APPLICATION NOTE

XA-S3 12C driver software

AN98046

ore ~ DHILIDS
Semilconductors @

Philips Semiconductors

XA-S3 12C driver software Application Note
AN98046

Abstract

The XA-S3 is a member of Philips Semiconductors’ XA (eXtended Architecture) family of high performance 16-
bit single-chip Microcontrollers. The XA-S3 combines many powerful peripherals on one chip. Therefore, it is
suited for general multipurpose high performance embedded control functions.

One of the on-chip peripherals is the I12C bus interface. This report describes worked-out driver software (written
in C) to program / use the 12C interface of the XA-S3. The driver software, together with a demo program and
interface software routines offer the user a quick start in writing a complete 12C - XAS3 system application.

Purchase of Philips I°C components conveys
a license under the I°C patent to use the com-
ponents in the 1°C system, provided the system
conforms to the I°C specifications defined by
Philips.

© Philips Electronics N.V. 2000
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copy-
right owner.
The information presented in this document does not form part of any quotation or contract, is believed to be
accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any
consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial
or intellectual property rights.

Philips Semiconductors

XA-S3 12C driver software Application Note
AN98046

APPLICATION NOTE

XA-S3 12C driver software

AN98046

Author(s):

Paul Seerden
Philips Semiconductors Systems Laboratory Eindhoven,
The Netherlands

Keywords

XA Microcontroller, I12C - bus, Application software

Number of pages: 14
Date: 98-04-02

Philips Semiconductors

XA-S3 12C driver software Application Note
AN98046

Summary

This application note demonstrates how to write an Inter Integrated Circuit bus driver (1°C) for the XA-S3 16-bit
Microcontroller from Philips Semiconductors.

Not only the driver software is given. This note also contains a set of (example) interface routines and a small
demo application program. All together it offers the user a quick start in writing a complete I°’c system application
with the PXAS3x.

The driver routines support interrupt driven single master transfers. Furthermore, the routines are suitable for
use in conjunction with real time operating systems.

Philips Semiconductors

XA-S3 12C driver software

Application Note

AN98046

CONTENTS
1. INTRODUGCTION ...coiiiiiiiieeeeeeeeeeee ettt ettt ettt ettt ettt ettt et et et et et e e et et et et e e et et et e e e e et et et e e et e e e e e e et e e e e e e e eereaeaeeeees 7
2. EXTERNAL (APPLICATION) INTERFACEcuvtiitii ettt ettt ettt e st e save e st e e enneeanns 9

A N =Y (g = o £ = 0L (=T =11 < 9

2.2 EXternal fUNCLION INTEITACESuu ittt e e e e e e e e e e e e e e bbb e e e e e e e e e saab e eeeeesenraaaeaeens 10
3. DRIVER OPERATION ... utttttttttttetttetetstesasesssssssassesessssresssnnnnnre. 11
4. DEMO PROGRAMttttttttttteteeeeteteeeeaeesaaesssasssassssssssssssssssssssassessssssss s s st s s s s s s st s s s s s e s sss s e s e ssstssssnnnnnnnnnnnnnnnnnn 12
APPENDIX 1 I2CINTIC.C oottt ettt ettt et e e et ee e e et eeeeeeeeeeeeeeeeeeeeeeeeee et eeeeeeeeeeeeeeeaeeeaeeeeeaeaaeeees 13
APPENDIX 2 I2CDRIVR.C ..ottt ettt et et et et et ee et et eeee et ee et eeeeeeeeeeeeee et eeee et eeeeeeeeeaeeeeeaeeeaeeaaeees 17
APPENDIX 3 (220 =y g =] = I = TR 20
APPENDIX 4 (3] 1Y (@ 2N RN 22

Philips Semiconductors

XA-S3 12C driver software Application Note
AN98046

Philips Semiconductors

XA-S3 12C driver software Application Note
AN98046

1. INTRODUCTION

This report describes 1°C driver software, written in C, for the XA-S3 Microcontroller. The driver software is the
interface between application software and the (hardware) 12C device(s). These devices conform to the serial
bus interface protocol specification as described in the I2C reference manual.

The [2C bus consists of two wires carrying information between the devices connected to the bus. Each device
has its own address. It can act as a master or as a slave during a data transfer. A master is the device that
initiates the data transfer and generates the clock signals needed for the transfer. At that time any addressed
device is considered a slave. The 12C bus is a multi-master bus. This means that more than one device capable
of controlling the bus can be connected to it. However, the driver software given in this application note only
supports (single) master transfers.

The I12C interface on the XA-S3 is identical to the standard byte - style I12C interface found on devices such as the
8xC552, except for the rate selection. The I12C interface conforms to the 100 kHz 12C specification, but may be
used at rates up to 400 kHz (non-conforming).

The 12C-bus format

An [2C transfer is initiated with the generation of a start condition. This condition will set the bus busy. After that a
message is transferred that consists of an address and a number of data bytes. This I2C message may be
followed either by a stop condition or a repeated start condition. A stop condition will release the bus mastership.
A repeated start offers the possibility to send /receive more than one message to/from the same or different
devices, while retaining bus mastership. Stop and (repeated) start conditions can only be generated in master
mode.

Data and addresses are transferred in eight bit bytes, starting with the most significant bit. During the 9th clock
pulse, following the data byte, the receiver must send an acknowledge bit to the transmitter. The slave may
stretch clock pulses (for timing causes).

A 7-bits slave address and a R/W direction bit always follow a start condition.
General format and explanation of an I12C message:

S |[SLVW |A |SUB |A |S |SLV.R|A (D1 |A D2 |A | A |[Dn [N |P

S : (re) Start condition.
A : Acknowledge on last byte.
N : No Acknowledge on last byte.
P : Stop condition.
SLV._W : Slave address and Write bit.
SLV_R : Slave address and Read bit.
SUB : Sub-address.
D1..Dn : Block of data bytes.

Also:
D1.1..D1.m : First block of data bytes.

Dn.1 ... Dn.m . ny, block of data bytes.

Philips Semiconductors

XA-S3 12C driver software Application Note
AN98046

Software structure and modules

Application software DEMO.C
| nterface functions I2CINTFC.C
XAS312C driver I2CDRIVR.C

SDA
I12C bus SCL

Philips Semiconductors

XA-S3 12C driver software Application Note
AN98046

2. EXTERNAL (APPLICATION) INTERFACE

This section chapter describes the external interface of the driver towards the application. The C-coded external
interface definitions are in the include file I2CEXPRT.H.

The application's view on the 12C bus is quite simple: The application can send messages to an 12C device. Also,
the application must be able to exchange a group of messages, optionally addressed to different devices,
without losing bus mastership. Retaining the bus is needed to guarantee atomic operations.

Inputs (application's view) to the driver are:

P The number of messages to exchange (transfer).
The slave address of the I2C device for each message.
The data direction (read/write) for all messages.

The number of bytes in each message.

T U U T

In case of a write message: the data bytes to be written to the slave.

Outputs (application's view) from the driver are:
b Status information (success or error code).
P Number of messages actually transferred (not the requested number of messages in case of an error).

P For each read message: The data bytes read from the slave.

2.1 External data interface

All parameters affected by an 12C master transfer are logically grouped within two data structures. The user fills
these structures and then calls the interface function to perform a transfer. The data structures are listed below.

typedef struct
{

BYTE nrMessages; /* total number of messages */
12C_MESSAGE **p_message; [* ptr to array of ptrs to message parameter blocks */
} 12C_TRANSFER;

The structure 12C_TRANSFER contains the common parameters for an I2C transfer. The driver keeps a local
copy of these parameters and leaves the contents of the structure unchanged. So, in many applications the
structure only needs to be filled once.

After finishing the actual transfer, a 'transfer ready' function is called. The driver status and the number of
messages done, are passed to this function.

The structure contains a pointer (p_message) to an array with pointers to the structure 12C_MESSAGE:

typedef struct

{
BYTE address; /* The I°C slave device address */
BYTE nrBytes; /* number of bytes to read or write */
BYTE *buf; [* pointer to data array */

} 12C_MESSAGE;

Philips Semiconductors

XA-S3 12C driver software Application Note
AN98046

The lowest bit of the slave address determines the direction of the transfer (read or write);
write = 0 and read = 1. This bit must be (re) set by the application.

The array buf must contain data supplied by the application in case of a write transfer. The user should notice
that checking, to ensure that the buffer pointed to by buf is at least nrBytes in length, cannot be done by the
driver.

In case of a read transfer, the driver fills the array. If you want to use buf as a string, a terminating NULL should
be added at the end. It is the user’s responsibility to ensure that the buffer, pointed to by buf, is large enough to
receive nrBytes bytes.

2.2 External function interfaces
This section gives a description of the two 'callable’ interface functions in the 12C driver module (I2CDRIVR.C).

First the initialisation function (12C_lInitialize) is explained. This function directly programs the I2C interface
hardware and is part of the low level driver software. It must be called only once after 'reset’, but before any
transfer function is executed. After that the interface function, used to actually perform a transfer (12C_Transfer),
is explained.

void 12C_lInitialize(void)

Initialise the 12C-bus driver part. Must be called once after RESET.

Hardware 12C registers of the XA-S3 will be programmed. The interrupt vector and the priority of the I2C interrupt
are set. Used constants (parameters) are defined in the file I2CEXPRT.H. The port pins P5.6 and P5.7, which
correspond to the I2C functions SCL and SDA respectively, are set to the open drain mode. The listed driver (see

appendix 2) programs the bit rate to 80 Kbit/s at an oscillator frequency of 22.1184 KHz. To adapt this, change
the I2CON values at the top of the file (check also register SCR for the peripheral clock pre-scaler).

void 12C_Transfer(I2C_TRANSFER *p, void (*proc)(BYTE status, BYTE msgsDone))

Start a synchronous I2C transfer. When the transfer is completed, with or without an error, call the function proc,
passing the transfer status and the number of messages successfully transferred.

12C_TRANSFER *p A pointer to the structure describing the I2C messages to be transferred.
void (*proc(status, msgsDone)) A pointer to the function to be called when the transfer is completed.
BYTE msgsDone Number of message successfully transferred.
BYTE status one of: 12C_OK Transfer ended No Errors
12C_BUSY I2C busy, so wait
12C_ERR General error
12C_NO_DATA err: No data message block
12C_NACK_ON_DATA err: No ack on data in block

12C_NACK_ON_ADDRESS err: No ack of slave
12C_TIME_OUT err: Time out occurred

Philips Semiconductors

XA-S3 12C driver software Application Note
AN98046

3. DRIVER OPERATION

The XA-S3 on-chip logic provides a serial interface that meets the I°C bus specification and supports all transfer
modes from and to the bus. The I°C logic interfaces to the external I°C bus via two port pins: P5.6/SCL (serial
clock line) and P5.7/SDA (serial data line). In order to enable the interface these port pins are programmed to
their alternate function and are set to open drain 1/0O port mode.

The XA processor interfaces to the I°C logic via four hardware registers: I2CON (control register), I2STA (status
register), I2DAT (data register) and I2ADR (slave address registers).

If a transfer is started, the drivers interface function returns immediately. At the end of the transfer, together with
the generation of a STOP condition, the driver calls a function (readyProc), passing the transfer status. This
status (error, time-out, etc.) must be checked by the application. An example of how to handle the status is
shown in the file I2CINTFC.C. A pointer to the readyProc function was given by the application at the time the
transfer was applied for (see previous chapter).

After completing the transmission or reception of each byte (address or data), the Sl flag in the I2CON register
is set. An interrupt is requested and the interrupt service handler will be called. At that time register I2STA holds
one of the following status codes (only master mode):

Master transmitter:

08H - A start condition has been transmitted
10H - A repeated start condition has been transmitted
18H - SLV_W has been transmitted, ACK received
20H - SLV_W has been transmitted, NOTACK received
28H - DATA from SDAT has been transmitted, ACK received
30H - DATA from SDAT has been transmitted, NOTACK received
38H - Arbitration lost in SLV_ R/W or DATA
Master receiver:
38H - Arbitration lost while returning NOTACK
40H - SLV_R has been transmitted, ACK received
48H - SLV_R has been transmitted, NOTACK received
50H - DATA in SDAT received, ACK returned
58H - DATA in SDAT received, NOTACK returned

Miscellaneous:

O0H - Bus error during master or selected slave mode, due to an erroneous START or
STOP condition.

Philips Semiconductors

XA-S3 12C driver software Application Note
AN98046

4. DEMO PROGRAM

The modules DEMO.C and I2CINTFC.C use the driver to implement a simple application on a Microcore 7 demo
/ evaluation board. They are intended as examples to show how to use the driver routines.

The Microcore 7 board contains a PCF8574A 1/0O expander with connections to 8 LED's. The demo program
runs the LED's every second.

The module I2CINTFC.C gives an example of how to implement a few basic transfer functions (see also
previous SLE I2C driver application notes). These functions allow you to communicate with most of the available
I2C devices and serve as a layer between your application and the driver software. This layered approach allows
support for new devices (micro-controllers) without re-writing the high-level (device-independent) code. The
given examples are:

void 12C_Write(I2C_MESSAGE *msg)
void 12C_WriteRepWrite(12C_MESSAGE *msg1, 12C_MESSAGE *msg2)
void 12C_WriteRepRead(12C_MESSAGE *msg1, 12C_MESSAGE *msg2)
void 12C_Read(12C_MESSAGE *msg)
void 12C_ReadRepRead(I2C_MESSAGE *msgl, I12C_MESSAGE *msg2)
void 12C_ReadRepWrite(12C_MESSAGE *msg1, 12C_MESSAGE *msg2)

Furthermore, the module 1I2CINTFC.C contains the functions StartTransfer, in which the actual call to the driver
program is done, and the function 12cReady, which is called by the driver after the completion of a transfer. The
flag drvStatus is used to test/check the state of a transfer.

In the StartTransfer function a software time-out loop is programmed. If a transfer has failed (error or time-out)
the StartTransfer function prints an error message (using standard 1/O redirection, like the printf() function) and
it does a retry of the transfer. However, if the maximum number of retries is reached an exception interrupt (Trap
#14) is generated to give a fatal error message.

Philips Semiconductors

XA-S3 12C driver software

Application Note

AN98046

APPENDIX 1

I2CINTFC.

C

IR R R R R R R R R R R R AR R LRy

/* Narme of nodule : |2CINTFC. C */
/* Language C (H -Tech XA conpiler V7.70) */
/* Name P.H. Seerden */
/* Description External interface to the XA-S3 |12C driver */
/* routines. This nodule contains the **EXAVPLE** */
/* interface functions, used by the application to */
/* do 12C master-node transfers. */
/* */
/* (C) Copyright 1998 Philips Sem conductors B.V. */
;***;
/* */
/* History: */
/* */
/* 97-10-29 P.H. Seerden Initial version */
/* 98-03-30 P. H. Seerden Updat ed version */
/* */

IEEEAA R EEE R R R R R R R R R R AR E LRy

#i nclude "i2cexprt.h"

extern void PrintStri

code
code
code
code
code
code

static BYTE drvStatus;

char
char
char
char
char
char

retryexp[]
buf enpt y[]
nackdat a[]
nackaddr[]
timedout[]
unknowst []

static | 2C_MESSACE
static | 2C_TRANSFER

ng(code char *s);

"retry counter expired\n";
"buffer enmpty\n";

"no ack on data\n";

"no ack on address\n";
"time-out\n";

"unknown status\n";

/* Status returned by driver

*/

p_iicMsg[2]; [/ pointer to an array of (2) 12C nmess */

iicTfr;

static void | 2cReady(BYTE status, BYTE nsgsDone)

[KK Kk koK ok ok ok ok kK ok ok ok kK ok ok ok Kk ok ok ok Rk Kk Rk Rk kR Rk ok kK

* I nput(s) status Status of the driver at conpletion tine

* msgsDone Nurmber of messages conpl eted by the driver

* Qutput(s) : None.

* Returns None.

* Description: Signal the conpletion of an I2C transfer. This function is
* passed (as paraneter) to the driver and called by the

* drivers state handler (!).

drvStatus = status;

static void StartTransfer(void)
/******************************

* | nput(s) : None.

* Qutput(s) statusfield of |2C _TRANSFER contai ns the driver status:
* 1 2C X Transfer was successful.

* 1 2C_TI ME_QUT Ti meout occurred

* O herw se Sone error occurred.

* Returns None.

*

Descripti on; Start

I2C transfer and wait (with timeout) until the

LR SRR R R R R R R R Y]

Philips Semiconductors

XA-S3 12C driver software Application Note
AN98046

* driver has conpleted the transfer(s).
***/
LONG ti neQut;
BYTE retries = 0;
do
{
drvStatus = | 2C_BUSY;
1 2C _Transfer (& icTfr, |2cReady);
timeQut = 0;
while (drvStatus == |12C_BUSY)
{
if (++timeQut > 60000)
drvStatus = | 2C_TI ME_QUT;
}
if (retries == 6)
{
PrintString(retryexp); /* fatal error ! So, .. */
asm("trap #14"); /* escape to debug nonitor */
el se
retries++;
switch (drvStatus)
case |12C K : break;
case | 2C_NO DATA : PrintString(bufenpty); br eak;
case | 2C_NACK_ON_DATA : PrintString(nackdata); br eak;
case | 2C_NACK_ON_ADDRESS : PrintString(nackaddr); br eak;
case |2C TI ME_QUT : PrintString(timedout); br eak;
def aul t : PrintString(unknowst); br eak;
}
} while (drvStatus !'=12C K);

void 12C Wite(l2C MESSAGE *msg)

/*******************************

* | nput(s) © nmBg I yC nmessage
* Returns : None.
* Description: Wite a nmessage to a slave devi ce.
* PROTOCCL . <S><Sl VAS<WE<AS<DL><A> ... <Dnunp<N><P>
***/
t

iicTfr.nrMessages = 1;

iicTfr.p_nessage = p_iicMsg;

p_iicMsg[0] = msg;

Start Transfer();

void 12C WiteRepWite(l 2C MESSAGE *msgl, |2C MESSAGE *nsg2)

IR R EE RS R R R R AR R R R

* I nput(s) : megl first 12C message

* nmsg2 second | 2C nmessage

* Returns : None.

* Description: Wites two nessages to different slave devices separated
* by a repeated start condition.

* PROTOCOL : <S><Sl VIAS<WE<A>S<DL><A>. . . <Dnunil><A>

* <S><8| V2A><WE<A><D1><A>. .. <Dnun2><A><P>

*

LEEEEE SRR R E R R R R R R Ry

iicTfr.nrMessages = 2;
iicTfr.p_nessage = p_iicMsg;
p_iicMsg[0] = msgl;

Philips Semiconductors

XA-S3 12C driver software Application Note
AN98046

p_iicMsg[1l] = msg2;

Start Transfer();

void 1 2C WiteRepRead(l 2C MESSAGE *nsgl, |2C_MESSAGE *msg2)

JREK KKK KKK KKK K KRR KKK KA R RK KKK KRR KKK I AR AR Kk h ok kA khk ok kk ok ok ok kokkkx

* I nput(s) : megl first 12C nessage
nmsg2 second | 2C nmessage
* Returns : None.
* Description: A message is sent and received to/fromtwo different
* sl ave devices, separated by a repeat start condition.
* PROTOCOL : <S><Sl vIAS<WE<A>S<DL><A>. . . <Dnunil><A>
* <S><§| V2A><R><A><D1><A>. .. <Dnun2><N><P>
***/
{
iicTfr.nrMessages = 2;
iicTfr.p_nessage = p_iicMsg;
p_iicMsg[0] = msgl;
p_iicMg[1l] = nsg2;
Start Transfer();
}

voi d | 2C_Read(12C_MESSAGE *nBg)

/******************************

* | nput(s) 1 | 2C nessage
* Returns : None.
* Description: Read a message froma sl ave device.
* PROTOCOL . <S><Sl VAS<R><A><DL><A> ... <Dnunp<N><P>
***/
{
iicTfr.nrMessages = 1;
iicTfr.p_nessage = p_iicMsg;
p_iichsg[0] = nsg;
Start Transfer();
}

voi d | 2C_ReadRepRead(|2C_MESSAGE *msgl, | 2C MESSAGE *nsg2)

JREK KKK KKK KKk K AR KKKk KRR KKKk KA AR KKk ok kR Rk h ok ok k ok hkokkk ok hkokkk ok

* I nput(s) : megl first 12C message
* nmsg2 second | 2C message
* Returns : None.
* Description: Two nessages are read fromtwo different slave devices,
* separated by a repeated start condition.
* PROTOCOL ;. <S><8l VIA><R><A><D1><A>. . . <Dnunil><N>
* <S><8| V2A><R><A><D1><A>. .. <Dnun2><N><P>
***/
{
iicTfr.nrMessages = 2;
iicTfr.p_nessage = p_iicMsg;
p_iicMsg[0] = msgl;
p_iicMg[1l] = nsg2;
Start Transfer();
}

voi d 1 2C_ReadRepW it (| 2C_MESSAGE *msgl, |2C MESSAGE *nBg2)

/**

* | nput(s) : megl first 12C message
* nmsg2 second | 2C nessage
* Returns : None.

* Description: A block data is received froma slave device, and al so

Philips Semiconductors

XA-S3 12C driver software Application Note
AN98046

* a(nother) block data is send to another slave device
* both bl ocks are seperated by a repeated start.

* PROTOCOL ;. <S><8l VIA><R><A><D1><A>. . . <Dnunil><N>

* <S><8| V2A><WE<A><D1><A>. . . <Dnun2><A><P>

*

LR SRR R E R R R R R R Y]

iicTfr.nrMessages
iicTfr.p_nessage
p_iicMsg[0] = msgl;
p_iicMg[1] nsg2;

2;
p_iicMsg;

Start Transfer();

Philips Semiconductors

XA-S3 12C driver software Application Note
AN98046

APPENDIX 2 I2CDRIVR.C

IR R R R R R R R R R R R AR R LRy

/* Name of nodule : I2CDRIVR C */
/* Program | anguage : C (Hi-Tech XA conpiler V7.70) */
/* Name . P.H Seerden */
/* Description : Driver for the 12C hardware interface on the */
/* Philips XA-S3 16-bit mcrocontroller. */
/* Part of the driver handling master bus transfers. */
/* Everything between a Start and Stop condition is */
/* call ed a TRANSFER One transfer consists of one or */
/* nore MESSAGEs. To start a transfer call function */
/* "12C Transfer". */
/* */
/* (©) Copyright 1998 Philips Sem conductors B.V. */
/* */
/***/
/* */
/* History: */
/* */
/* 97-10-28 P. H. Seerden Initial version */
/* 98-03-30 P.H Seerden Updat ed version */
/* */

/***/

#i ncl ude <xas3. h>
#i nclude <intrpt.h>
#i nclude "i2cexprt.h"

/* I mredi ate data to wite into | 2CON */
/* CR2-CR1-CRO = 101 (80KHz 12C bitrate at 22.1184 MHz crystal freq) */
/* change values and reconpile if a different bus speed is needed */
#defi ne GENERATE_STOP 0xD5 /* set STO, clear STA and SI */
#defi ne RELEASE_BUS_ACK 0xC5 /* clear STO STA SI and set AA (ack) */
#defi ne RELEASE_BUS_NOACK 0xCl /* clear STO, STA, SI and AA (noack) */
#defi ne RELEASE BUS_STA OxE5 /* generate (rep)START, set STA */
static | 2C_TRANSFER *tfr; /* Ptr to active transfer bl ock */
static | 2C_ MESSAGE *nsg; /* ptr to active nessage bl ock */
static void (*readyProc)(BYTE, BYTE); /* proc. to call if transfer ended */
static BYTE nmsgCount; /* Nunmber of nessages to sent */
static BYTE dat aCount; /* bytes send/received of nessage */

interrupt void |2C_Interrupt(void)

/********************************/

swi t ch(| 2STAT) /* >> 3 for faster code */
{
case 0x00: /* Bus Error has occured */
| 2CON = GENERATE_STOPR;
br eak;
case 0x08: /* (rep) Start condition transmtted */
case 0x10: /* Slave address + RRWare transnmitted */

| 2DAT = nsg- >addr ess;
| 2CON = RELEASE_BUS_ACK;

br eak;
case 0x18: /* SLA+Wor DATA transmitted, ACK received */
case 0x28: /* DATA or STOP will be transnitted */
i f (dataCount < msg->nrBytes)
| 2DAT = nsg- >buf [dat aCount ++] ; /* sent first byte */
| 2CON = RELEASE _BUS_ACK;

el se

if (nmsgCount < tfr->nrMessages)

Philips Semiconductors

XA-S3 12C driver software Application Note
AN98046
dat aCount = 0;
nseg = tfr->p_nessage[nsgCount ++] ; /* next nessage */
| 2CON = RELEASE BUS_STA; /* generate (rep)START */
el se
{
| 2CON = GENERATE_STOPR;
readyProc(12C_OK, nsgCount);
}
br eak;
case 0x20:
case 0x48: /* SLA+tWR transmitted, NOT ACK received */
readyProc(1 2C_NACK_ON_ADDRESS, nsgCount); /* driver finished */
| 2CON = GENERATE_STOPR;
br eak;
case 0x30: /* DATA transnmitted, NOT ACK received */

readyProc(12C_NACK_ON_DATA, nsgCount);
| 2CON = GENERATE_STOPR;

br eak;
case 0x38: /* Arbitration lost in SLA+Wor DATA */
| 2CON = RELEASE BUS_STA; /* rel ease bus, set STA */
br eak;
case 0x40: /* SLA+R transmitted, ACK received */
if (nmBg->nrBytes == 1)
| 2CON = RELEASE BUS_NOACK; /* No ack on next byte */
el se
| 2CON = RELEASE BUS_ACK; /* ACK on next byte */
br eak;
case 0x50: /* DATA received, ACK has been returned */
msg- >buf [dat aCount ++] = | 2DAT; /* read next data */
if (dataCount + 1 == nsQg->nrBytes) /* next byte the last ? */
| 2CON = RELEASE BUS_NOACK; /* No ack on next byte */
el se
| 2CON = RELEASE_BUS_ACK; /* return ACK */
br eak;
case 0x58: /* DATA received, NOT ACK has been returned */
nsg- >buf [dat aCount] = | 2DAT,; /* read | ast data */

if (msgCount < tfr->nrMessages)

dat aCount = 0;

neg = tfr->p_nessage[negCount ++] ; /* next nessage */
| 2CON = RELEASE BUS_STA; /* generate (rep)START */
}
el se
| 2CON = GENERATE_STOPR,
readyProc(12C_OK, nsgCount);
}
br eak;

defaul t: break;

void I2C Initialize(void)
/***********************/

{
ROM VECTOR(0xd4, |1 2C_I nterrupt, | V_PSW; /* 12C interrupt vector */
P5CFGA = P5CFGA & 0x3f; /* P5.6 and P5.7 as open drain ports */
P5CFGB = P5CFGB & 0x3f;
| 2ADDR = 0x26; /* set default slave address */
| 2CON = RELEASE BUS_ACK; /* set speed and enable |yC hardware */
IPB2 = IPB2 | 0x10; /* set priority of I12C interrupt to 9 */
El2 = 1, /* enable |2C interrupt */
EA = 1, /* General interrupt enable */
}

void | 2C _Transfer (I 2C_TRANSFER *p, void (*proc)(BYTE, BYTE))

Philips Semiconductors

XA-S3 12C driver software Application Note
AN98046

IR R R R R R R R R R R R Y]

{
tfr = p;
readyProc
msgCount
dat aCount
msg = tfr-

proc;
0:

0;
p_nessage[msgCount ++] ; /* first message to send */

Vo

| 2CON = RELEASE BUS_STA; /* generate START condition */

Philips Semiconductors

XA-S3 12C driver software

Application Note

AN98046

APPENDIX 3

I2CEXPRT.H

IR R R R R R R R R R R R AR R LRy

/* Name of nodule | 2CEXPRT. H */
/* Program | anguage C */
/* Name P.H. Seerden */
/* */
/* (C) Copyright 1998 Philips Sem conductors B.V. */
/* */
/***/
/* */
/* Description: */
/* */
/* This nmodul e consists a nunber of exported declarations of the |2C */
/* driver package. Include this nodule in your source file if you want */
/* to make use of one of the interface functions of the package. */
/* */
/***/
/* */
/* History: */
/* */
/* 92-12-10 P.H. Seerden Initial version */
/* */
/***/
#def i ne FALSE 0
#define TRUE 1
typedef unsigned char BYTE;
typedef unsigned short ORD;
typedef unsigned |ong LONG
Eypedef struct

BYTE address; /* slave address to sent/receive nessage */

BYTE nrBytes; /* nunber of bytes in message buffer */

BYTE *buf; /* pointer to application nessage buffer */
} 1 2C_MESSAGE;
typedef struct

BYTE nr Messages; /* nunmber of nessage in one transfer */

| 2C_MESSAGE **p_nmessage; /* pointer to pointer to nessage */
} 1 2C_TRANSFER;
#define 12C_ K 0 /* transfer ended No Errors */
#define |1 2C_BUSY 1 /* transfer busy */
#define 1 2C_ERR 2 /* err: general error */
#define |1 2C_NO _DATA 3 /* err: No data in block */
#define 1 2C_NACK_ON_DATA 4 /* err: No ack on data */
#define 1 2C_NACK_ON_ADDRESS 5 /* err: No ack on address */
#define |1 2C_DEVI CE NOT_PRESENT 6 /* err: Device not present */
#define |1 2C_ARBI TRATI ON_LOST 7 /* err: Arbitration | ost */
#define 12C_TI ME_QUT 8 /* err: Time out occurred */
#define |1 2C_SLAVE ERROR 9 /* err: slave node error */
#define 12C_I NI T_ERROR 10 /* err: Initialization (not done) */

extern void |2
extern void |2

extern void |2
extern void |2
extern void |2
extern void |2
extern void |2

Transfer (1 2C_TRANSFER *p,
Initialize(void);

W iteRepRead(| 2C_MESSAGE *nsgl,
> Read(| 2C_MESSAGE *nBg) ;
> ReadRepRead(| 2C_MESSAGE *msgl,

void (*proc)(BYTE, BYTE));

C_

(o]

C Wite(l 2C_MESSAGE *nsQ);

C WiteRepWite(l2C MESSAGE *msgl,
C

ol

C

| 2C_MESSAGE *nsg2);
| 2C_MESSACE *nsg2);

| 2C_MESSAGE *nsg2) ;

AN

Philips Semiconductors

XA-S3 12C driver software Application Note
AN98046

extern void | 2C_ReadRepWite(l 2C_MESSAGE *nsgl, |2C MESSAGE *nsg2);

Aa

Philips Semiconductors

XA-S3 12C driver software

Application Note

AN98046

APPENDIX 4 DEMO.C

IR E R R R R R R R R R R R AR R R LRy

/* Name of nodule DEMO. C */
/* Program | anguage : C */
/* Name . P.H Seerden */
/* Description : XA-S3 12C driver test */
/* Read tine fromthe real tine clock chip PCF8583. */
/* run | eds connected to PCF8574 every second. */
/* */

IEEEAA R R R R R R R R R AR LRy

#i nclude "i2cexprt.h"

#defi ne PCF8574_WR 0x40
#defi ne PCF8583_WR 0xAO
#define PCF8583_RD OxAl

static BYTE rtcBuf[1];
static BYTE iopBuf[1];
static | 2C_MESSAGE rtcMsgl;
static | 2C_MESSAGE rtcMsg2;
static | 2C_MESSAGE iopMsg;

static void Init(void)

{
I2C Initialize();
rtcMsgl. address = PCF8583_WR;
rtcMsgl. buf = rtcBuf;
rtcMsgl. nrBytes = 1,
rtcMsg2. address = PCF8583_RD;
rtcMsg2. buf = rtcBuf;
rtcMsg2. nrBytes = 1,
i opMsg. address = PCF8574_WR
i opMsg. buf = i opBuf;
i opMsg. nrBytes = 1;
i opBuf [0] = Oxff;
| 2C_Wite(& opMsg);

}

voi d mai n(voi d)
BYTE ol dseconds, port;

Init();

ol dseconds = O;
port = Oxf7,
while (1)

cBuf[0] =

r
I2C
if (rtcBuf[0] != ol dseconds)
{

ol dseconds = rtcBuf[0];

switch (port)

{

case Oxf7: port = Oxfe;
case Oxfb: port = Oxf7;
case Oxfd: port = Oxfb;
case Oxfe: port = 0xfd;

default: break;
i opBuf[0] = port;

}
io
12C_ Wite(& opMsg);

t 2;
2C WiteRepRead(& tcMsgl, & tcMsg2);
f

/* i2c address 1/O poort wite */
/* i2c address C ock */
/* i2c address C ock */

/* read seconds */

/* one second passed ? */

br eak;
br eak;
br eak;
br eak;

FaYal

	Abstract
	APPLICATION NOTE
	Summary
	CONTENTS
	1. INTRODUCTION
	2. EXTERNAL (APPLICATION) INTERFACE
	2.1 External data interface
	2.2 External function interfaces

	3. DRIVER OPERATION
	4. DEMO PROGRAM
	APPENDIX 1 I2CINTFC.C
	APPENDIX 2 I2CDRIVR.C
	APPENDIX 3 I2CEXPRT.H
	APPENDIX 4 DEMO.C

