arrangement of the PLHS501.

Because of the large number of inputs each
NAND gate has available, logic functions that
require several levels of conventional 4 or 8
input gates may be able to be reduced to 1 or
2 levels. However, it is important to realize
that unlike AND-OR PLD architectures, more
than 2 levels of logic may be implemented in
the PLHS501 without wasting output or input
pins. Up to 72 levels of logic may be
implemented due to each of the 72 foldback
NAND gates.

So far, the concept of a “macro” is still not
evident. Two ways for the generation of a
macro exist—namely, hard and soft.
Borrowing from the concept in computer
programming wherein a section of code
(called a macro) is repeated every time its
use is required, we can establish
subfunctions which can be repeated each
time required. The user defined or soft macro
can be one which will generate a function by
fused interconnect. When a fixed design
function is provided, it is a hard macro. This
may be an optimized structure like a flip-flop
or an adder, or some other function which is
generated on the foundation, by the
manufacturer. Soft macros are seldom
optimized or precisely consistent, but hard
macros are both optimized and unalterable.

When a user function for a particular use is
isolated, defined and repetition of the function
is required, special software constructs are
provided which will allow it to be defined at a
higher performance and functional density,
and an array of choices which contain
optimized functions or hard macros will be
offered in successor chips. In particular, the
PML2552 and PML2852 include an array of
flip-flops for state machine design.

Optimizing combinational functions in PML
consists largely in making choices and
trade-offs. For single output logic functions,
the choice is obvious from the truth table. If a
particular function’s truth table has fewer
entries that are logical zeroes than logical
ones, product of sums should be chosen and
the appropriate OR-AND structure generated.
Otherwise, the usual sum of products should
be chosen, minimizing as usual, before
dropping into the two level AND-OR structure
(using the NAND-NAND realization).
Combining the availability of inversion at the
input and output of the chip, the
NAND-NAND structure can perform either
the OR-AND or the AND-OR rendition of a
function with equal logic levels. The designer
needs only to choose the optimal rendition to
suit his needs (see Table 1). Truth tables with
50% ones can use either version at the
designers whim unless other uses arise.

PERFORMANCE
The PLHS501 (Figure 2) is a high speed,
oxide isolated, vertically fused PML device
containing 72 internal NAND functions which
are combined with 24 dedicated outputs. A
large collection of applications, both
combinational and sequential, may be
configured using this part which looks roughly
like a small, user definable gate array. For the
sake of clarity, worst case passing a signal
from an input, making one pass through the
NAND array (output terms) and exiting an
output takes around 25 nanoseconds with
each incremental pass through the NAND
foldback array taking about 8 nanoseconds.
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Figure 1.  PML Basic Functions
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Table 1.  Example Demonstration

F1 (A, B, C) = ABC + ABC + ABC + ABC + ABC

A B C f1 C AB 00 01 11 10

0 0 0 0 0 0 1 1 0

0 0 1 1 1 1 0 1 1

0 1 0 1

0 1 1 0

1 0 0 0 The optimal choice would be to generate

1 0 1 1 the zero entries

1 1 0 1

1 1 1 1

If we group on the one  entries we shall get: AB +B C + BC
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INPUT BUFFERS

INPUT
BUFFERS

OUTPUT
BUFFERS

OUTPUT
TERMS



Philips Semiconductors Programmable Logic Devices

Designing with programmable macro logic

November 1993 4

The data sheet first lists some maximum
propagation delays from an input, through a
NAND output term and out through various
output gates. Secondly, it lists maximum
propagation delays from an input, through a
NAND foldback term, through a NAND output
term and out through the different output
gates.

It is intriguing that subtracting one from the
other yields a NAND foldback gate delay of 5
to 6ns when the worst case gate delay of an
internal foldback gate is listed as 8ns. This is
due to the fact that a gate has less of a delay
when its output is falling (tPHL) than when its
output is rising (tPLH). When passing a signal
through two NAND gates one gate will have

less of a delay than the other, and since the
individual rise and fall delays are not
specified, this causes the apparent
discrepancy between the two delays.

Figure 3, Figure 4, Figure 5 and Figure 6
show graphically the timing paths listed in the
PLHS501 data sheet.

PLHS501 TIMING
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PLHS501 TIMING (Continued)
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PLHS501 TIMING (Continued)
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PLHS501 TIMING (Continued)
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NAND GATE FLIP-FLOPS
Various types of flip-flops and latches may be
constructed using the NAND gate building
blocks of the PLHS501. A typical 7474 type
of edge-triggered D flip-flop requires 6 NAND
gates as shown in Figure 7.

No additional gates are required to implement
asynchronous set and reset functions to the
flip-flop. The equations necessary for SNAP
to implement the D flip-flop are shown in
Figure 8. However, please note that the
equations of Figure 8 define a D flip-flop
configured as a divide by 2 (i.e., QN is
connected to the data input) whereas
Figure 7 shows a general case. Also note
that flip-flops with some additional features
may be constructed without using more than
the six NAND gates. This is possible because
of the large number of inputs associated with
each NAND gate. For instance, a flip-flop
may be required to have a clock gated by one
or more signals. Using the PLHS501, it may

be implemented by adding additional input
signal names to NAND gate equations of
gates #2 and #3 of Figure 7. If the data input
is to the AND of several signals, extra inputs
to NAND gate #4 may be used. Or if
additional set or reset lines are required, they
may be added simply by using more of the
inputs of each NAND gate connected to the
main set or reset.

Figure 10 shows two simulations of the same
flip-flop. The first one is at a little less than
maximum frequency, for clarity in following
the waveforms, and the second is at the
maximum toggling frequency. For these
simulations each NAND gate has a maximum
tPHL or tPLH of 8ns (which is the gate delay of
a NAND gate in the PLHS501’s foldback
array). First of all, it can be seen from these
simulations that for proper simulation or
testing of such a device a set or reset input is
mandatory. Both Q and QN outputs are
unknown not matter what the inputs do, until

they are put into a known state by either a set
or reset input. Secondly, various timing
parameters such as propagation delay, as
well as setup and hold times may be
determined.

Therefore, performance of the flip-flop
depends a great deal on which gates in the
PLHS501 are used, either NAND gates in the
foldback array or output NAND gates,
connected to bidirectional pins. As a test of
the simulation, a D flip-flop connected as a
divide by 2 was constructed using only the
foldback NAND terms (see Figure 8). An
output NAND terms was used to invert the
QN output and drive an output buffer. The
only inputs were the clock and a reset. The
data input to the flop was driven internally by
the QN output. According to the simulation, it
was possible to drive the clock at a frequency
of 25MHz and this small circuit also
functioned at that frequency.
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Figure 7.  Edge-Triggered D Flip-Flop
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Figure 8.  SNAP Listing

************************************************************
*        PLHS501 52–Pin PLCC Package Pin Layout             *
* Date: 10/13/93                            Time: 16:42:21 *
************************************************************

                               R C                          
                               S L                          
                               T K                          
                    +–+–+–+–+–+–+–+–+–+–+–+–+–+             
                    | | | | | | | |5|5|5|4|4|4|             
                    |7|6|5|4|3|2|1|2|1|0|9|8|7|             
                +––––––––––––––––––––––––––––––––––+        
                |    I I I I I I I I I I I I I     |        
                |    1 1 1 1 1 1 1 1 9 8 7 6 5     |        
                |    7 6 5 4 3 2 1 0               |        
                |                                  |        
             [ 8|VCC                            VCC|46]     
             [ 9|I18                             I4|45]     
             [10|I19                             I3|44]     
             [11|I20                             I2|43]     
             [12|I21                             I1|42]     
             [13|I22                             I0|41]     
             [14|I23                            /B3|40] OUT 
             [15|B4                             /B2|39]     
             [16|B5                             /B1|38]     
             [17|B6                             /B0|37]     
             [18|B7                              X7|36]     
             [19|O0                              X6|35]     
             [20|GND                            GND|34]     
                |                                  |        
                |          / / / /                 |        
                |    O O O O O O O X X X X X X     |        
                |    1 2 3 4 5 6 7 0 1 2 3 4 5     |        
                +––––––––––––––––––––––––––––––––––+        
                    |2|2|2|2|2|2|2|2|2|3|3|3|3|             
                    |1|2|3|4|5|6|7|8|9|0|1|2|3|             
                    +–+–+–+–+–+–+–+–+–+–+–+–+–+

@PINLIST
clk i;
rst i;
out o;
@GROUPS
@TRUTHTABLE
@LOGIC EQUATIONS

flop.clk =  clk;
flop.d   = /flop;
flop.rst =  rst;
out      =  flop;

@INPUT VECTORS
@OUTPUT VECTORS
@STATE VECTORS
@TRANSITIONS
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Figure  9.  Partial PLHS501 Fusemap Showing T est Flip-Flop Fusing

Figure 10.  Waveforms of Test Flip-Flop
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FUNCTIONAL FIT
In the late 1960’s and early 1970’s designers
used SSI, MSI and small amounts of early
LSI to generate logic solutions. Frustrated by
the lack of wide input gates to accommodate
a lot of product terms for two level solutions,
they turned toward the budding ROM and
PROM products. These devices relied on
literally realizing a function by generating its
truth table in silicon. The logic function had to
have each logical one and zero realized
distinctly as an entry for a particular
combination of input variables, usually
supplied on the address lines of the memory.
Observing that many such truth tables were
dense in ones or zeroes and sparse in the
remainder, a cadre of initial manufacturers
emerged with focus on supplying a
programmable product with a few AND gates
and OR gates which were versatile enough to
compete against the ROM/PROM parts. The
gimmick supplied these PLA manufacturers
was to illustrate the functional equivalency of
the PLA to the PROM by comparing the
number of product terms (to be shortened to
“p-terms”) the PLA supplied and comparing
this to the width and depth of available
PROMs. P-terms became the “currency” of
the PLA world and a designer only had to
assess the equivalent number of Boolean
product terms required by his function to
determine whether a particular PLA was a
suitable candidate for his design.

Almost in parallel, gate arrays became
available. These provided an array of
identical, fixed input gates (usually two input
NANDs or NORs). These were generated in
a regular fashion on substrate which has a
fixed input/output pin arrangement. Also
recognizing that all logic functions could be
built from the appropriate two input gate,
when interconnected correctly, manufacturers
offered these devices to customers who
required increased density.

The designer’s responsibility was to generate
what would ultimately be a metal interconnect
pattern of his design. Special tools were
required to allow an untrained system
designer to do this successfully. Flop-flops,
decoders, registers, adders, etc., could all be
generated from the low level gate building
blocks.

The currency of gate arrays became known
as gate equivalent functions. That is with
limited number of available gates on a
substrate, the user needed to know precisely
how many gates were used up, on a function
by function basis, to generate each piece of
his design. A D flip-flop requires about six
gates, a D latch four, a 3 to 8 decoder takes
about 14 gates and so forth. This allowed
estimation regarding whether the function
could conceivable be fit onto a particular
substrate or not. Manufacturers had to offer
multiple foundations to that a designer could
be assured that his design would result in a
working IC.

The classic method of estimating whether a
logic function would fit into a PLA was to
determine the number of I/O pads required
and the number of product terms required to
generate the logical function, then select the
PLA. For a gate array, the required measure
included the I/O pad arrangement but
substituted the number of available gates to
generate the logical function (usually by table
lookup). In an attempt to reconcile the two
measures, Hartman4 has evolved a formula
for his product line. A calculation using this
method and developing an appropriate
“exchange rate: is shown in Table 2 for the
PLHS501 and PLHS502. An alternate
method of generating an estimate is to
consider the gate equivalent of generating,
say for the PLHS501, a gate equivalent of the
part in an optimistic functional configuration
(72 occurrences of a 32 input NAND gate).

Figure 11 shows how this will result in over
2000 equivalent gates. Conversely, by
stacking the NAND gates into D flip-flops, its
least efficient function, the PLHS501 will have
a gate equivalent of only about 100 gates.

The most rational method of assessing fit is
to isolate functions and identify the correct
configuration in terms of gates, to allow direct
tally of the gates used, to generate the
proposed configuration. Table 3 may assist in
doing this analysis. Note that all basic gates
require precisely one gate to generate the
function. Also note the occurrence of
functions in the table which could never be
generated as standard ICs previously. The
procedure is to tally the design against a total
budget of 72 multiple input NAND gates.

Table 3 is illustrative only, and should by no
means be taken as complete. It may be
simply expanded by designing the proposed
function with disregard to the usual
restrictions on the number of inputs to a gate,
realize the function as one, two, three, or
more levels of interconnected logic and count
the number of gate occurrences required.
Special software has been provided to allow
pyramided logic structures to be generated
under the designer’s control. These
structures may, however, be no deeper than
72 levels for the PLHS501. Functions should
be generated in accord with the guidelines
mentioned before, for selecting an optimal 2
level logical solution.

It is an interesting observation that
manufacturers of gate arrays and standard
cell products which offer embedded PROMs,
ROMs or RAMs have not successfully
described these embedded functions in terms
of equivalent gates, but rather resort to other
means (such as divulging their relative area
with respect to the area of a basic gate).
There is, as yet, no standard in this arena.
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Table 2.  Equivalency Ratio

Hartman’s method is based on a CMOS gate array equivalency wherein 4 transistors
constitute a 2 input NAND or NOR gate, equal to one gate. Thus, his “exchange rate”
is as follows:

E.R. = 4 × # inputs
+9 × # FFs
+7 × # 3-State outputs
+(15 to 30) × # OR outputs from the AND/OR array.

For the PLHS501:  (using CMOS numbers which may be inappropriate)

E.R. = 4 × 32
+9 × 0
+7 × 24
+(15 to 30) × 50% of 72 feedbacks = 836 to 1376 gates

Being for two bipolar ICs, in this case, the method may be inappropriate, 
but may be taken as an estimating procedure.

Figure 11.  16 Input NAND Formed from 2 Input Gates
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Table 3.  PLHS501 Gate Count Equivalents

FUNCTION
INTERNAL

NAND EQUVAL-
ENT

COMMENTS

Gates

NANDs 1 For 1 to 32 input variables
ANDs 1 For 1 to 32 input variables
NORs 1 For 1 to 32 input variables
ORs 1 For 1 to 32 input variables

Decoders

3-to-8 8 Inverted inputs available
4-to-16 16 Inverted inputs available
5-to-32 32 Inverted inputs available (24 chip outputs

only)

Encoders

8-to-3 15 Inverted inputs, 2 logic levels
16-to-4 32 Inverted inputs, 2 logic levels
32-to-5 41 Inverted inputs, 2 logic levels, 

factored solution.

Multiplexers

4-to-1 5 Inverted inputs available
8-to-1 9
16-to-1 17
27-to-1 28 Can address only 27 external inputs - 

more if internal

Flip-Flops

D-type Flip-Flop 6 With asynchronous S-R
T-type Flip-Flop 6 With asynchronous S-R
J-K-type Flip-
Flop

10 With asynchronous S-R

Adders

8-bit 45 Full carry-lookahead (four levels of logic)

Barrel Shifters

8-bit 72 2 levels of logic

Latches

D-latch 3 2 levels of logic with one shared gate


