INTEGRATED CIRCUITS

ARPPLICATION NOTIE

AN96119
12C with the XA-G3

Paul Seerden, January 1997
Systems Laboratory Eindhoven, The Netherlands

Philips PHILIPS
Semiconductors H I LI ps

D



Philips Semiconductors Application note
________________________________________________________________________________________________________________|

12C with the XA-G3 AN96119

|
Author:  Paul Seerden, Systems Laboratory Eindhoven, The Netherlands

ABSTRACT

This report describes how to implement I2C functionality (single master), if you're using the Philips XA-Gx
microcontroller. Elaborated driver routines (written in C) are given for two alternative solutions:

— Software emulation using two port pins (‘bit-banging’).

— Using the PCx8584 12C-bus controller.

SUMMARY
This application note demonstrates the implementation of I12C functionality using the 16-bit XA-G3 microcontroller
from Philips Semiconductors.

The note contains two main parts:
— An implementation using the Philips PCx8584 12C-bus controller (Interrupt driven).

— An implemenation by software emulation of the bus using 2 I/O port pins (polling, ‘bit-banging’).

Not only the driver software is given. This note also contains a set of (example) interface routines and a small
demo application program. All together, it offers the user a quick start in writing a complete 12C system application
(single master).

(E=y—

Purchase of Philips I12C components conveys a license under the Philips’ I2C patent
to use the components in the 12C system provided the system conforms to the
I2C specifications defined by Philips. This specification can be ordered using the

I I code 9398 393 40011.

CONTENTS

L. INIrOAUCHION . e
1.1 R IBNCES . ..o
1.2 BBS and W WV .
1.3 FIlE OVBIVIBW . . .

N

Functional desCriptioN ... e
2.1 The l2C BUSTOMMAL . ...t
2.2 INPUL it ON . o e
2.3 OUtPUL defiNitiON ..o e e
2.4 P eI OIMANCE . . ..
2.5 Error handling . ... o
2.6 Hardware reqUITEMENTS . . . oottt et e e e e e e e e e e e e

w

EXternal INterface ... ... .o
3.1 External data iNterface . . ... ..o
3.2 External fuNCHiON INtEITaCES . . . .. ..o e e e e

E

D Y=Y 0] o 11 r- 4o ) o
4.1 Bit-banging AriVer . ... 1
4.2 P CXBE8A ArIVeT . . . ottt ettt e e e 11

5. DEMO PrOGIaAM .ottt et e e e e e e e 12

O W NN~ oo 0l DWW

Y o] 0 1= o T = 13
Appendix | 2 INT . C o 13
Appendix Il 2Bl S, C o 17
Appendix 111 2C 858, C . 22
Appendix IV I2C DEMO . C o 25
Appendix V L2 E X P R H . e 27
Appendix VI 20 DRIV R H L 28

January 1997 2



Philips Semiconductors Application note

12C with the XA-G3 AN96119

1. INTRODUCTION

This report describes 12C driver software, in C, for the XA microcontroller. This driver software is the interface
between application software and the (hardware) 12C device(s). These devices conform to the serial bus interface
protocol specification as described in the 12C reference manual.

The 12C bus consists of two wires carrying information between the devices connected to the bus. Each device has
its own adddress. It can act as a master or as a slave during a data transfer. A master is the device that initiates
the data transfer and generates the clock signals needed for the transfer. At that time, any addressed device is
considered a slave. The I2C bnus is a multi-master bus. This means that more than one device capable of
controlling the bus can be connected to it. However, the driver software given in this application note only supports
(single) master transfers.

Chapter 2 gives a functional description of the driver program.
Chapter 3 describes the software structure and all driver interface functions (‘callable’ by the application).

Chapter 4 describes the low level hardware dependent driver software and is split into one general part and two
sections. The first section describes a software emulated 12C bus driver (‘bit-banging’) using two I/O port pins. The
other section describes an interrupt driven PCF8584 driver. The PCF8584 is a Philips integrated circuit to be used
as a separate 12C bus controller.

Chapter 5 is a short description of the example application program (demo.c and i2cintfc.c).

DEMO.C

APPLICATION SOFTWARE

I2CINTFC.C
INTERFACE FUNCTIONS

external interface (Chapter 3) external interface (Chapter 3)
12CBITS.C 12C8584.C
‘BIT BANGING' driver PCx8584 driver
Polling (P1.4 and 1.5 used) Interrupt driven (external Int.0 used)

Figure 1. Overview of software layers and modules

January 1997 3



Philips Semiconductors Application note

12C with the XA-G3 AN96119

1.1 References

Description Ordering info

Used references:

The 12C-bus specification 9398 358 10011

The 12C-bus and how to use it 9398 393 40011

Application report PCF8584 12C-bus controller MAR 93 see BBS / WWW

Specification 12C driver (J. Reitsma)

C routines for the PCx8584 AN95068

[2CBITS.ASM (by G. Goodhue) see BBS / WWW
Used development and test tools:

Hi-Tech C XA complier (version 7.60) http://www.htsoft.com

Philips Microcore SiXA evaluation board

FDI XTEND board XTEND-G3

Philips 12C-bus evaluation board OM1016

Philips Logic Analyzer with 12C-bus support package PF8681 PM3580/PM3585

1.2 BBS and WWW
This application note (with C source files) is available for downloading from the Philips Bulletin Board Systems and
from the world wide web. It is packed in the self extracting PC DOS file: I2CXAG3.EXE.

To better serve our customers, Philips maintains a microcontroller bulletin board. This system is open to all callers,
it operates 24 hours a day, and can be accessed with modems up to 28800 bps. The telephone number is:

European Bulletin Board, telephone number: +31 40 272 1102.
Internet access:
Philips Semiconductors WWW:  http://www.semiconductors.philips.com
1.3 File overview
the driver package contains the following files:
[2CBITS.C The driver part for ‘bit-banging” 12C.

12C8584.C The PCF8584 drive for master transfers, containing initialization and state handling. This
module also contains address definitions of hardware registers of the PCx8584. The user
should adapt these definitions to his own system environment (address map).

[2CDRIVR.H This module (include file) contains definitions of local data types and constants, and is used
only by the driver package.

[2CINTFC.C This module contains example application interface functions to perform a master transfer.
In this module, some often-used message protocols are implemented. Furthermore, it shows
examples of error handlin, like: time-outs (software loops), retries and error messages. The
user must adapt these funtions to his own system needs and environment.

[2CEXPRT.H This module (include file) contains definitions of all ‘global’ contants, function prototypes,
data tyes and structures needed by the user (application). Include this file in the user
application source files.

January 1997 4



Philips Semiconductors Application note

12C with the XA-G3 AN96119

DEMO.C This program uses the driver package to implement a simple application on the Microcore 6
demo / evaluation board. This board contains a PCx8584 12C-bus controller, a PCF8583 real
time clock and a PCF8574 1/0 exapander with connections to 4 LEDs. The program runs the
LEDs every second.

All driver software programs are tested as thoroughly as time permitted; however, Philips cannot guarantee that
they are flawless in all applications.

2. FUNCTIONAL DESCRIPTION

2.1 The I12C bus format

An I12C transfer is initiated with the generation of a start condition. This condition will set the bus busy. After that, a
message is transferred that consists of an address and a number of data bytes. This 12C message may be followed
either by a stop condition or a repeated start condition. A stop condition will release the bus mastership. A
repeated start offers the possibility to send/receive more than one message to/from the same or different devices,
while retaining bus mastership. Stop and (repeated) start conditions can only be generated in master mode.

Data and addresses are transferred in eight bit bytes, starting with the most significant bit. During the 9th clock
pulse, follwing the data byte, the receiver must send an acknowledge bit to the transmitter. The clock speed is
normally 100kHz. Clock pulses may be stretched (for timing causes) by the slave.

A start condition is always followed by a 7-bit slave address and a R/W direction bit.

General format and explanation of an 12C message:

S|SLV.W A|SUB|A|S|SLV.R|A|DI1|A| D2| Aj....... A|Dn| N| P
S . (re)Start condition
A : Acknowledge on last byte
N : No Acknowledge on last byte

: Stop condition

SLV.W . Slave address and Write bit
SLV_R . Slave address and Read bit
SUB : Sub-address
D1...Dn . Block of data bytes

D1.1.. D1.m : First block of data bytes
Dn.1...Dn.m : ny block of data bytes
2.2 Input definition

Inputs (applicaiton’s view) to the driver are:
* The number of messages to exchange (transfer)

* The slave address of the 12C device for each message

* The data direction (read/write) for all messages

¢ The number of bytes in each message

¢ In case of a write message: The data bytes to be written to the slave.

January 1997 5



Philips Semiconductors Application note

12C with the XA-G3 AN96119

2.3 Output definition
Outputs (application’s view) from the driver are:
¢ Status information (success or error code)

* Number of messages actually transferred (not the requested number of messages in case of an error)
* For each read message: The data bytes read from the slave.

2.4 Performance

The default maximum speed of the 12C-bus is 100 KHz. With the XA-Gx running at 16 MHz or higher, it's possible
to reach this speed using the ‘bit-banging’ driver. However, it is important to minimize the delay time between
successive data bytes, because this delay determines the effective speed of the bus.

The maximum speed of the PCF8584 is limited to 90 KHz.

Software emulation (‘bit-banging’) of the bus is a heavy load for the XA processor. That's why systems that have to
do more time critical tasks better apply the interrupt driven PCF8584 solution.

2.5 Error handling

A transfer ‘status’ is passed every time the ‘transfer ready’ function is called by the driver. It's up to the user to
handle time outs, retries or all kind of other possible errors. Simple examples of these (no operating system, and
no hardware timers) are shown in the file I2CINTFC.C

2.6 Hardware requirements

Bit-bang driver:

The bus requires open-drain device outputs to drive the bus. In fact, all port pins of the XA-Gx are programmable
to open-drain outputs. In our example, external memory is connected to port PO and P2. So, we have chosen to
use P1.4 as SDA pin and P1.5 as SCL pin. To change this (for example to P1.6 and P1.7, like at the C51
derivative), adjust the include file I2CDRIVR.H. The code size of the emulation driver in this application note is
approximately 800 bytes (Hi-Tech compiler V7.60). The driver is tested and tuned for an XA-G3 running at 20 MHz.

PCx8584 driver:

Selection of either an Intel or Motorola bus interface is achieved by detection of the first WR — CS signal sequence
(see data sheet). This driver assumes that previously the right interface is selected (after power-up). The driver
uses external interrupt 0 input. To change the base-address (0xFO000) of the PCF8584 edit the file 12C8584.C.

In our example, a 3.6864 MHz clock is connected to the PCF8584.

January 1997 6



Philips Semiconductors Application note

12C with the XA-G3 AN96119

3. EXTERNAL (APPLICATION) INTERFACE
This chapter describes the external interface of the driver towards the application. The C-coded external interface
definitions are in the include file I2CEXPRT.H.

The applicaiton’s view on the I2C bus is quite simple: The applicaiton can send messages to an 12C device.
Also, the applicaiton must be able to exchange a group of messages, optionally addressed to different devices,
without losing bus mastership. Retaining the bus is needed to guarantee atomic operations.

3.1 External data interface
All parameters affected by an 12C master transfer are logically grouped within two data structures. The user fills
these structures and then calls the interface function to perform a transfer. The data structures are listed below.

typedef struct
{

BYTE nrMessages; /* total number of messages */
12C_MESSAGE **p_message; /* ptr to array of ptrs to message parameter blocks */

}12C_TRANSFER;

The structure 12C_TRANSFER contains the common parameters for an 12C transfer. The driver keeps a local copy
of these parameters and leaves the contents of the structure unchanged. So, in many applications the structure
only needs to be filled once.

After finishing the actual transfer, a ‘transfer ready’ function is called. The driver status and the number of
messages done, are passed to this function.

The structure contains a pointer (p_message) to an array with pointers to the structure 12C_MESSAGE:

typedef struct

BYTE address; /* The 12C slave device address */
BYTE nrBytes; /* number of bytes to read or write */
BYTE *buf; /* pointer to data array */

} 12C_MESSAGE;
The direction of the transfer (read or write) is determined by the lowest bit of the slave address;
write = 0 and read = 1. This bit must be (re)set by the application.

The array buf must contain data supplied by the application in case of a write transfer. The user should notice that
checking to ensure that the buffer pointed to by buf is at least nrBytes in length, cannot be done by the driver.

In case of a read transfer, the array is filled by the driver. If you want to use buf as a string, a terminating NULL
should be added at the end. It is the user’s responsibility to ensure that the buffer, pointed to by buf, is large
enough to receive nrBytes bytes.

3.2 External function interfaces
This seciton gives a description of the only two ‘callable’ interface funcitons in the both 12C driver modules.

First, the initialization function (/I2C—Initialize) is explained. This function directly programs the 12C interface
hardware and is part of the low level driver software. It must be called only once after ‘reset’, but before any
transfer function is executed. After that, the interface function used to actually perform a transfer (/12C_Transfer) is
explained.

January 1997 7



Philips Semiconductors Application note

12C with the XA-G3 AN96119

void 12C _Initialize(BYTE speed)
Initialize the 12C-bus driver part. Must be called once after RESET.

‘Bit Bang’: Port pins P1.3 (SCL) and P1.4 (SDA) are programmed to be used as open-drain output pins.
BYTE speed  Dummy parameter. Not used.

PCx8584: Hardware 12C registers of the PCx8584 interface will be programmed.
Used constants (parameters) are defined in the file I2CDRIVR.H.
BYTE speed  Contents for clock register S2 (bit rate of 12C-bus).

void 12C_Transfer(I2C_TRANSFER *p, void (*proc)(BYTE status, BYTE msgsDone))
Start a synchronous I12C transfer. When the transfer is completed, with or without an error, call the function proc,
passing the transfer status and the number of messages successfully transferred.

[2C_TRANSFER *p A pointer to the structure describing the 12C messages to be transferred.
void (*proc (status, msgsDone)) A pointer to the function to be called when the transfer is completed.
BYTE msgsDone Number of message successfully transferred.
BYTE status one of: 12C_OK Transfer ended No Errors
I2C_BUSY I2C busy, so wait
12C_ERR General error
12C_NO_DATA err: No data message block
I2C_NACK_ON_DATA err: No ack on data in block
I2C_NACK_ON_ADDRESS err: No ack of slave
12C_TIME_OUT err: Time out occurred

January 1997 8



Philips Semiconductors Application note

12C with the XA-G3 AN96119

4. DRIVER OPERATION
After completing a transfer the function readyProc in the application (or interface) is called.

After completing the transmission or reception of each byte (address or data), a state handler is called, either by
interrupt (PCx8584) or by software (‘bit-banging’). This handler can be in one of the following states:
ST_IDLE
ST_AWAIT_ACK

The state handler does not expect any bus activity.
The driver has sent the slave address and waits for an acknowledge.

ST_RECEIVING
ST_RECV_LAST
ST_SENDING

The handler is receiving bytes, and there is still more than one expected.
The handler is waiting for the last byte to receive.
The handler is busy sending bytes to a device.

Figure 2 shows the state transition diagram. A transition will occur on initiation of a transfer by the application and

on each 12C-bus event (state change). The transitions are:

ST_IDLE - ST_SENDING

ST_IDLE - ST_AWAIT_ACK

ST_SENDING - ST_SENDING

ST_SENDING - ST_IDLE

ST_SENDING - ST_AWAIT_ACK

ST_AWAIT_ACK — ST_RECEIVING

ST_AWAIT_ACK — ST_RECV_LAST
ST_RECEIVING - ST_RECEIVING

ST_RECEIVING - ST_RECV_LAST
ST _RECV_LAST - ST_IDLE

ST_RECV_LAST - ST_SENDING

ST_RECV_LAST - ST_AWAIT_ACK

January 1997

A transfer is initiated. Send the slave address for the first write
message.

A transfer is initiated. A message is to be received from a slave
device. The micro transmits the slave address.

At least one byte to send. Send the next byte. Or no more bytes to
send, send repeated start and slave address of next message to
write.

No more bytes to send, no more messages.

No more bytes to send, send repeated start and slave address of
next message is to be received.

More than 1 byte is to be received. Wait for and acknowledge next
byte.

Only one byte to receive, send no acknowledge on last byte.
More than one byte to receive. Read received byte.
Only one byte left to receive, send no acknowledge on it.

Last byte read, send stop. No more messages. Call ReadyProc
and give status.

Last byte read, send repeated start and slave address of next
(write) message.

Last byte read, send repeated start and slave address of next
(read) message.



Philips Semiconductors

Application note

12C with the XA-G3 AN96119
ST_IDLE
‘ . .
no more first message first message
messages START condition START condition
send STOP send ADDR + WR send ADDR + RD
ST_SENDING
]
Next message
START condition
Send ADDR + RD
ST_AWAIT_ACK
read byte
ACK
no more
next byte
read byte Y messages
NACK ST_RECEIVING send STOP
next byte _
Next message
> read byte Next message
START condition NACK START condition
send ADDR + WR next byte send ADDR + RD
y '
ST_RECV_LAST

Figure 2. State transition diagram of the master state handler

4.1 Bit-banging driver

The XA-Gx derivative does not incorporate on-chip 12C hardware. However, 12C functionality can be achieved by
software emulation. The file I2CBITS.C (Appendix 1) performs two main tasks: handling complete transfers that
consist of one or more messages (described above, see Figure 2), and the software emulation task. The emulation
task consists of: bus monitoring and control, master sending/receiving of bytes conform to the 12C protocol.

The following macro and functions are designed for master 12C-bus control:

delay

SCLHigh()

PutByte()

GetByte()

GenerateStart()

GenerateStop()

January 1997

Macro for delay loop of about 1 microsecond. Needs to be tuned (in application note done for
20MHz XA). This delay is needed to insure minimum high and low clock times on the bus.
Also, the hold and setup times for START and STOP conditions are met with this macro. To
optimize the speed, the software (generated by the compiler) delay is measured and
included in the total delay times.

Function to release (send high) the SCL pin and wait for any clock stretching peripheral
devices. At this point, if requested, the user can build in time-outs.

Function that sends one byte of data to a slave device. After that, it checks if slave did
acknowledge.

Function to receive one data byte from an addressed slave. and after that it sends
(no)acknowledge.

Function to generate and 12C (repeated)START condition and send slave address for a
message read/write.

Function to generate an 12C STOP condition, releasing the bus. It also calls the function
readyProc to signal the driver is finished, and pass the status of the transfer.

10



Philips Semiconductors Application note

12C with the XA-G3 AN96119

4.2 PCx8584 driver
The PCx8584 logic provides a serial interface that meets the 12C-bus specification and supports all master transfer
modes from and to the bus.

A microcontroller/processor interfaces to the PCx8584 via five hardware registers: SO (data read/write register),
SO’ (own address register), S1 (control/status register), S2 (clock register), and S3 (interrupt vector register).

Selection of either an Intel or Motorola bus interface, achieved by detection of the first WR — CS signal sequence is
outside the scope of this application note, as well as the insertion of wait states needed to meet the constraints of
the XA — PCF8584 bus timing. More information about the hardware interface can be found in the Philips
Semiconductors application note, AN96098: Interfacing 68000 family peripherals to the XA.

Bus speed

The speed of the 12C-bus is controlled by clock register S2 of the PCx8584. This register provides a prescaler that
can be programmed to select one of five different clock rates, externally connected to pin 1 of the PCx8584.
Furthermore, it provides a selection of four different 12C-bus SCL frequencies, ranging up to 90 KHz. The value for
register S2 is passed as a parameter during initialization of the driver. To select the correct initialization values,
refer the the datasheet or the Application Report of the PCx8584.

Interrupt

In this applicaiton note we assume that the interrupt output of the PCF8584 is connected to external interrupt 0
input of the XA. In the initialization function, this interrupt is enabled, its priority is set as well as the general
interrupt enable flag. Furthermore, a ‘soft’ interrupt vector is filled to point to the right interrupt handler. This is only
done for debugging purposes. In a ‘real’ application, this should be replaced by a ROM vector.

After completing the transmission or reception of each byte (address or data), the PIN flag in the control/status
register of the PCF8584 is reset to 0. This will send an interrupt to the XA (EX0) and the interrupt service (state)
handler will be called (see Figure 2).

If a transfer is started, the driver interface function returns immediately. At the end of the transfer, together with the
generation of a STOP condition, the driver calls a function, passing the transfer status. A pointer to this function
was given by the applicaiton at the time the transfer was applied for. It is up to the user to write this function and to
determine the actions that have to be done (see for example, the function I2cReady in module I2CINTFC.C).

January 1997 11



Philips Semiconductors Application note

12C with the XA-G3 AN96119

5. DEMO PROGRAM
The modules DEMO.C and I12CINTFC.C use either one of the drivers to implement a simple application on a
Microcore 6 demo / evaluation board. They are intended as examples to show how to use the driver routines.

The Microcore 6 board contains a PCx8584 12C-bus controller, a PCF8583 real time clock and a PCF8574 1/0
expander with connections to 4 LEDs. the demo program runs the LEDs every second.

The module I2CINTFC.C gives an example of how to implement a few basic transfer functions (see also previous
SLE I2C driver application notes). These functions allow you to communicate with most of the available I2C devices
and serve as a layer between your application and the driver software. This layered approach allows support for
new devices (microcontrollers) without re-writing the high-level (device-independent) code. The given examples
are:

void 12C_Write(12C_MESSAGE *msg)
void 12C_WriteRepWrite(I2C_MESSAGE *msgl, 12C_MESSAGE *msg?2)
void 12C_WriteRepRead(I2C_MESSAGE *msgl, 12C_MESSAGE *msg2)
void 12C_Read(12C_MESSAGE *msg)
void 12C_ReadRepRead(I2C_MESSAGE *msgl, 12C_MESSAGE *msg2)
void 12C_ReadRepWrite(I2C_MESSAGE *msg1l, I2C-MESSAGE *msg2)
Furthermore, the module I2CINTFC.C contains the functions StartTransfer, in which the actual call to the driver

program is done, and the function /2cReady, which is called by the driver after the completion of a transfer. The
flag drvStatus is used to test/check the state of a transfer.

In the StartTransfer function a software time-out loop is programmed. Inside this time-out loop the
MainStateHandler is called if the driver is in polling mode and the status register PIN flag is set.

If a transfer has failed (error or time-out) the StartTransfer function prints an error message (using standard 1/O
redirection, like the printf() function) and it does a retry of the transfer. However, if the maximum number of retries
are reached, and exception interrupt (Trap #14) is generated to give a fatal error message.

January 1997 12



Philips Semiconductors

Application note

12C with the XA-G3

AN96119

APPENDICES

Appendix | [2CINTFC.C

/ /

/* Name of module : I2CINTFC.C */

/* Language :C */

/* Name : P.H. Seerden */

/* Description : External interface to the PCx8584 | 2C driver
I* routines. This module contains the **EXAMPLE** */

I* interface functions, used by the application to */

I* do | 2C master-mode transfers. */
I* */

I* (C) Copyright 1996 Philips Semiconductors B.V. */

I* */

/ /

I* */

/* History: */

I* */

/* 96-11-25 P.H. Seerden Initial version */

I* */

/ /

#include "i2cexprt.h”
#include "i2cdrivr.h”

extern void PrintString(code char *s);  /* to send messages out using UART  */
code char retryexp[] = "retry counter expired\n”;

code char bufempty[] = "buffer empty\n”;

code char nackdata[] = "no ack on data\n”;

code char nackaddr[] = "no ack on address\n”;

code char timedout[] = "time—out\n”;

code char unknowst[] = "unknown status\n”;

static BYTE drvStatus; [* Status returned by driver */

static I2C_MESSAGE *p_iicMsg[2] /* pointer to an array of (2) 12C mess */

static I2C_TRANSFER iicTfr;

static void 12cReady(BYTE status, BYTE msgsDone)

/

*Input(s) :status  Status of the driver at completion time
* msgsDone  Number of messages completed by the driver
* Qutput(s) : None.

* Returns : None.

* Description: Signal the completion of an |

* passed (as parameter) to the driver and called by the
* drivers state handler (!).
{
drvStatus = status;
}

January 1997 13

2C transfer. This function is

*



Philips Semiconductors

Application note

12C with the XA-G3

AN96119

static void StartTransfer(void)

!

* Input(s) : None.

* Output(s) : statusfield of I2C_TRANSFER contains the driver status:
*

12C_OK Transfer was successful.
* I2C_TIME_OUT Timeout occurred
* Otherwise Some error occurred.
* Returns : None.
* Description: Start | 2C transfer and wait (with timeout) until the
* driver has completed the transfer(s).

LONG timeOut;
BYTE retries = 0;

do

drvStatus = 12C_BUSY;
12C_Transfer(&iicTfr, I2cReady);

timeOut = 0;
while (drvStatus == 12C_BUSY)

if (++timeOut > 60000)
drvStatus = 12C_TIME_OUT;

}
if (retries == 6)
{
PrintString(retryexp); /* fatal error ! So, .. */
asm("trap #14"); /* escape to debug monitor */
}
else
retries++;

switch (drvStatus)

case 12C_OK : break

case 12C_NO_DATA : PrintString(bufempty);  break;

case 12C_NACK_ON_DATA : PrintString(nackdata);  break;
case 12C_NACK_ON_ADDRESS : PrintString(nackaddr);  break;

case 12C_TIME_OUT : PrintString(timedout);  break;
default : PrintString(unknowst);  break;
}
} while (drvStatus != 12C_OK);

}

January 1997 14



Philips Semiconductors

Application note

12C with the XA-G3

AN96119

void 12C_Write(1I2C_MESSAGE *msg)

/

*Input(s) :msg | 2C message

*Returns : None.

* Description: Write a message to a slave device.

* PROTOCOL : <S><SIVA><W><A><D1><A> ... <Dnum><N><P>

{
iicTfr.nrMessages = 1;
iicTfr.p_message = p_iicMsg;
p_iicMsg[0] = msg;

StartTransfer();
}

void 12C_WriteRepWrite(I2C_MESSAGE *msgl, I12C_MESSAGE *msg2)
!

* Input(s) :msgl first| 2C message

* msg2 second | 2C message

*Returns : None.

* Description: Writes two messages to different slave devices separated

* by a repeated start condition.

* PROTOCOL : <S><SIVIA><W><A><D1><A>...<Dnum><A>

* <S><SIV2A><W><A><D1><A>...<Dnum2><A><P>
{

iicTfr.nrMessages = 2;
iicTfr.p.message = p_iicMsg;
p_iicMsg[0] = msg1;
p_iicMsg[1] = msg2;

StartTransfer();
}

void 12C_WriteRepRead(12C_MESSAGE *msgl, 12C_MESSAGE *msg2)

/

* Input(s) :msgl first | 2C message

* msg2 second | 2C message

* Returns : None.

* Description: A message is sent and received to/from two different

* slave devices, separated by a repeat start condition.

*PROTOCOL  <S><SIV1IA><W><A><D1><A>...<Dnuml><A>
<S><SIV2A><R><A><D1><A>...<Dnum2><N><P>

iicTfr.nrMessages = 2;
iicTfr.p_message = p_iicMsg;
p_iicMsg[0] = msg1,;
p_iicMsg[1] = msg2;

StartTransfer();
}

void 12C_Read(I12C_MESSAGE *msg)

!

*Input(s) :msg | 2C message

* Returns : None.

* Description: Read a message from a slave device.

* PROTOCOL : <S><SIVA><R><A><D1><A>...<Dnum><N><P>

{
iicTfr.nrMessages = 1;
iicTfr.p_message = p_iicMsg;
P_iicMsg[0] = msg;

StartTransfer();

January 1997 15



Philips Semiconductors

Application note

12C with the XA-G3

AN96119

void 12C_ReadRepRead(I12C_MESSAGE *msgl, I12C_MESSAGE *msg2)
!

* Input(s) :msgl firstl 2C message

* msg2 second | 2C message

* Returns  : None.

* Description: Two messages are read from two different slave devices,

* separated by a repeated start condition.

* PROTOCOL : <S><SIV1A><R><A><D1><A>...<Dnuml1><N>
* <S><SIV2A><R><A><D1><A>...<Dnum2><N><P>
{

iicTfr.nrMessages = 2;
iicTfr.p_message = p_iicMsg;
p_iicMsg[0] = msg1,;
p_iicMsg[1] = msg2;

StartTransfer();

void 12C_ReadRepWrite(12C_MESSAGE *msg1, 12C_MESSAGE *msg2)
!

*Input(s) :msgl firstl 2C message

* msg2  second | 2C message

* Returns : None.

* Description: A block data is received from a slave device, and also

* a(nother) block data is send to another slave device

* both blocks are separated by a repeated start.

* PROTOCOL : <S><SIV1A><R><A><D1><A>...<Dnum1><N>

* <S><SIV2A><W><A><D1><A>...<Dnum2><A><P>
{

licTfr.mrNessages = 2;
iicTfr.p_message = p_iicMsg;
p_iicMsg[0] = msg1,;
p_iicMsg[1] = msg2;

StartTransfer();

January 1997 16



Philips Semiconductors Application note

12C with the XA-G3 AN96119

Appendix Il I2CBITS.C

/ /

/* Name of module : I2CBITS.C */

/* Language :C */

/* Name : P.H. Seerden */

/* Description : Driver part for XA-G3 | 2C ’bit-bang’ code. */
I* */

/* P1.4 and P1.5 are used for SCL and SDA. */

/* Everything between one Start and Stop condition is called a TRANSFER. */
/* One transfer consists of one or more MESSAGEs. */
/* MESSAGES are separated by Repeated Staarts. */
/* To start a transfer call function "12C_Transfer”. */

I* */

I* (C) Copyright 1996 Philips Semiconductors B.V. */

I* */

/ /

I* */

[* History: */

I* */

/* 96-11-25 P.H. Seerden Initial version */

I* */

/ /
#include <xa.h>

#include "i2cexprt.h”
#include "i2cdrivr.h”

static 12C_TRANSFER *tfr; /* Ptr to active transfer block — */

static I2C-MESSAGE *msg; [* ptr to active message block */

static void (*readyProc) (BYTE,BYTE); /* proc. to call if transfer ended */

static BYTE mssgCount; /* Number of messages sent */

static BYTE dataCount; /* nr of bytes of current message  */

static BYTE state; [* state of the | 2C driver */

static bit noAck;

/* about 1 us delay time at 20 MHz. */

/* Used to insure minimum high and low clock times on the 12C bus. */
/* This macro must be tuned for the actual oscillator frequency used. */
[* Other parameters involved: XA bus timing (BTRH and BTRL) */
I* required 12C bus speed (normal or fast)  */

I* performance of compiler generated code  */

#define delay asm(” nop”);\
asm(” nop™); \
asm(” nop”); \
asm(” nop”); \
asm(” nop”); \
asm(” nop”); \
asm(” nop”); \
asm(” nop”)

January 1997 17



Philips Semiconductors

Application note

12C with the XA-G3

AN96119

static void SCLHigh(void)

!

* Input(s) : none.

*Returns  : none.

* Description : Sends SCL pin high and wait for any clock stretching
* peripherals.

/

SCL =1,
while (ISCL) ;
delay;

}

static void PutByte(BYTE i)

/

* Input(s) i byte to be transmitted.

* Returns  : None.

* Description : Sends one byte of data to a slave device.

{
BYTE n;

for (n—0x80; n!=0; n=n>>1)

{
SDA=(&n)?1:0;
SCLHigh(); /* make SCL high and check for stretching */
delay; /* extra delay needed */
SCL=0;
1 delay; /* not needed, enough delay in sw loop */
}
delay; /* extra delay needed (1 us) */
SDA =1; /* release data line for acknowledge  */
SCLHigh(); /* make SCL high and check for stretching */
noAck = SDA; /* check acknowledge */
SCL =0;

static BYTE GetByte(void)

!

* Input(s) : None.

* Returns  : received byte.

* Description : Receive one byte of an addressed slave.

{
BYTE n,i;

for (n=0; n<8; n++) /* read 8 bits */
{
SCLHigh(); /* make SCL high and check for stretching */
i=i|SDA;
SCL=0;
delay;
i =i<<l;
}
SDA = noAck;
SCLHigh(); /* make SCL high and check for stretching */
SCL =0;
SDA =1,
return i

January 1997 18



Philips Semiconductors Application note

12C with the XA-G3 AN96119

static void GenerateStart(void)

!

* Input(s) : None.

*Returns  : None.

* Description : Generate a start condition, and send slave address.
/

{
SCL =1, /* needed for repeated start */
SDA =1,
noAck = FALSE; [* clear no ack status flag */

if (SCL && SDA) /* both lines high ?? *
{
SDA =0;
delay;
delay; /* hold time start condition min. 4 us */
delay;
SCL=0;
PutByte(msg—>address);
}
else
readyProc(12C_ERR, mssgCount); /* Signal driver is finished */

static void GenerateStop(BYTE status)

/

* Input(s) : status status of the driver.

* Returns  : None.

* Description : Generate a stop condition, releasing the bus.

{
SDA =0;
SCLHigh(); /* make SCL high and check for stretching */
SDA =1, /* stop condition setup time min. 4 us */
state = ST_IDLE;
readyProc(status, mssgCount; /* Signal driver is finished */
}

January 1997 19



Philips Semiconductors

Application note

12C with the XA-G3

AN96119

void StateHandler(void)

/**********************

* Input(s) : None.

* Returns  : None.

* Description : Master mode state handler for 12C bus.

{

switch (state)

case ST_SENDING :
if (noAck)
GenerateStop(I2C_NACK_ON_DATA);
else
if (dataCount < msg—>nrBytes)

PutByte(msg—>buf[dataCount++]); /* sent next byte */

else

if (msgCount < tfr—>nrMessages)
{
dataCount = 0;
msg = tfr—>p_message[mssgCount++];

state = (msg—>address & 1) ? ST_AWAIT_ACK : ST_SENDING;

GenerateStart();

}

else

GenerateStop(12C_OK); [* transfer ready */

}

break;
case ST_AWAIT_ACK:
if (noAck)
GenerateStop(12C_NACK_ON_ADDRESS);
else
if (msg—>nrBytes == 1)

noAck = TRUE; [* clear ACK
state = ST_RECV_LAST;
}
else
state = ST_RECEIVING;
break;
case ST_REEIVING :
msg—>buf[dataCount++] = GetByte();
if (dataCount + 1 == msg—>nrBytes)

noAck = TRUE; /* clear ACK
state = ST_RECV_LAST;

}

break;

case ST_RECV_LAST :
msg—>buf[dataCount] = GetByte();
if (mssgCount<tfr—>nrMessages)
{
dataCount = 0;
msg = tfr—>p_message[mssgCount++];

state = (msg—>address & 1) ? ST_AWAIT_ACK : ST_SENDING;

GenerateStart();
}

else

GenerateStop(12C_OK); [* transfer ready

break;
case ST_IDLE :
break;
default : [* impossible

GenerateStop(I12C_ERR); /* just to be sure

break;

}

January 1997



Philips Semiconductors

Application note

12C with the XA-G3

AN96119

void 12C_Transfer(I2C_TRANSFER *p, void (*proc)(BYTE, BYTE))

!

*Input(s) :p address of | 2C transfer parameter block.
* proc procedure to call when trnasfer completed,

* with the driver status passed as parameter.

* Output(s) : None.

* Returns  : None.

* Description: Start an | 2C transfer, containing 1 or more messages. The
* application must leave the transfer parameter block

untouched until the ready procedure is called.

*

tfr = p;

readyProc = proc;

mssgCount = 1;

dataCount = 0;

msg = tfr—>p_message[0]; [* first message */

state = (msg—>address & 10 ? ST_AWAIT_ACK : ST_SENDING;
GenerateStart();

while (state != ST_IDLE)
StateHandler();

void 12C_Initialize(BYTE dum)
/

{
state = ST_IDLE;
P1CFGA = P1CFGA & 0xcf; /*P1.4 and P1.5 as open drain ports ~ */
P1CFGB = P1CFGB & 0xcf;

}

January 1997 21



Philips Semiconductors

Application note

12C with the XA-G3

AN96119

Appendix 11l 12C8584.C

/ /

/* Name of module : 12C8584.C */

/* Language :C */

/* Name : P.H. Seerden */

/* Description : Interrupt driven driver for the XA-Gx and the */
I* PCx8584 | 2C bus controller. */
/* */

/* Uses external interrupt O of the XA. */

/* Everything between one Start and Stop condition is called a TRANSFER. */
/* One transfer consists of the one or more MESSAGEs. */
/* To start a transfer call function "1I2C_Transfer”. */

/* */

I* (C) Copyright 1996 Philips Semiconductors B.V. */

I* */

/ /

I* */

/* History: */

I* */

/* 96-11-25 P.H. Seerden Initial version */

I* */

/ /
#include <xa.h>

#include "i2cexprt.h”
#include "i2cdrivr.h”

[resssmsccrso CHANGE ADDRESSES FOR OTHER APPLICATIONSsttrssitcxss]

#define BYTE_AT(x) (*(far unsigned char*)x)

I* ESO ES1 ES2 */
#define AR_8584 BYTE_AT(0OxFO000) /* Address Register 0 0 0 */
#define VR_8584 BYTE_AT(0xF0000) /* Vector Register 0 0 1 */
#define CL_8584 BYTE_AT(0xF0000) /* Clock Register 0 1 0 */
#define DR_8584 BYTE_AT(0xF0000) /* Data Register 100 ¥

#define CR_8584 BYTE_AT(0xF0002) /* Control Register 0 x x */
#define CS_8584 BYTE_AT(0xF0002) /*Cntrl/StatusReg 1 x x */

/ /

static 12C_TRANSFER *tfr; /* Ptr to active transfer block */

static 2C_MESSAGE *msg; /* ptr to active message block */

static void (*readyProc)(BYTE,BYTE); /* proc. to call if transfer ended  */

static BYTE mssgCount; /* Number of messages sent */

static BYTE dataCount; /* nr of bytes of current message  */

static BYTE state; [* state of the | 2C driver

static void GenerateStop(BYTE status)

/

* Input(s) : status status of the driver.

* Output(s) : driver status to the upper layer.
* Returns  : none.

* Description : Generate a stop condition.

/

CR_8584 = PIN_MASK | ESO_MASK | STO_MASK | ACK_MASK;
state = ST_IDLE;

readyProc(status, mssgCount); /* Signal driver is finished  */

}

January 1997 22

*



Philips Semiconductors Application note

12C with the XA-G3 AN96119

interrupt void 12C_Interrupt(void)

/

* Input(s) : none.

* Output(s) :none.

*Returns  : none.

* Description : Interrupt handler for PCF8584 int. at external int O pin.

switch (state)

case ST_SENDING :
if (CS_8584 & LRB_MASK)
GenerateStop(I2C_NACK_ON_DATA);
else
if (dataCount < msg—>nrBytes)
DR_8584 = msg—>buf[dataCount++];  /* sent next byte  */
else

if (mssgCount < tfr—>nrMessages)

dataCount = 0;

msg = tfr—>p_message[msgCount++];

state = (msg—>address & 1) ? ST_AWAIT_ACK : ST_SENDING;
CS_8584 = ESO_MASK | STA_MASK | ACK_MASK;

DR_8584 = msg—>address;

else
GenerateStop(12C_OK); /* transfer ready */

break;
case ST_AWAIT_ACK:
if (CS_8584 & LRB_MASK)
GenerateStop(I2C_NACK_ON_ADDRESS);
else

BYTE dummy;
if (msg—>nrBytes == 1)

CS_8584 = ESO_MASK; [* clear ACK */
state = ST_RECV_LAST;

else
state = ST_RECEIVING;
dummy = DR_8584; /* start generation of clock pulses
for the first byte to read */

break;
case ST_RECEIVING :
if (dataCount + 2 == msg—>nrBytes)

CS_8584 = ESO_MASK; /* clear ACK */
state = ST_RECV_LAST,;

}
msg—>buf[dataCount++] = DR_8584;
break;
case ST_RECV_LAST :
if (mssgCount < tfr—>nrMessages)

msg—>buf[dataCount] = DR_8584;

dataCount = 0;

msg = tfr—>p_message[mssgCount++];

state = (msg—>address & 1) ? ST_AWAIT_ACK : ST_SENDING;
CS_8584 = ESO_MASK | STA_MASK | ACK_MASK;

DR_8584 = msg—>address;

else

GenerateStop(12C_OK); [* transfer ready */
msg—>buf[dataCount] = DR_8584;

break;
default : /* impossible */
GenerateStop(12C_ERR); /* just to be sure */
break;
}
}

January 1997 23



Philips Semiconductors

Application note

12C with the XA-G3

AN96119

void 12C_Transfer(I2C_TRANSFER *p, void (*proc)(BYTE, BYTE))
/

*Input(s) :p address of | 2C transfer parameter block.
* proc procedure to call when transfer completed.
* with the driver status passed as parameter.

* Qutput(s) : None.
* Returns : None.

* Description: Start an | 2C transfer, containing 1 or more messages. The
* application must leave the transfer parameter block
* untouched until the ready procedure is called.
/
{
tfr = p;

readyProc = proc;

mssgCount = 0;

dataCount = 0;

msg = tfr—>p_message[mssgCount++];

state = (msg—>address & 1) ? ST_AWAIT_ACK : ST_SENDING;
CS_8584 = ESO_MASK | STA_MASK | ACK_MASK; /* generate start */
DR_8584 = msg—>address;

void 12C_Initialize(BYTE speed)

/

*Input(s) :speed  clock register value for bus speed.
* Qutput(s) : None.

* Returns  : None.

* Description: Initialize the PCF8584.

{
state = ST_IDLE;

readyProc = NULL;

AR_8584 = 0x26; /* dummy own slave address  */
CR_8584 = 0x20; /* write clock register */
CL_8584 = speed;

[* for Microcore 6 and XTEND, */
/* now fill the secondary vector table with the right interrupt vector ~ */
#asm

mov.w r2,#680h

mov.w r0,#_12C_Interrupt&(0+65535)

mov.w rl.#seg _I2C_Interrupt

mov.w [r2+],r0

mov.w [r2],r1

#endasm
CR_8584 = ESO_MASK; /* set serial interface ON */
IPAO = IPAO | 7;
EX0 =1,
EA =1, /* General interrupt enable */
}

January 1997 24



Philips Semiconductors

Application note

12C with the XA-G3

AN96119

Appendix IV [2CDEMO.C
/ /

/* Name of module : DEMO.C */

/* Program language : C */

/* Name : P.H. Seerden */

/* Description : XA-Gx | 2C driver test (PCF8584 + bit bang)
I* Runs on MICROCORE 6 */

I* Read time from the real time clock chip PCF8583. */
I* run leds connected to PCF8574 every second. */
/* */

I* (C) Copyright 1996 Philips Semiconductors B.V. */
I* */

/ /
I* */

[* History: */

I* */

/* 96-11-25 P.H. Seerden Initial version */

I* */

#include "i2cexprt.h

#define PCF8574_WR 0x40 /* i2c address I/O poort write */
#define PCF8574_RD 0x41 /* i2c address I/O poort read */
#define PCF8583_WR 0xA0 /*i2c address Clock */
#define PCF8583_RD 0xAl /* i2c address Clock */

static BYTE rtcBuff1];
static BYTE iopBuf[1];

static I2C_MESSAGE rtcMsg1;
static I2C_MESSAGE rtcMsg2;
static I2C_MESSAGE iopMsg;

static void Init(void)

{
12C_Initialize(0x10); [* for PCF8584, 4.43MHz and SCL = 90KHz  */

rtcMsgl.address = PCF8583 WR;
rtcMsgl.buf = rtcBuf;
rtcMsgl.nrBytes = 1,
rtcMsg2.address = PCF8583_RD;
rtcMsg2.buf = rtcBuf;
rtcMsg2.nrBytes = 1;

iopMsg.address = PCF8574_WR;
iopMsg.buf = iopBuf;
iopMsg.nrBytes = 1,
iopBuf[0] = Oxff;
12C_Write(&iopMsg);

}

January 1997 25

*



Philips Semiconductors

Application note

12C with the XA-G3

AN96119

void main(void)
BYTE oldseconds,port;
Init();
oldseconds = 0;
port = 0xf7;
while (1)

rtcBuf[0] = 2;

/* read seconds */

12C_WriteRepRead(&rtcMsgl, &rtcMsg2);

if (rtcBus|[0] != oldseconds)

oldseconds = rtcBuf[0];
switch (port)

case 0xf7: port = Oxfe;
case Oxfb: port = Oxf7;
case 0xfd: port = Oxfb;
case Oxfe: port = Oxfd;
default: break;

iopBuf[0] = port;
12C_Write(&iopMsg);
}
}
}

January 1997

/* one second passesed ? */

break;
break;
break;
break;

26



Philips Semiconductors Application note

12C with the XA-G3 AN96119

Appendix V [2CEXPRT.H

/ /
/* Name of module : 2CEXPRT.H */

/* Language :C */

/* Name : P.H. Seerden *

/* Description : This module consists of a number of exported */
I* declarations of the 12C driver package. Include */
I* this module in your source file if you want to */

I* make use of one of the interface functions of the  */
I* package. */

I* */

I* (C) Copyright 1996 Philips Semiconductors B.V. */
/* *

/ /
I* *

[* History: */

I* */

/* 96-11-25 P.H. Seerden Initial version */

I* */

/ /
typedef unsigned char BYTE;

typedef unsigned short WORD;

typedef unsigned long LONG;

typedef struct

BYTE address; [* slave address to sent/receive message  */
BYTE nrBytes; /* number of bytes in message buffer */
BYTE *buf; /* pointer to application message buffer  */

} 12C_MESSAGE;
typedef struct
BYTE nrMessages; /* number of message in one transfer */

12C_MESSAGE **p_message; /* pointer to pointer to message  */
} 12C_TRANSFER,;

/ /
1* EXPORTED DATA DECLARATIONS */
/ /

#define FALSE 0
#define TRUE 1

#define I2C_WR 0
#define I2C_RD 1

[**** Status Errors ****/

#define 12C_OK 0 /* transfer ended No Errors */

#define 12C_BUSY 1 /* transfer busy */

#define 12C_ERR 2 [* err: general error */

#define 2C_NO_DATA 3 /* err: No data in block */

#define I2C_NACK_ON_DATA 4 /* err: No ack on data */
#define I2C_NACK_ON_ADDRESS 5 /* err: No ack on address */
#define 12C_TIME_OUT 6 [* err: Time out occurred */

/ /
I* INTERFACE FUNCTION PROTOTYPES */
/ /

extern void 12C_Initialixe(BYTE speed);

extern void 12C_Write(12C_MESSAGE *msg);
extern void 12C_WriteRepWrite(12C_MESSAGE *msgl, I12C_MESSAGE *msg2);
extern void 12C_WriteRepRead(I2C_MESSAGE *msg1, 12C_MESSAGE *msg2);
extern void 12C_Read(12C_MESSAGE *msg);
extern void I12C_ReadRepRead(I12C_MESSAGE *msgl, 12C_MESSAGE *msg2);
extern void 12C_ReadRepWrite(I2C_MESSAGE *msg1, 12C_MESSAGE *msg2);

January 1997 27



Philips Semiconductors Application note

12C with the XA-G3 AN96119

Appendix VI [2CDRIVR.H

!
/* Name of module : I2CDRIVR.H */

/* Language :C */

/* Name : P.H. Seerden *

/* Description : This module contains a number of ‘local’ */
I* declarations for the XA-Gx 12C driver package. */
I* *

I* (C) Copyright 1996 Philips Semiconductors B.V. */
/* *

/ /
I* */

/* History: */

I* *

/* 96-11-25 P.H. Seerden Initial version */

I* *

/ /
static bit SDA @ 0x38C [* port P1.4 */
static bit SCL @ 0x28D; /* port P1.5 */
#define ST_IDLE 0

#define ST_SENDING 1

#define ST AWAIT_ACK 2
#define ST_ RECEIVING 3
#define ST_ RECV_LAST 4

#define ACK_MASK 0x01
#define STO_MASK 0x02
#define STA_MASK 0x04
#define ESO_MASK 0x48 /* also interrupt enable  */
#define BB_MASK 0x01
#define LAB_MASK 0x02
#define AAS_MASK 0x04
#define LRB_MASK 0x08
#define BER_MASK 0x10
#define STS_MASK 0x20
#define PIN_MASK 0x80

extern void I12C_Transfer(I2C_TRANSFER *p, void (*proc)(BYTE, BYTE));

January 1997 28



Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products,
including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips
Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright,
or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask
work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes
only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing
or modification.

LIFE SUPPORT APPLICATIONS

Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices,
or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected
to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips
Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully
indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors [0 Copyright Philips Electronics North America Corporation 1997
811 East Arques Avenue All rights reserved. Printed in U.S.A.
P.O. Box 3409

Sunnyvale, California 94088-3409
Telephone 800-234-7381

Let make things bettor
= PHILIPS




	ABSTRACT
	SUMMARY
	CONTENTS
	1. INTRODUCTION
	1.1 References
	1.2 BBS and WWW
	1.3 File overview

	2. FUNCTIONAL DESCRIPTION
	2.1 The I 2 C bus format
	2.2 Input definition
	2.3 Output definition
	2.4 Performance
	2.5 Error handling
	2.6 Hardware requirements

	3. EXTERNAL (APPLICATION) INTERFACE
	3.1 External data interface
	3.2 External function interfaces

	4. DRIVER OPERATION
	4.1 Bit-banging driver
	4.2 PCx8584 driver

	5. DEMO PROGRAM
	APPENDICES
	Appendix I I2CINTFC.C
	Appendix II I2CBITS.C
	Appendix III I2C8584.C
	Appendix IV I2CDEMO.C
	Appendix V I2CEXPRT.H
	Appendix VI I2CDRIVR.H


