
APPLICATION NOTE

Interfacing 68000 family
peripherals to the XA

AN96098

Phili ps Semiconductors

Interfacing 68000 family peripherals to the XA Application Note
AN96098

2

Abstract

The XA is not limited to interface to 80XX compatible peripherals. By using some glue logic, or a PLD if
available, the XA can be interfaced to a 68000 compatible peripheral. Using the 68000 DTACKn signal
enables the use of slow 68000 peripherals without the need of an external WAIT state generator.

© Philips Electronics N.V. 1996
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent
of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed
to be accurate and reliable and may be changed without notice. No liability will be accepted by the
publisher for any consequence of its use. Publication thereof does not convey nor imply any license
under patent- or other industrial or intellectual property rights.

Purchase of Philips I2C components
conveys a license under the I2C patent to
use the com-ponents in the I2C system,
provided the system conforms to the I2C
specifications defined by Philips.

Phili ps Semiconductors

Interfacing 68000 family peripherals to the XA Application Note
AN96098

3

APPLICATION NOTE

Interfacing 68000 family
peripherals to the XA

AN96098

Author(s):

Marco Kuystermans
System Laboratory Eindhoven,

The Netherlands

Keywords

68k XA PCF8584 WAIT

Date: 1996-10-25

Phili ps Semiconductors

Interfacing 68000 family peripherals to the XA Application Note
AN96098

4

Summary

Many peripherals with a 68000 compatible interface are on the market. This document shows that these 68000
peripherals can be interfaced to the XA very easily. This means that an XA user is not limited to an XA
compatible peripheral in his XA design.

Several interfacing aspects are covered: normal interfacing, interrupt interfacing and bus arbitration.

This document assumes that users are familiar with the XA and its bus interface.

Phili ps Semiconductors

Interfacing 68000 family peripherals to the XA Application Note
AN96098

5

CONTENTS

1. HOW TO INTERFACE 68000 FAMILY PERIPHERALS TO THE XA ..7

 1.1 introduction ..7
1.1.1 General remarks: ...7

 1.2 Differences between an 80XX and 68000 bus...8
 1.3 Using DTACKn to Generate an XA compatible WAIT signal...10

1.3.1 Generating 68000 bus signals ...10
1.3.2 68000 DTACKn signal...10
1.3.3 Generating the XA WAIT signal...10
1.3.4 General remarks: ...13

 1.4 68000 Interrupt mechanism...14
 1.5 68000 bus arbitration with the XA ..15

2. EXAMPLE, INTERFACING THE PCF8584 TO THE XA ..17

2.1.1 PCF8584 to XA implementation...17
2.1.2 Usage..18

Phili ps Semiconductors

Interfacing 68000 family peripherals to the XA Application Note
AN96098

6

Phili ps Semiconductors

Interfacing 68000 family peripherals to the XA Application Note
AN96098

7

1. HOW TO INTERFACE 68000 FAMILY PERIPHERALS TO THE XA

1.1 introduction

The Philips Semiconductors XA is a 16 bit high speed microcontroller with an 80XX compatible bus
(found on e.g. an 8051 or 8048 with separate read and write strobes). This means that popular
periherals with an 80XX compatible bus can be used with the XA.

This documents shows that besides 80XX peripherals also peripherals with a 68000 bus can be used.
Extra advantage is that the 68000’s DTACKn output is extremely suitable to generate an XA WAIT
strobe. The main advantage of using this DTACKn output is that a full handshake is available
(synchronous) and consequently NO external wait state generator is needed.

1.1.1 General remarks:

• Because the XA wait mechanisme is rather complex, this document is NOT intended for the starting
XA user, instead some fundemental knowledge about the XA is needed.

• In this documed is assumed that the nessecary address latches are provided (2 x 74HCT573), i.e. a
demultiplexed bus is used:

A4D0
A5D1
A6D2
A7D3
A8D4
A9D5
A10D6
A11D7

A12D8
A13D9
A14D10
A15D11
A16D12
A17D13
A18D14
A19D15

A4D0
A5D1
A6D2
A7D3
A8D4
A9D5
A10D6
A11D7

A16D12

A18D14

A14D10

A19D15

A12D8
A13D9

A17D13

A15D11

ALE

ALE

ALE

RDn
WRLn
PSENn

A1
A2
A3

WRHn

A4
A5
A6
A7
A8
A9
A10
A11

A12
A13
A14
A15
A16
A17
A18

A19

U2

74HCT573

D1
2

D2
3

D3
4

D4
5

D5
6

D6
7

D7
8

D8
9

C
11

OC
1

Q1
19

Q2
18

Q3
17

Q4
16

Q5
15

Q6
14

Q7
13

Q8
12

U3

74HCT573

D1
2

D2
3

D3
4

D4
5

D5
6

D6
7

D7
8

D8
9

C
11

OC
1

Q1
19

Q2
18

Q3
17

Q4
16

Q5
15

Q6
14

Q7
13

Q8
12

U1

XAG37

EA/Vpp/WAIT
35

XTAL1
21

XTAL2
20

RST
10

P3.2/INT0
14

P3.3/INT1
15

P3.4/T0
16

P3.5/T1/BUSW
17

P1.0/A0/WRH
2

P1.1/A1
3

P1.2/A2
4

P1.3/A3
5

P1.4/RxD1
6

P1.5/TxD1
7

P1.6/T2
8

P1.7/T2EX
9

A4D0/P0.0
43

A5D1/P0.1
42

A6D2/P0.2
41

A7D3/P0.3
40

A8D4/P0.4
39

A9D5/P0.5
38

A10D6/P0.6
37

A11D7/P0.7
36

A12D8/P2.0
24

A13D9/P2.1
25

A14D10/P2.2
26

A15D11/P2.3
27

A16D12/P2.4
28

A17D13/P2.5
29

A18D14/P2.6
30

A19D15/P2.7
31

RD/P3.7
19

WRL/P3.6
18

PSEN
32

ALE/PROG
33

TxD0/P3.1
13

RxD0/P3.0
11

D0-D15

WRHn
WRLn

RDn
PSENn

A4-A19

A1-A3

Figure 1, demultiplexed XA bus

Phili ps Semiconductors

Interfacing 68000 family peripherals to the XA Application Note
AN96098

8

1.2 Differences between an 80XX and 68000 bus

A 68000 bus compatible peripheral has a significantly different interface than a 80XX bus type
peripheral. 68000 and 80XX bus interfaces consists of several different control signals (see Table 1):

Table 1, Microcontroller control signals

68k compatible
peripheral

80XX compatible
peripheral

XA compatible
peripheral

Data strobes 2 + direction:

R/Wn *(UDSn + LDSn)

2: WRn + RDn 3: WRLn + WRHn + RDn

Chip select CSn CSn CSn

Hand shake DTACKn Not available ~WAIT

Code strobe Not available PSENn PSENn

Both 68000 and 80XX peripherals use data strobes to read or write data. An 80XX peripheral has
separate read and write strobes (see Figure 3), a 68000 peripheral uses a data strobe (only indicating a
data transfer, not the direction, see Figure 2) AND a R/Wn signal to indicate a READ (R/Wn = 1) or a
WRITE (R/Wn = 0) cycle. At both the 68000 and 80XX data strobes’ rising edges data will (write) or
must (read) be valid.

Normally an 80XX chipselect (not) signal is generated by decoding addresses after the address
latches. To avoid spikes on this signal (addresses can change during ALE = 1) the CSn signal should
be gated with ALE. A 68000 chipselect can be constructed by decoding addresses and gating it with
the Address Strobe (ASn) signal generated by the 68000.

Some 8 bit wide 68000 compatible peripherals do not have separate Data Strobe and Chip Select
inputs. On these peripherals the Data strobe and Chip Select are multiplexed to one signal. In this
document a multiplexed DSn (data strobe) and CSn (chip select strobe). will be called CSn.

Real 16 bit wide 68000 peripherals have two Data strobes; UDSn (upper data strobe) and LDSn (lower
data strobe) and consequently need a Chip Select (not) input.

R/WN

(U/L)DSN

ASN

A1-A23

D0-D15

CSn

Figure 2, 68000 bus

A4-A19 DATA

A1-A3

ALE

RDN

WRxN

AD

A1-A3

CSn

Figure 3, 80XX bus

Phili ps Semiconductors

Interfacing 68000 family peripherals to the XA Application Note
AN96098

9

Both the XA and 68000 are 16 bit microcontrollers. Therefore address line 0 has no meaning and is on
the 68000 decoded to UDSn (A0 = 0, little endian!) and LDSn (A0 = 1). On the XA A0 is decoded to
WRLn (A0 = 0, big endian!) and WRHn (A0 = 1). On the XA no separate read low and high are
available. All read cycles (except if the XA bus is configured as 8bit) are 16 bit, if only 8bits are needed
the upper or lower 8 bits are discarded.

The following pictures show how to convert XA strobes to 8 bit or 16 bit 68000 peripherals.

Please be aware that a 68000 peripheral has no separate data and program memory area, instead a
lineair memory space is available with mixed memory. It is up to the user to decide in which XA
memory area the 68000 peripheral is located.

Because on the XA it is not possible to write to program memory, writing is always performed via the
XA data write strobe (WRHn and/or WRLn). Writing is achieved through the XA’s data and extra
segment (DS & ES, see XA user’s guide [1]). Reads can be executed in both data (RDn strobe via ES
& DS) and program memory (PSENn via Program counter or Code segment).

In Figure 4 and Figure 5 RDn can be replaced by PSENn. If PSENn is used to read data from a 68000
peripheral, consequently MOVC must be used.

8
 b

it
6

8
0

0
0

p

e
ri
p

h
e

ra
lWRLn

RDn

R/Wn

CSn (Multiplexed)
CSn

DSn (not multiplexed)

CSn (not multiplexed)

Figure 4, converting XA to 68000 strobes (8 bit)

1
6

 b
it

6
8

0
0

0

p
e

ri
p

h
e

ra
l

RDn

WRLn
LDSn

R/Wn

WRHn
UDSn

CSnCSn

Figure 5, converting XA to 68000 strobes (16 bit)

Phili ps Semiconductors

Interfacing 68000 family peripherals to the XA Application Note
AN96098

10

1.3 Using DTACKn to Generate an XA compatible WAIT signal

1.3.1 Generating 68000 bus signals

Figure 6 shows the signals from both the XA and a 68000 peripheral combined. First of all a 68000
compatible data strobe needs to be constructed composed from XA signals. The easiest way to
accomplish this is to combine the RDn or WRLn/WRHn strobes with a chip select (decoded addresses,
or the most simple solution only one address line). Figure 6 shows the generated 68000 CSn strobe (or
LDSn in case of real 16 bit wide 68000 peripherals because in this example WRLn is used). t2 in Figure
6 indicates the propagation delay of the decoding circuit.

3
2

1

ALE(XA)

WRLn(XA)

A[4-19]D[0-16](XA)

A[0-3](XA)

CSn(generated)

DTACKn(68k)

WAIT(generated)

Ax(XA)

A4-A19 D0-D15

Figure 6, 68000 and XA signals combined

The XA’s WRLn/WRHn signal can be used to generated the 68000’s R/Wn signal. In case of a 16 bit
wide 68000 peripheral BOTH WRLn and WRHn need to be monitored to generate the R/Wn signal.
68000 peripherals with an 8 bit wide data bus can be connected to either D8:15 (using only WRHn) or
to D0:7 (using only WRLn).

Please note that some 68000 peripherals do not allow t2 (R/Wn set-up to CS low) to be 0ns, for
example the PCF8584 needs t2 to be 10ns or higher. You need to use an address line to generate a
R/Wn signal (see figure 1, Ax(XA)), if the decoding logic propagation delay is shorter than the required
time t2. A drawback to this solution is reading and writing is not possible on the same address.

1.3.2 68000 DTACKn signal.

A 68000 peripheral generates a DTACKn to provide a real handshake between the microcontroller and
its peripheral. DTACKn indicates when the peripheral is ready to receive data (in case of a write cycle),
or when the microcontroller can expect valid data on the databus, placed on the bus by a peripheral.
This DTACKn can be used to generate an XA compatible WAIT signal

1.3.3 Generating the XA WAIT signal.

An XA WAIT signal must be asserted immediately after (minimal 34ns before end of strobe, i.e. the
rising edge) a read (PSENn or RDn) or write (WRLn or WRHn) strobe is asserted. The XA will ONLY
insert waitstates after the XA databus is stable up to the point the WAIT signal is de-asserted. A WAIT

Phili ps Semiconductors

Interfacing 68000 family peripherals to the XA Application Note
AN96098

11

signal has no effect if it is asserted outside a data strobe. It is however allowed to generate a WAIT
signal before a data strobe is asserted, but will only be active after this strobe is asserted.

After a CSn (LDSn) strobe has been generated the device’s DTACKn signal is high until the device is
ready to receive. During this high period the XA must generate wait cycles, see t3 in Figure 6. So the
equation for the WAIT signal (t3) is: /CSn * DTACKn.

There are several ways to construct a XA WAIT signal from a DTACKn signal, discrete or via a PLA.
The following schematic (Figure 7) shows a discrete implementation for 8 bit wide peripherals.

WRLn

RDn

R/Wn

DTACKn

CSn (Multiplexed)

WAIT

CSn

DSn (not multiplexed)

CSn (not multiplexed)

Figure 7, discrete solution (8 bit wide 68000 peripheral)

or if LDSn and UDSn are needed (16 bit peripheral):

RDn

WRLn
LDSn

DTACKn

R/Wn

WRHn
UDSn

CSn CSn

WRHn R/Wn

WAIT

Figure 8, Discrete solution 16 bit peripheral

Phili ps Semiconductors

Interfacing 68000 family peripherals to the XA Application Note
AN96098

12

You can also use a PLA if one is present (see Figure 9):

PLA
8 bit 68k
perpheral

DTACKn

CSn

XA

WA
I
T

RD
n

WR
L

Ax

.
.
A
y

AL
E

R/Wn

PLA
16 bit 68k
perpheral

DTACKn

LDSn

XA

WA
I
T

RD
n

WR
L

Ax

.
.
A
y

AL
E

A(19-0)

WR
H

UDSn

CSn

R/Wn

R/Wn

A(19-0)

DSn

Figure 9, PLA plus XA plus 68000

The PLA must have the following equations (multiplexed DSn and CSn, e.g. SC68C562):
(1a) CSn = /((Ax *..* Ay) * /(WRLn * RDn) * /ALE)

(1b) WAIT = ... + /CSn * DTACKn

(1c) R/Wn = WRLn (R/Wn directly connected to WRLn)

The dots represent other funtions to drive the WAIT pin (see general remarks 1.3.4)

Non multiplexed 8 bit 68k peripheral (e.g. ST 68HC901):
(2a) CSn = /((Ax *..* Ay) * /ALE)

(2b) DSn = /(WRLn * RDn)

Table 2, Figure 8 WAIT truth table

U/LDSn CSn DTACKn WAIT

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 0

Table for both UDSn and LDSn

Table 3, Figure 8 data strobe thruth table

WRLn WRHn RDn LDSn UDSn R/Wn

0 0 0 x x x

0 0 1 0 0 0

0 1 0 x x x

0 1 1 0 1 0

1 0 0 x x x

1 0 1 1 0 0

1 1 0 0 0 1

1 1 1 1 1 1

x = NOT VALID

Phili ps Semiconductors

Interfacing 68000 family peripherals to the XA Application Note
AN96098

13

(2c) WAIT = ... + /CSn * /DSn * DTACKn

(2d) R/Wn = WRLn (R/Wn directly connected to WRLn)

In case of 16 bit wide 68000 peripherals, where separate UDSn and LDSn strobes are needed (e.g.
SCC66470 video and system controller);
(3a) LDSn = /(WRLn * RDn)

(3b) UDSn = /(WRHn * RDn)

(3c) R/Wn = WRHn * WRLn

(3d) CSn = /((Ax *..* Ay) * /ALE)

(3e) WAIT = ... + /(LDSn * UDSn) * DTACKn * /CSn

The (generated) R/Wn, LDSn and UDSn signals are available for ALL 68000 peripherals. The DTACKn
signal is generated by a 68000 peripheral. All 68000 DTACKn pins are open drain outputs and
connected together as wired OR. The only device specific signal is CSn and therefore ALL CSn signals
need to be monitored if a corresponding WAIT signal needs to be generated for that particular device:
(4a) CS1n = /((Ax *..* Ay) * /ALE)

(4b) CS2n = /((Ax *..* Ay) * /ALE)

(4c) WAIT = ... + /(LDSn * UDSn) * DTACKn * (/CS1n + /CS2n)

1.3.4 General remarks:

• The XA WAIT pin is combined with the EAn (external access) function. This pin is sampled at the
rising edge of RESET, therefore in functions 1b, 2e and 3c an extra EAn term needs to be added. An
example, however beyond the scope of this document, can be: EAn = ALE * WRLn * RDN *
EAmode. During RESET ALL XA pins are high, this effect is used to generate EAn or not (depending
on EAmode, e.g. a jumper). Of course WAIT strobes will be generated during ALE = 1, but as stated
in this paragraph WAIT strobes outside a data strobe will not put the XA in WAIT mode.

• ALL chip select lines are decoded address lines ANDed with /ALE, this prevents generating spikes
on the CSn lines while addresses are not stable (ALE = 1).

• Please be sure the WAIT pin is not overridden by the WAIT disable bit.

Phili ps Semiconductors

Interfacing 68000 family peripherals to the XA Application Note
AN96098

14

1.4 68000 Interrupt mechanism

When using a 68000 peripheral, consequently the 68000 interrupt mechanism is used. This means that
the XA has to generate an IACKn to this peripheral. It is not allowed to assert the CSn and IACKn
strobes at the same time, the IACKn is (so to say) also a Chip Select.

A way of generating a IACKn is decoding an interrupt vector address and combining it with a read
strobe (more or less an alternative Chip Select, compare with 1a), e.g. with a PLA:
(5) IACKn = /((Ax * .. * Ay) * /RDn * /ALE)

Ax to Ay must be an other address now than the address in the previous paragraph, so CSn address
for normal data accesses IACKn address

So to generate an IACKn (example via Extra Segment = ES):
(6a) MOV.b ES, #xxh xx = (addresses A19 - A16)

(6b) MOV.b R2, #yyyyh yyyy = (addresses A15 - A0)

(6c) OR.b SSEL, #04h aligns ES to R2

(6d) MOV.b R3, [R2] R3 holds peripheral`s vector

(6e) JMP [R3]

Generating an IACKn can also be achieved via a code read if the full code range is not used:
(7) IACKn = /((Ax * .. * Ay) * /PSENn * /ALE)

Using PSENn to generate IACKn enables the use of the same address as the CSn address (with
RDn), it is now a code space address. An interrupt acknowledge can have the following construction
(example via Code Segment = CS):
(8a) MOV.b CS, #xxh xx = (addresses A19 - A16)

(8b) MOV.b R2, #yyyyh yyyy = (addresses A15 - A0)

(8c) OR.b SSEL, #04h aligns CS to R2

(8d) MOVC.b R3, [R2] R3 holds peripheral`s vector

(8e) JMP [R3]

Notes:

• If XA code is running internal exclusively (within the on board EPROM) and only one peripheral
needs an IACKn, NO address decoding is needed and PSENn can be connected to IACKn directly.

• Please be sure xx:yyyy in formula 8a and 8b is above the XA internal memory range, in case of the
P51XAG37 xx:yyyy > 0x00:7FFF

Phili ps Semiconductors

Interfacing 68000 family peripherals to the XA Application Note
AN96098

15

1.5 68000 bus arbitration with the XA

Missing on the XA is a bus arbitration scheme. If the XA had an ONCE mode, i.e. a pin that forces all
pins to float, it would have been very easy to implement. It is however possible to construct 68000 bus
arbitration with discrete components. This XA bus arbitration scheme will also utilise the XA WAIT pin.
During a bus arbitration cycle a WAIT signal will halt the XA.

A
1

7

A
1

4

D
1

0

D
8

D
1

D
1

3

D
4

D
0

A
1

6
A

1
5

D
1

1

D
6

D
2

D
5

D
1

4

A
1

9

D
9

A
1

3

D
1

5

D
1

2

A
1

2

D
7

D
3

A
1

8

A
5

A
1

1

A
6

A
8

A
1

0

A
7

A
9

A
4

A
1

4
D

1
0

A
1

8
D

1
4

A
1

6
D

1
2

A
1

3
D

9

A
1

7
D

1
3

A
1

9
D

1
5

A
1

5
D

1
1

A
L

E

A
6

D
2

A
1

0
D

6

A
5

D
1

A
4

D
0

A
8

D
4

A
1

1
D

7

A
9

D
5

A
7

D
3

A
1

2
D

8

A
6

D
2

A
7

D
3

A
4

D
0

A
1

1
D

7
A

1
0

D
6

A
8

D
4

A
9

D
5

A
1

4
D

1
0

A
1

8
D

1
4

A
1

6
D

1
2

A
1

3
D

9

A
1

7
D

1
3

A
1

9
D

1
5

A
1

5
D

1
1

A
1

2
D

8

A
5

D
1

A
3

A
2

A
1

B
W

R
H

n

B
R

D
n

B
P

S
E

N
n

B
W

R
L
n

U
A

3
U

A
2

U
A

1

W
R

H
n

W
R

L
n

R
D

n
P

S
E

N
n

U3

74HCT245

A
1

2

A
2

3

A
3

4

A
4

5

A
5

6

A
6

7

A
7

8

A
8

9

G
1

9

D
IR

1

B
1

1
8

B
2

1
7

B
3

1
6

B
4

1
5

B
5

1
4

B
6

1
3

B
7

1
2

B
8

1
1

U2

74HCT245
A

1
2

A
2

3

A
3

4

A
4

5

A
5

6

A
6

7

A
7

8

A
8

9

G
1

9

D
IR

1

B
1

1
8

B
2

1
7

B
3

1
6

B
4

1
5

B
5

1
4

B
6

1
3

B
7

1
2

B
8

1
1

U4

74HCT573

D
1

2

D
2

3

D
3

4

D
4

5

D
5

6

D
6

7

D
7

8

D
8

9

C
1

1

O
C

1

Q
1

1
9

Q
2

1
8

Q
3

1
7

Q
4

1
6

Q
5

1
5

Q
6

1
4

Q
7

1
3

Q
8

1
2

U5

74HCT573

D
1

2

D
2

3

D
3

4

D
4

5

D
5

6

D
6

7

D
7

8

D
8

9

C
1

1

O
C

1

Q
1

1
9

Q
2

1
8

Q
3

1
7

Q
4

1
6

Q
5

1
5

Q
6

1
4

Q
7

1
3

Q
8

1
2

U1

74HCT244

1
A

1
2

1
A

2
4

1
A

3
6

1
A

4
8

2
A

1
1

1

2
A

2
1

3

2
A

3
1

5

2
A

4
1

7

1
G

1

2
G

1
9

1
Y

1
1

8

1
Y

2
1

6

1
Y

3
1

4

1
Y

4
1

2

2
Y

1
9

2
Y

2
7

2
Y

3
5

2
Y

4
3

M6M5

M4
M3

M2
M1

Buffered ADDRESS busBuffered DATA bus

WAIT

BGACKn

BRn

RDn

BGn

PSENn

Control signals

CSn

INTxn

Figure 10, Bus arbitration on XA

A device that requests the bus asserts the BRn (bus request) strobe. The master device must return a
BGn (Bus Grand) strobe when the master is ready. After the slave has received the BGn signal it starts
the bus arbitration cycle by asserting BGACKn. During this strobe the slave device must have complete
access to the (shared) memory, therefore the XA is on hold and its signals must float. As stated NO
ONCE pin is available therefore the XA memory bus must be buffered.

Due to the XA multiplexed address/databus structure latches are needed to demultiplex. The latches
have an Output Enable (OEn) input, connecting this input to WAIT will float the address bus when the
XA is in WAIT.

The only thing missing is the non-floating databus, the not multiplexed address lines A3 to A1 and the
control signals RDn, WRLn, WRHn and PSENn. The databus can be made floating by using a bi-

Phili ps Semiconductors

Interfacing 68000 family peripherals to the XA Application Note
AN96098

16

directional buffer. Writing or reading is indicated by the direction (DIR) signal. If DIR=1 a write is
indicated else a read. A DIR signal is constructed by ANDing both write strobes (WRLn and WRHn).

A3 to A1 and the control signals only need an output buffer (with Output Enable control). Figure 10
shows a solution with discrete components.

BRn

BGn

BGACKn

Figure 11, Bus arbitration timing diagram

The XA must generate a BGn signal. This signal is constructed by monitoring the RDn, WRLn, WRHn
and PSENn strobes. If one of these strobes is asserted AND a BRn is pending a BGn is generated up
to the point the slave device is negating the BRn.

Figure 11 shows that in principle BGn must be asserted longer than BRn. In the 68000 specification
BGACKn asserted to BGn negated is min. 1.5 and max. 3.5 clocks. BGACKn asserted to BRn negated
min. 20ns max. 1.5 clocks. This shows that BRn and BGn can be negated at the same time. Figure 10
shows that in fact BGn is negated after BRn has been negated and some propagation delay should be
considered.

The WAIT signal is generated during BRn or BGACKn asserted, but only if one of the XA control
strobes is asserted AND the XA reads at the bus “request enable address”. This bus request enable
address is a decoded dedicated address. Just using the RDn without decoding address can cause the
following problem: If during a “normal” XA read a Bus Request occurs (for the bus request signal is
generated aynchronously), WAIT can be generated to late for the XA to sample. The bus however will
float when both BRn and RDn strobe are generated. If during this situation the XA is not in WAIT mode,
unpredictable things can occur. BRn is connected to one of the two XA external interrupts inputs
(INT0n or INT1n) to be sure the XA will access external memory when a bus request is pending. The
bus arbitration cycle will only continue after the XA has accessed external memory.

The glue logic (Figure 10) can be replaced by a PLA and combined with other functions. The bus
arbitration WAIT signal is constructed as follows:
(9) WAIT = .. + /(RDn * WRLn * WRHn * PSEN) * (Ax * .. * Ay) * /(BRn * BGACKn)

The Bus Grand (BGn) is assembled as follows (output to slave);
(10) BGn = /((RDn * WRLn * WRHn * PSEN) * (Ax * .. * Ay) + BRn)

The following instructions must be part of the interrupt routine to generate a BGn and put the XA in
wait:
(11a) MOV.b ES, #xxh xx = (addresses A19 - A16)

(11b) MOV.b R2, #yyyyh yyyy = (addresses A15 - A0)

(11c) OR.b SSEL, #04h aligns ES to R2

(11d) MOV.b R3, [R2] read to generate BGn

(11e) RETI return from interrupt

The XA interrupt latency determines the time it takes for the XA to generate BGn after BRn asserted.

Phili ps Semiconductors

Interfacing 68000 family peripherals to the XA Application Note
AN96098

17

2. EXAMPLE, INTERFACING THE PCF8584 TO THE XA

Interfacing the PCF8584 (See IC12 [2]) to microcontrollers can cause serious problems. Causes for
these problems are: The Interface Mode Control, the interface the PCF8584 will run in is determined by
the first write cycle to this peripheral. Secondly it is a relatively (to the XA) SLOW device. In contrast
this example shows that it is in fact quite easy to interface the PCF8584 to the XA.

2.1.1 PCF8584 to XA implementation

In “80C51” mode the PCF8584 needs write and read strobes longer than 250nS, the XA can generate
read strobes with a maximum length of 4 times the oscillator clock period, a XA write strobe is even
shorter, its length is max. 2 clock periods. This means when the XA is running at 8MHz the write strobe
will match the PCF8584 write strobe specification. Running the XA on higher frequencies than 8MHz
will cause the need of an external wait state generator.

It is however possible to use the PCF8584 WITHOUT the use of an external wait state generator on
every XA clock (up to the maximum XA clock). Using the PCF8584 in 68000 mode will do the trick.
Using the PCF8584 in 68000 mode:

1. R/Wn asserted before CSn (t2) needs to be 10ns or higher. This time is needed to enable the
PCF8584 to decode a 80C51 or 68k bus mode (it is by the way the only 68k peripheral that does
not allow t2 to be 0ns). If the decoding logic is too fast an address is needed as R/Wn strobe
instead of WRLn or WRHn.

2. The first PCF8584 cycle needs to be a write cycle, this cycle determines the bus mode the
PCF8584. In contrast of getting the PCF8584 in 80C51 mode, it is allowed to have write or read
cycles to other peripherals first. Having a read cycle from the XA first will put the PCF8584 in
80C51 mode, thus not asserting the DTACKn signal (it is now the RDn input) and therefore
causing the XA to be in a endless WAIT.

3. When an address line is used to generate a R/Wn signal, reading and writing is not performed on
the same address.

4. Excessive accesses to the PCF8584 will slow down the entire application, so using the PCF8584
in time critical applications in polling mode should be avoided.

The following picture shows an actual hardcopy of all signals used to connect the XA to a PCF8584.
Please note that the DTACKn rising edge has the shape of an exponential function:

U U e
t

RC= • −








−
1

this is caused by the open drain (wired OR) structure of this pin (pull up resistor R and parasitic
capacitance C).

Phili ps Semiconductors

Interfacing 68000 family peripherals to the XA Application Note
AN96098

18

PM3384, FLUKE & PHILIPSPM3384, FLUKE & PHILIPS

DTACKn

WRn

WAIT

ch2: dT= 423ns V=+1.88/+3.43

CH1 5.00 V=
CH2 5.00 V=
CH3 5.00 V= ALT MTB 250ns 385ns

1

2

3

 T

Figure 12, Scope hardcopy

2.1.2 Usage.

Please be sure the first cycle to the PCF8584 is a write cycle.

If using an address line as R/Wn strobe, writing to the PCF8584 must be performed on an other
address than reading from the PCF8584 (e.g. if A15 is used):

Reading PCF8584 address 0:
(12a) MOV.b ES, #0Fh

(12b) MOV.b R2, #8000h address line A15 = 1

(12c) OR.b SSEL, #04h aligns ES to R2

(12d) MOV.b R3L, [R2] Result is stored in R3L

Writing to PCF8584 address 0:
(13a) MOV.b ES, #0Fh

(13b) MOV.b R2, #0000h address line A15 = 0

(13c) OR.b SSEL, #04h aligns ES to R2

(13d) MOV.b [R2], #data8 data8 written to PCF8584

Phili ps Semiconductors

Interfacing 68000 family peripherals to the XA Application Note
AN96098

19

APPENDIX 1 REFERENCES

[2] 16-bit 80C51XA Microcontrollers - Data Handbook IC25 PHILIPS: 9397 750 00733

[3] I2C Peripherals Data Handbook IC12 PHILIPS: 9397 750 00306

[4] 80C51 based 8-bit Microcontrollers Data Handbook IC20 PHILIPS: 9397 750 00013

[5] The 68000 microprocessor Michalel A. Miller ISBN: 0675 205220 02

	Abstract
	Author(s):
	Summary
	CONTENTS
	1. HOW TO INTERFACE 68000 FAMILY PERIPHERALS TO THE XA
	1.1 introduction
	1.1.1 General remarks:

	1.2 Differences between an 80XX and 68000 bus
	1.3 Using DTACKn to Generate an XA compatible WAIT signal
	1.3.1 Generating 68000 bus signals
	1.3.2 68000 DTACKn signal.
	1.3.3 Generating the XA WAIT signal.
	1.3.4 General remarks:

	1.4 68000 Interrupt mechanism
	1.5 68000 bus arbitration with the XA

	2. EXAMPLE, INTERFACING THE PCF8584 TO THE XA
	2.1.1 PCF8584 to XA implementation
	2.1.2 Usage.

	APPENDIX 1 REFERENCES

