
APPLICATION NOTE

XA-S3 I2C driver software

AN98046

XA-S3 I2C driver software Application Note
AN98046

 Philips Semiconductors

2

Abstract

The XA-S3 is a member of Philips Semiconductors’ XA (eXtended Architecture) family of high performance 16-
bit single-chip Microcontrollers. The XA-S3 combines many powerful peripherals on one chip. Therefore, it is
suited for general multipurpose high performance embedded control functions.

One of the on-chip peripherals is the I2C bus interface. This report describes worked-out driver software (written
in C) to program / use the I2C interface of the XA-S3. The driver software, together with a demo program and
interface software routines offer the user a quick start in writing a complete I2C - XAS3 system application.

© Philips Electronics N.V. 2000
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copy-
right owner.
The information presented in this document does not form part of any quotation or contract, is believed to be
accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any
consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial
or intellectual property rights.

Purchase of Philips I2C components conveys
a license under the I2C patent to use the com-
ponents in the I2C system, provided the system
conforms to the I2C specifications defined by
Philips.

XA-S3 I2C driver software Application Note
AN98046

 Philips Semiconductors

3

APPLICATION NOTE

XA-S3 I2C driver software

AN98046

Author(s):

Paul Seerden
Philips Semiconductors Systems Laboratory Eindhoven,

The Netherlands

Keywords

XA Microcontroller, I2C - bus, Application software

Date: 98-04-02

Number of pages: 14

XA-S3 I2C driver software Application Note
AN98046

 Philips Semiconductors

4

Summary

This application note demonstrates how to write an Inter Integrated Circuit bus driver (I2C) for the XA-S3 16-bit
Microcontroller from Philips Semiconductors.

Not only the driver software is given. This note also contains a set of (example) interface routines and a small
demo application program. All together it offers the user a quick start in writing a complete I2C system application
with the PXAS3x.

The driver routines support interrupt driven single master transfers. Furthermore, the routines are suitable for
use in conjunction with real time operating systems.

XA-S3 I2C driver software Application Note
AN98046

 Philips Semiconductors

5

CONTENTS

1. INTRODUCTION...7

2. EXTERNAL (APPLICATION) INTERFACE ..9

 2.1 External data interface...9
 2.2 External function interfaces ...10

3. DRIVER OPERATION...11

4. DEMO PROGRAM ..12

APPENDIX 1 I2CINTFC.C ..13

APPENDIX 2 I2CDRIVR.C..17

APPENDIX 3 I2CEXPRT.H...20

APPENDIX 4 DEMO.C..22

XA-S3 I2C driver software Application Note
AN98046

 Philips Semiconductors

6

XA-S3 I2C driver software Application Note
AN98046

 Philips Semiconductors

7

1. INTRODUCTION
This report describes I2C driver software, written in C, for the XA-S3 Microcontroller. The driver software is the
interface between application software and the (hardware) I²C device(s). These devices conform to the serial
bus interface protocol specification as described in the I²C reference manual.

The I²C bus consists of two wires carrying information between the devices connected to the bus. Each device
has its own address. It can act as a master or as a slave during a data transfer. A master is the device that
initiates the data transfer and generates the clock signals needed for the transfer. At that time any addressed
device is considered a slave. The I²C bus is a multi-master bus. This means that more than one device capable
of controlling the bus can be connected to it. However, the driver software given in this application note only
supports (single) master transfers.

The I²C interface on the XA-S3 is identical to the standard byte - style I²C interface found on devices such as the
8xC552, except for the rate selection. The I²C interface conforms to the 100 kHz I2C specification, but may be
used at rates up to 400 kHz (non-conforming).

The I2C-bus format

An I²C transfer is initiated with the generation of a start condition. This condition will set the bus busy. After that a
message is transferred that consists of an address and a number of data bytes. This I²C message may be
followed either by a stop condition or a repeated start condition. A stop condition will release the bus mastership.
A repeated start offers the possibility to send /receive more than one message to/from the same or different
devices, while retaining bus mastership. Stop and (repeated) start conditions can only be generated in master
mode.

Data and addresses are transferred in eight bit bytes, starting with the most significant bit. During the 9th clock
pulse, following the data byte, the receiver must send an acknowledge bit to the transmitter. The slave may
stretch clock pulses (for timing causes).

A 7-bits slave address and a R/W direction bit always follow a start condition.

General format and explanation of an I²C message:

S SLV_W A SUB A S SLV_R A D1 A D2 A ………. A Dn N P

S : (re) Start condition.

A : Acknowledge on last byte.

N : No Acknowledge on last byte.

P : Stop condition.

SLV_W : Slave address and Write bit.

SLV_R : Slave address and Read bit.

SUB : Sub-address.

D1 ... Dn : Block of data bytes.

Also:

D1.1 ... D1.m : First block of data bytes.

Dn.1 ... Dn.m : nth block of data bytes.

XA-S3 I2C driver software Application Note
AN98046

 Philips Semiconductors

8

Software structure and modules

Application software DEMO.C

Interface functions I2CINTFC.C

XAS3 I2C driver I2CDRIVR.C

I2C bus
SDA
SCL

XA-S3 I2C driver software Application Note
AN98046

 Philips Semiconductors

9

2. EXTERNAL (APPLICATION) INTERFACE
This section chapter describes the external interface of the driver towards the application. The C-coded external
interface definitions are in the include file I2CEXPRT.H.

The application's view on the I²C bus is quite simple: The application can send messages to an I²C device. Also,
the application must be able to exchange a group of messages, optionally addressed to different devices,
without losing bus mastership. Retaining the bus is needed to guarantee atomic operations.

Inputs (application's view) to the driver are:

⇒ The number of messages to exchange (transfer).

⇒ The slave address of the I²C device for each message.

⇒ The data direction (read/write) for all messages.

⇒ The number of bytes in each message.

⇒ In case of a write message: the data bytes to be written to the slave.

Outputs (application's view) from the driver are:

⇒ Status information (success or error code).

⇒ Number of messages actually transferred (not the requested number of messages in case of an error).

⇒ For each read message: The data bytes read from the slave.

2.1 External data interface
All parameters affected by an I²C master transfer are logically grouped within two data structures. The user fills
these structures and then calls the interface function to perform a transfer. The data structures are listed below.

typedef struct
{

BYTE nrMessages; /* total number of messages */
I2C_MESSAGE **p_message; /* ptr to array of ptrs to message parameter blocks */

} I2C_TRANSFER;

The structure I2C_TRANSFER contains the common parameters for an I²C transfer. The driver keeps a local
copy of these parameters and leaves the contents of the structure unchanged. So, in many applications the
structure only needs to be filled once.

After finishing the actual transfer, a 'transfer ready' function is called. The driver status and the number of
messages done, are passed to this function.

The structure contains a pointer (p_message) to an array with pointers to the structure I2C_MESSAGE:

typedef struct
{

BYTE address; /* The I2C slave device address */
BYTE nrBytes; /* number of bytes to read or write */
BYTE *buf; /* pointer to data array */

} I2C_MESSAGE;

XA-S3 I2C driver software Application Note
AN98046

 Philips Semiconductors

10

The lowest bit of the slave address determines the direction of the transfer (read or write);

write = 0 and read = 1. This bit must be (re) set by the application.

The array buf must contain data supplied by the application in case of a write transfer. The user should notice
that checking, to ensure that the buffer pointed to by buf is at least nrBytes in length, cannot be done by the
driver.

In case of a read transfer, the driver fills the array. If you want to use buf as a string, a terminating NULL should
be added at the end. It is the user’s responsibility to ensure that the buffer, pointed to by buf, is large enough to
receive nrBytes bytes.

2.2 External function interfaces
This section gives a description of the two 'callable' interface functions in the I²C driver module (I2CDRIVR.C).

First the initialisation function (I2C_Initialize) is explained. This function directly programs the I²C interface
hardware and is part of the low level driver software. It must be called only once after 'reset', but before any
transfer function is executed. After that the interface function, used to actually perform a transfer (I2C_Transfer),
is explained.

void I2C_Initialize(void)

Initialise the I²C-bus driver part. Must be called once after RESET.

Hardware I²C registers of the XA-S3 will be programmed. The interrupt vector and the priority of the I²C interrupt
are set. Used constants (parameters) are defined in the file I2CEXPRT.H. The port pins P5.6 and P5.7, which
correspond to the I²C functions SCL and SDA respectively, are set to the open drain mode. The listed driver (see
appendix 2) programs the bit rate to 80 Kbit/s at an oscillator frequency of 22.1184 KHz. To adapt this, change
the I2CON values at the top of the file (check also register SCR for the peripheral clock pre-scaler).

void I2C_Transfer(I2C_TRANSFER *p, void (*proc)(BYTE status, BYTE msgsDone))

Start a synchronous I²C transfer. When the transfer is completed, with or without an error, call the function proc,
passing the transfer status and the number of messages successfully transferred.

I2C_TRANSFER *p A pointer to the structure describing the I²C messages to be transferred.

void (*proc(status, msgsDone)) A pointer to the function to be called when the transfer is completed.

BYTE msgsDone Number of message successfully transferred.

BYTE status one of: I2C_OK Transfer ended No Errors

I2C_BUSY I²C busy, so wait

I2C_ERR General error

I2C_NO_DATA err: No data message block

I2C_NACK_ON_DATA err: No ack on data in block

I2C_NACK_ON_ADDRESS err: No ack of slave

I2C_TIME_OUT err: Time out occurred

XA-S3 I2C driver software Application Note
AN98046

 Philips Semiconductors

11

3. DRIVER OPERATION
The XA-S3 on-chip logic provides a serial interface that meets the I2C bus specification and supports all transfer
modes from and to the bus. The I2C logic interfaces to the external I2C bus via two port pins: P5.6/SCL (serial
clock line) and P5.7/SDA (serial data line). In order to enable the interface these port pins are programmed to
their alternate function and are set to open drain I/O port mode.

The XA processor interfaces to the I2C logic via four hardware registers: I2CON (control register), I2STA (status
register), I2DAT (data register) and I2ADR (slave address registers).

If a transfer is started, the drivers interface function returns immediately. At the end of the transfer, together with
the generation of a STOP condition, the driver calls a function (readyProc), passing the transfer status. This
status (error, time-out, etc.) must be checked by the application. An example of how to handle the status is
shown in the file I2CINTFC.C. A pointer to the readyProc function was given by the application at the time the
transfer was applied for (see previous chapter).

After completing the transmission or reception of each byte (address or data), the SI flag in the I2CON register
is set. An interrupt is requested and the interrupt service handler will be called. At that time register I2STA holds
one of the following status codes (only master mode):

Master transmitter:

08H - A start condition has been transmitted

10H - A repeated start condition has been transmitted

18H - SLV_W has been transmitted, ACK received

20H - SLV_W has been transmitted, NOTACK received

28H - DATA from SDAT has been transmitted, ACK received

30H - DATA from SDAT has been transmitted, NOTACK received

38H - Arbitration lost in SLV_ R/W or DATA

Master receiver:

38H - Arbitration lost while returning NOTACK

40H - SLV_R has been transmitted, ACK received

48H - SLV_R has been transmitted, NOTACK received

50H - DATA in SDAT received, ACK returned

58H - DATA in SDAT received, NOTACK returned

Miscellaneous:

00H - Bus error during master or selected slave mode, due to an erroneous START or
STOP condition.

XA-S3 I2C driver software Application Note
AN98046

 Philips Semiconductors

12

4. DEMO PROGRAM
The modules DEMO.C and I2CINTFC.C use the driver to implement a simple application on a Microcore 7 demo
/ evaluation board. They are intended as examples to show how to use the driver routines.

The Microcore 7 board contains a PCF8574A I/O expander with connections to 8 LED's. The demo program
runs the LED's every second.

The module I2CINTFC.C gives an example of how to implement a few basic transfer functions (see also
previous SLE I²C driver application notes). These functions allow you to communicate with most of the available
I²C devices and serve as a layer between your application and the driver software. This layered approach allows
support for new devices (micro-controllers) without re-writing the high-level (device-independent) code. The
given examples are:

void I2C_Write(I2C_MESSAGE *msg)

void I2C_WriteRepWrite(I2C_MESSAGE *msg1, I2C_MESSAGE *msg2)

void I2C_WriteRepRead(I2C_MESSAGE *msg1, I2C_MESSAGE *msg2)

void I2C_Read(I2C_MESSAGE *msg)

void I2C_ReadRepRead(I2C_MESSAGE *msg1, I2C_MESSAGE *msg2)

void I2C_ReadRepWrite(I2C_MESSAGE *msg1, I2C_MESSAGE *msg2)

Furthermore, the module I2CINTFC.C contains the functions StartTransfer, in which the actual call to the driver
program is done, and the function I2cReady, which is called by the driver after the completion of a transfer. The
flag drvStatus is used to test/check the state of a transfer.

In the StartTransfer function a software time-out loop is programmed. If a transfer has failed (error or time-out)
the StartTransfer function prints an error message (using standard I/O redirection, like the printf() function) and
it does a retry of the transfer. However, if the maximum number of retries is reached an exception interrupt (Trap
#14) is generated to give a fatal error message.

XA-S3 I2C driver software Application Note
AN98046

 Philips Semiconductors

13

APPENDIX 1 I2CINTFC.C

/***/
/* Name of module : I2CINTFC.C */
/* Language : C (Hi-Tech XA compiler V7.70) */
/* Name : P.H. Seerden */
/* Description : External interface to the XA-S3 I2C driver */
/* routines. This module contains the **EXAMPLE** */
/* interface functions, used by the application to */
/* do I2C master-mode transfers. */
/* */
/* (C) Copyright 1998 Philips Semiconductors B.V. */
/* */
/***/
/* */
/* History: */
/* */
/* 97-10-29 P.H. Seerden Initial version */
/* 98-03-30 P.H. Seerden Updated version */
/* */
/***/

#include "i2cexprt.h"

extern void PrintString(code char *s);

code char retryexp[] = "retry counter expired\n";
code char bufempty[] = "buffer empty\n";
code char nackdata[] = "no ack on data\n";
code char nackaddr[] = "no ack on address\n";
code char timedout[] = "time-out\n";
code char unknowst[] = "unknown status\n";

static BYTE drvStatus; /* Status returned by driver */

static I2C_MESSAGE *p_iicMsg[2]; /* pointer to an array of (2) I2C mess */
static I2C_TRANSFER iicTfr;

static void I2cReady(BYTE status, BYTE msgsDone)
/***
 * Input(s) : status Status of the driver at completion time
 * msgsDone Number of messages completed by the driver
 * Output(s) : None.
 * Returns : None.
 * Description: Signal the completion of an I2C transfer. This function is
 * passed (as parameter) to the driver and called by the
 * drivers state handler (!).
 ***/
{
 drvStatus = status;
}

static void StartTransfer(void)
/******************************
 * Input(s) : None.
 * Output(s) : statusfield of I2C_TRANSFER contains the driver status:
 * I2C_OK Transfer was successful.
 * I2C_TIME_OUT Timeout occurred
 * Otherwise Some error occurred.
 * Returns : None.
 * Description: Start I2C transfer and wait (with timeout) until the

XA-S3 I2C driver software Application Note
AN98046

 Philips Semiconductors

14

 * driver has completed the transfer(s).
 ***/
{
 LONG timeOut;
 BYTE retries = 0;

 do
 {
 drvStatus = I2C_BUSY;
 I2C_Transfer(&iicTfr, I2cReady);

 timeOut = 0;
 while (drvStatus == I2C_BUSY)
 {
 if (++timeOut > 60000)
 drvStatus = I2C_TIME_OUT;
 }

 if (retries == 6)
 {
 PrintString(retryexp); /* fatal error ! So, .. */
 asm("trap #14"); /* escape to debug monitor */
 }
 else
 retries++;

 switch (drvStatus)
 {
 case I2C_OK : break;
 case I2C_NO_DATA : PrintString(bufempty); break;
 case I2C_NACK_ON_DATA : PrintString(nackdata); break;
 case I2C_NACK_ON_ADDRESS : PrintString(nackaddr); break;
 case I2C_TIME_OUT : PrintString(timedout); break;
 default : PrintString(unknowst); break;
 }
 } while (drvStatus != I2C_OK);
}

void I2C_Write(I2C_MESSAGE *msg)
/*******************************
 * Input(s) : msg IýC message
 * Returns : None.
 * Description: Write a message to a slave device.
 * PROTOCOL : <S><SlvA><W><A><D1><A> ... <Dnum><N><P>
 ***/
{
 iicTfr.nrMessages = 1;
 iicTfr.p_message = p_iicMsg;
 p_iicMsg[0] = msg;

 StartTransfer();
}

void I2C_WriteRepWrite(I2C_MESSAGE *msg1, I2C_MESSAGE *msg2)
/***
 * Input(s) : msg1 first I2C message
 * msg2 second I2C message
 * Returns : None.
 * Description: Writes two messages to different slave devices separated
 * by a repeated start condition.
 * PROTOCOL : <S><Slv1A><W><A><D1><A>...<Dnum1><A>
 * <S><Slv2A><W><A><D1><A>...<Dnum2><A><P>
 ***/
{
 iicTfr.nrMessages = 2;
 iicTfr.p_message = p_iicMsg;
 p_iicMsg[0] = msg1;

XA-S3 I2C driver software Application Note
AN98046

 Philips Semiconductors

15

 p_iicMsg[1] = msg2;

 StartTransfer();
}

void I2C_WriteRepRead(I2C_MESSAGE *msg1, I2C_MESSAGE *msg2)
/**
 * Input(s) : msg1 first I2C message
 * msg2 second I2C message
 * Returns : None.
 * Description: A message is sent and received to/from two different
 * slave devices, separated by a repeat start condition.
 * PROTOCOL : <S><Slv1A><W><A><D1><A>...<Dnum1><A>
 * <S><Slv2A><R><A><D1><A>...<Dnum2><N><P>
 ***/
{
 iicTfr.nrMessages = 2;
 iicTfr.p_message = p_iicMsg;
 p_iicMsg[0] = msg1;
 p_iicMsg[1] = msg2;

 StartTransfer();
}

void I2C_Read(I2C_MESSAGE *msg)
/******************************
 * Input(s) : msg I2C message
 * Returns : None.
 * Description: Read a message from a slave device.
 * PROTOCOL : <S><SlvA><R><A><D1><A> ... <Dnum><N><P>
 ***/
{
 iicTfr.nrMessages = 1;
 iicTfr.p_message = p_iicMsg;
 p_iicMsg[0] = msg;

 StartTransfer();
}

void I2C_ReadRepRead(I2C_MESSAGE *msg1, I2C_MESSAGE *msg2)
/***
 * Input(s) : msg1 first I2C message
 * msg2 second I2C message
 * Returns : None.
 * Description: Two messages are read from two different slave devices,
 * separated by a repeated start condition.
 * PROTOCOL : <S><Slv1A><R><A><D1><A>...<Dnum1><N>
 * <S><Slv2A><R><A><D1><A>...<Dnum2><N><P>
 ***/
{
 iicTfr.nrMessages = 2;
 iicTfr.p_message = p_iicMsg;
 p_iicMsg[0] = msg1;
 p_iicMsg[1] = msg2;

 StartTransfer();
}

void I2C_ReadRepWrite(I2C_MESSAGE *msg1, I2C_MESSAGE *msg2)
/**
 * Input(s) : msg1 first I2C message
 * msg2 second I2C message
 * Returns : None.
 * Description: A block data is received from a slave device, and also

XA-S3 I2C driver software Application Note
AN98046

 Philips Semiconductors

16

 * a(nother) block data is send to another slave device
 * both blocks are seperated by a repeated start.
 * PROTOCOL : <S><Slv1A><R><A><D1><A>...<Dnum1><N>
 * <S><Slv2A><W><A><D1><A>...<Dnum2><A><P>
 ***/
{
 iicTfr.nrMessages = 2;
 iicTfr.p_message = p_iicMsg;
 p_iicMsg[0] = msg1;
 p_iicMsg[1] = msg2;

 StartTransfer();
}

XA-S3 I2C driver software Application Note
AN98046

 Philips Semiconductors

17

APPENDIX 2 I2CDRIVR.C

/***/
/* Name of module : I2CDRIVR.C */
/* Program language : C (Hi-Tech XA compiler V7.70) */
/* Name : P.H. Seerden */
/* Description : Driver for the I2C hardware interface on the */
/* Philips XA-S3 16-bit microcontroller. */
/* Part of the driver handling master bus transfers. */
/* Everything between a Start and Stop condition is */
/* called a TRANSFER. One transfer consists of one or */
/* more MESSAGEs. To start a transfer call function */
/* "I2C_Transfer". */
/* */
/* (C) Copyright 1998 Philips Semiconductors B.V. */
/* */
/***/
/* */
/* History: */
/* */
/* 97-10-28 P.H. Seerden Initial version */
/* 98-03-30 P.H. Seerden Updated version */
/* */
/***/

#include <xas3.h>
#include <intrpt.h>
#include "i2cexprt.h"

/* Immediate data to write into I2CON */
/* CR2-CR1-CR0 = 101 (80KHz I2C bitrate at 22.1184 MHz crystal freq) */
/* change values and recompile if a different bus speed is needed */

#define GENERATE_STOP 0xD5 /* set STO, clear STA and SI */
#define RELEASE_BUS_ACK 0xC5 /* clear STO,STA,SI and set AA (ack) */
#define RELEASE_BUS_NOACK 0xC1 /* clear STO, STA, SI and AA (noack) */
#define RELEASE_BUS_STA 0xE5 /* generate (rep)START, set STA */

static I2C_TRANSFER *tfr; /* Ptr to active transfer block */
static I2C_MESSAGE *msg; /* ptr to active message block */
static void (*readyProc)(BYTE,BYTE); /* proc. to call if transfer ended */
static BYTE msgCount; /* Number of messages to sent */
static BYTE dataCount; /* bytes send/received of message */

interrupt void I2C_Interrupt(void)
/********************************/
{
 switch(I2STAT) /* >> 3 for faster code */
 {
 case 0x00: /* Bus Error has occured */
 I2CON = GENERATE_STOP;
 break;
 case 0x08: /* (rep) Start condition transmitted */
 case 0x10: /* Slave address + R/W are transmitted */
 I2DAT = msg->address;
 I2CON = RELEASE_BUS_ACK;
 break;
 case 0x18: /* SLA+W or DATA transmitted, ACK received */
 case 0x28: /* DATA or STOP will be transmitted */
 if (dataCount < msg->nrBytes)
 {
 I2DAT = msg->buf[dataCount++]; /* sent first byte */
 I2CON = RELEASE_BUS_ACK;
 }
 else
 {
 if (msgCount < tfr->nrMessages)
 {

XA-S3 I2C driver software Application Note
AN98046

 Philips Semiconductors

18

 dataCount = 0;
 msg = tfr->p_message[msgCount++]; /* next message */
 I2CON = RELEASE_BUS_STA; /* generate (rep)START */
 }
 else
 {
 I2CON = GENERATE_STOP;
 readyProc(I2C_OK, msgCount);
 }
 }
 break;
 case 0x20:
 case 0x48: /* SLA+W/R transmitted, NOT ACK received */
 readyProc(I2C_NACK_ON_ADDRESS, msgCount); /* driver finished */
 I2CON = GENERATE_STOP;
 break;
 case 0x30: /* DATA transmitted, NOT ACK received */
 readyProc(I2C_NACK_ON_DATA, msgCount);
 I2CON = GENERATE_STOP;
 break;
 case 0x38: /* Arbitration lost in SLA+W or DATA */
 I2CON = RELEASE_BUS_STA; /* release bus, set STA */
 break;
 case 0x40: /* SLA+R transmitted, ACK received */
 if (msg->nrBytes == 1)
 I2CON = RELEASE_BUS_NOACK; /* No ack on next byte */
 else
 I2CON = RELEASE_BUS_ACK; /* ACK on next byte */
 break;
 case 0x50: /* DATA received, ACK has been returned */
 msg->buf[dataCount++] = I2DAT; /* read next data */
 if (dataCount + 1 == msg->nrBytes) /* next byte the last ? */
 I2CON = RELEASE_BUS_NOACK; /* No ack on next byte */
 else
 I2CON = RELEASE_BUS_ACK; /* return ACK */
 break;
 case 0x58: /* DATA received, NOT ACK has been returned */
 msg->buf[dataCount] = I2DAT; /* read last data */
 if (msgCount < tfr->nrMessages)
 {
 dataCount = 0;
 msg = tfr->p_message[msgCount++]; /* next message */
 I2CON = RELEASE_BUS_STA; /* generate (rep)START */
 }
 else
 {
 I2CON = GENERATE_STOP;
 readyProc(I2C_OK, msgCount);
 }
 break;
 default: break;
 }
}

void I2C_Initialize(void)
/***********************/
{
 ROM_VECTOR(0xd4,I2C_Interrupt,IV_PSW); /* I2C interrupt vector */

 P5CFGA = P5CFGA & 0x3f; /* P5.6 and P5.7 as open drain ports */
 P5CFGB = P5CFGB & 0x3f;

 I2ADDR = 0x26; /* set default slave address */
 I2CON = RELEASE_BUS_ACK; /* set speed and enable IýC hardware */
 IPB2 = IPB2 | 0x10; /* set priority of I2C interrupt to 9 */
 EI2 = 1; /* enable I2C interrupt */
 EA = 1; /* General interrupt enable */
}

void I2C_Transfer(I2C_TRANSFER *p, void (*proc)(BYTE, BYTE))

XA-S3 I2C driver software Application Note
AN98046

 Philips Semiconductors

19

/**/
{
 tfr = p;
 readyProc = proc;
 msgCount = 0;
 dataCount = 0;
 msg = tfr->p_message[msgCount++]; /* first message to send */

 I2CON = RELEASE_BUS_STA; /* generate START condition */
}

XA-S3 I2C driver software Application Note
AN98046

 Philips Semiconductors

20

APPENDIX 3 I2CEXPRT.H

/***/
/* Name of module : I2CEXPRT.H */
/* Program language : C */
/* Name : P.H. Seerden */
/* */
/* (C) Copyright 1998 Philips Semiconductors B.V. */
/* */
/***/
/* */
/* Description: */
/* */
/* This module consists a number of exported declarations of the I2C */
/* driver package. Include this module in your source file if you want */
/* to make use of one of the interface functions of the package. */
/* */
/***/
/* */
/* History: */
/* */
/* 92-12-10 P.H. Seerden Initial version */
/* */
/***/

#define FALSE 0
#define TRUE 1

typedef unsigned char BYTE;
typedef unsigned short WORD;
typedef unsigned long LONG;

typedef struct
{
 BYTE address; /* slave address to sent/receive message */
 BYTE nrBytes; /* number of bytes in message buffer */
 BYTE *buf; /* pointer to application message buffer */
} I2C_MESSAGE;

typedef struct
{
 BYTE nrMessages; /* number of message in one transfer */
 I2C_MESSAGE **p_message; /* pointer to pointer to message */
} I2C_TRANSFER;

#define I2C_OK 0 /* transfer ended No Errors */
#define I2C_BUSY 1 /* transfer busy */
#define I2C_ERR 2 /* err: general error */
#define I2C_NO_DATA 3 /* err: No data in block */
#define I2C_NACK_ON_DATA 4 /* err: No ack on data */
#define I2C_NACK_ON_ADDRESS 5 /* err: No ack on address */
#define I2C_DEVICE_NOT_PRESENT 6 /* err: Device not present */
#define I2C_ARBITRATION_LOST 7 /* err: Arbitration lost */
#define I2C_TIME_OUT 8 /* err: Time out occurred */
#define I2C_SLAVE_ERROR 9 /* err: slave mode error */
#define I2C_INIT_ERROR 10 /* err: Initialization (not done) */

extern void I2C_Transfer(I2C_TRANSFER *p, void (*proc)(BYTE, BYTE));
extern void I2C_Initialize(void);

extern void I2C_Write(I2C_MESSAGE *msg);
extern void I2C_WriteRepWrite(I2C_MESSAGE *msg1, I2C_MESSAGE *msg2);
extern void I2C_WriteRepRead(I2C_MESSAGE *msg1, I2C_MESSAGE *msg2);
extern void I2C_Read(I2C_MESSAGE *msg);
extern void I2C_ReadRepRead(I2C_MESSAGE *msg1, I2C_MESSAGE *msg2);

XA-S3 I2C driver software Application Note
AN98046

 Philips Semiconductors

21

extern void I2C_ReadRepWrite(I2C_MESSAGE *msg1, I2C_MESSAGE *msg2);

XA-S3 I2C driver software Application Note
AN98046

 Philips Semiconductors

22

APPENDIX 4 DEMO.C

/***/
/* Name of module : DEMO.C */
/* Program language : C */
/* Name : P.H. Seerden */
/* Description : XA-S3 I2C driver test */
/* Read time from the real time clock chip PCF8583. */
/* run leds connected to PCF8574 every second. */
/* */
/***/

#include "i2cexprt.h"

#define PCF8574_WR 0x40 /* i2c address I/O poort write */
#define PCF8583_WR 0xA0 /* i2c address Clock */
#define PCF8583_RD 0xA1 /* i2c address Clock */

static BYTE rtcBuf[1];
static BYTE iopBuf[1];
static I2C_MESSAGE rtcMsg1;
static I2C_MESSAGE rtcMsg2;
static I2C_MESSAGE iopMsg;

static void Init(void)
{
 I2C_Initialize();

 rtcMsg1.address = PCF8583_WR;
 rtcMsg1.buf = rtcBuf;
 rtcMsg1.nrBytes = 1;
 rtcMsg2.address = PCF8583_RD;
 rtcMsg2.buf = rtcBuf;
 rtcMsg2.nrBytes = 1;

 iopMsg.address = PCF8574_WR;
 iopMsg.buf = iopBuf;
 iopMsg.nrBytes = 1;
 iopBuf[0] = 0xff;
 I2C_Write(&iopMsg);
}

void main(void)
{
 BYTE oldseconds,port;

 Init();
 oldseconds = 0;
 port = 0xf7;
 while (1)
 {
 rtcBuf[0] = 2; /* read seconds */
 I2C_WriteRepRead(&rtcMsg1, &rtcMsg2);
 if (rtcBuf[0] != oldseconds) /* one second passed ? */
 {
 oldseconds = rtcBuf[0];
 switch (port)
 {
 case 0xf7: port = 0xfe; break;
 case 0xfb: port = 0xf7; break;
 case 0xfd: port = 0xfb; break;
 case 0xfe: port = 0xfd; break;
 default: break;
 }
 iopBuf[0] = port;
 I2C_Write(&iopMsg);
 }
 }
}

	Abstract
	APPLICATION NOTE
	Summary
	CONTENTS
	1. INTRODUCTION
	2. EXTERNAL (APPLICATION) INTERFACE
	2.1 External data interface
	2.2 External function interfaces

	3. DRIVER OPERATION
	4. DEMO PROGRAM
	APPENDIX 1 I2CINTFC.C
	APPENDIX 2 I2CDRIVR.C
	APPENDIX 3 I2CEXPRT.H
	APPENDIX 4 DEMO.C

