
APPLICATION NOTE

OM4754
EAMPS Software User Guide

AN95030

Abstract

Philips Semiconductors

Application Note
AN95030

2

 Philips Electronics N.V. 1995

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copy-
right owner.

The information presented in this document does not form part of any quotation or contract, is believed to be
accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any
consequence of its use. Publication thereof does not convey nor imply any license under patent- or other indus-
trial or intellectual property rights.

This document provides details of the cellular radio software developed by Product Concept and Application Lab-
oratory in Eindhoven (PCALE). This software is demonstrated on the OM4753C AMPS demonstration and emu-
lation unit and implements the EIA/TIA-553 standard.

Purchase of Philips I2C components conveys a
license under the Philips I2C patent to use the
components in the I2C system, provided the sys-
tem conforms to the I2C specifications defined by
Philips.

Keywords

Philips Semiconductors

Author(s):

OM4754 EAMPS Software User Guide Application Note
AN95030

3

APPLICATION NOTE

OM4754
EAMPS Software User Guide

R.S.M.J. Kempen
N. Barendse

Product Concept & Application Laboratory Eindhoven,
The Netherlands

Cellular radio
Cellular Chipset
C-code Software

Date: 1 May, 1995

AN95030

Summary

OM4754 EAMPS Software User Guide

Philips Semiconductors

Application Note
AN95030

4

This document describes the C-code software used in the Philips Cellular Radio Demonstration Unit, detailing
the overall structure of the software, along with the functionality of each sub-module used.

In addition, information is given on how to set up the RTX-51 operating system and how to use the KEIL/Franklin
compiler.

The chipset used in the AMPS cellular demoboard consists of:

• 83CL580 Micro Controller

• PSD312L Programmable Micro Controller Peripheral

• UMA1000LT Data Processor (DPROC)

• SA5752 and SA5753 Audio Processors (APROC)

• TDA7050 Audio Amplifier

• UMA1015M Dual synthesizer

• ST25C02A 256 bytes EEPROM

• LP3800-A LCD display.

OM4754 EAMPS Software User Guide

Philips Semiconductors

5

Application Note
AN95030

CONTENTS

1. Introduction . 9
1.1 Purpose. . 9
1.2 Scope . 9
1.3 Abbreviations . 9
1.4 References . 9
1.5 Applicable documents . 10
1.6 Organization of this document . 10

2. Generating an executable system . 10
2.1 Requirements. . 10
2.2 Macro Assembler . 11
2.3 C compiler . 11
2.4 Object Linker . 11
2.5 Translation utilities . 12
2.6 Configurating RTX-51 . 12
2.7 Configurating the PSD312L . 14

3. Using the OM4754 software . 15
3.1 Starting the system . 17
3.2 MMI description. . 17

4. Multitasking operating system . 17
4.1 Tasks . 18
4.2 Interrupt routines . 18
4.3 Inter process communication . 19

5. The OM4754 software . 20
5.1 Software Tasks . 21

5.1.1 The Start-up task . 21
5.1.2 The System task . 21
5.1.3 The User task . 23
5.1.4 The Audio task . 23
5.1.5 The Keyboard task . 24
5.1.6 The Display task . 24
5.1.7 The Second task . 25
5.1.8 The Idle task . 25

5.2 Message types and formats . 25
5.2.1 Events sent to the User task. . 25

EV_KEYPRESS. . 25
EV_KEYREPEAT . 25
EV_KEYRELEASE . 26
EV_LOW_VOLTAGE . 26
EV_CONVERSATION . 26

5.2.2 Events sent to the System task.. . 27
EV_FRAME_RECEIVED . 27
EV_VOICE_DETECT . 27
EV_SND_PRESSED . 27
EV_END_PRESSED . 27

6

OM4754 EAMPS Software User Guide

Philips Semiconductors

Application Note
AN95030

EV_ALLOW_DTX . 28
EV_INIT_SYSTEM . 28
EV_HALT_SYSTEM . 28
EV_TURN_OFF_REQUEST . 28

5.2.3 Events sent to the Audio task . 28
EV_VOLUME . 28
EV_VOLUME_ABS . 28
EV_AUDIO_POWER . 29
EV_SPEECH_PATH . 29
EV_RINGING . 29
EV_TIMELENGTH_RINGING. . 29
EV_MALFUNCTION . 30
EV_TIMELENGTH_MALFUNCTION . 30
EV_DTMF . 30
EV_TIMELENGTH_DTMF . 31
EV_TIMELENGTH_KEY_BEEP . 31
EV_TIMELENGTH_CALL_SETUP_TONE . 31
EV_TIMELENGTH_SERVICE_AREA_ALERT . 31
EV_TIMELENGTH_WAKE_UP_ALARM . 31
EV_TIMELENGTH_LOW_VOLTAGE. . 32
EV_STOP_AUDIO_ALARM. . 32
EV_VOX_ON . 32
EV_VOX_OFF . 32
EV_RINGING_LOUDNESS. . 33
EV_MALFUNCTION_LOUDNESS . 33
EV_EXTERNAL_EQUIPMENT_CHANGED . 33
EV_POWER_OFF . 33

5.2.4 Events sent to the Display task . 33
EV_UPDATE_DISPLAY . 33
EV_UPDATE_SYMBOL. . 34
EV_UPDATE_FS_VALUE . 34
EV_UPDATE_BATT_VALUE . 34

5.2.5 Events sent to the Second task . 35
EV_DISPLAY_RSSI. . 35

5.2.6 Events sent by drivers. . 35
EV_TIMEOUT. . 35
EV_IIC_TX_COMPLETE . 35
EV_IIC_RX_COMPLETE . 35

5.3 Message scenarios . 36
5.3.1 Initialisation . 36
5.3.2 Finding Service . 36
5.3.3 Paging. . 37

Successful Paging . 37
Paging Failed on Voice Channel . 37
User Declined Paging . 38

5.3.4 Origination. . 38
Successful Origination . 38
Failed Origination . 39

5.3.5 Conversation . 40

OM4754 EAMPS Software User Guide

Philips Semiconductors

7

Application Note
AN95030

Mobile Release . 40
Successful Flash Request . 40
Knock On . 41
Land Release . 41
Change DTX Setting . 41
Discontinuous Transmission . 42

5.3.6 MMI . 42
Battery Low . 42
RSSI level . 43
Keypress . 43

5.4 Software Drivers . 44
5.4.1 The APROC driver . 44
5.4.2 The DPROC driver . 45
5.4.3 The Synthesizer driver . 46
5.4.4 The Timer driver. . 47
5.4.5 The EEPROM driver . 48
5.4.6 The I2C driver . 49
5.4.7 The Keyboard driver . 50
5.4.8 The LCD driver . 51
5.4.9 The 3-wire driver . 52
5.4.10 The PSD312L driver . 52
5.4.11 The ADC driver . 53
5.4.12 General utilities . 53

8

OM4754 EAMPS Software User Guide

Philips Semiconductors

Application Note
AN95030

OM4754 EAMPS Software User Guide

Philips Semiconductors

9

Application Note
AN95030

1. Introduction

1.1 Purpose
This document provides details of the cellular radio software developed by Product Concept and Application Lab-
oratory in Eindhoven (PCALE). This software is demonstrated on the OM4753C AMPS demonstration and emu-
lation unit and implements the EIA/TIA-553 standard[1].

1.2 Scope
This document describes how the software is implemented, details about the programming language (C) and the
AMPS protocol[1] are not given.

1.3 Abbreviations
ADC Analog to Digital Converter

AMPS Advanced Mobile Phone Service

APROC Audio Processor

DPROC Data Processor

EAMPS Extended Advanced Mobile Phone Service

EEPROM Electrically Erasable Programmable Read Only Memory

ETACS Extended Total Access Communications System

I/O Input/Output

LCD Liquid Crystal Display

MMI Man Machine Interface

PCALE Product Concept and Application Laboratory in Eindhoven

PWM Pulse Width Modulation

RAM Random Access Memory

ROM Read Only Memory

SAT Supervisory Audio Tone

SCC Sat Colour Code

TACS Total Access Communications System

VCO Voltage Controlled Oscillator

VOX Voice Operated transmission

1.4 References
[1] EIA/TIA-553 Mobile station- Land station compatibility specification, September 1989

[2] ETT/UM95002.0, OM4753C User Manual EAMPS demonstration and emulation unit, May 1, 1995

[3] C51 Compiler, C-Compiler, Run-Time-Library User’s guide 11.93

[4] RTX-51 Realtime Multitasking Executive for the 8051 Micro controller family User’s guide 10.91

10

OM4754 EAMPS Software User Guide

Philips Semiconductors

Application Note
AN95030

1.5 Applicable documents
• SA5752, Audio processor - companding, VOX and amplifier, Product Specification, December 6, 1993.

• SA5753, Audio processor - filter and control section, Product Specification, December 6, 1993.

• UMA1000LT, Data processor for cellular radio (DPROC), objective specification, June 1993.

• P83CL580, Low Voltage single chip 8-bit micro controller, objective specification, September 1993.

• TDA7050, Low Voltage mono/stereo audio amplifier, data sheet, March 1991.

• OM5300, AMPS/TACS hybrid base band module BBM-2, objective specification, March 1995.

• UMA1015M, Low power dual frequency synthesizer for radio communications, objective specifications, March
1994.

• PSD312L, 3-volt single chip microcontroller peripheral, objective specification, May 1993.

• SA606, Low Voltage high performance mixer FM-IF system, product specification, November 1993.

• SA601, Low voltage LNA and mixer, 1 GHz, objective specification, December 1993.

• AN1741, Using the NE5750 and NE5751 for audio processing, Application Note, May 29, 1991.

• AN1742, Using the APROCII for low voltage design, Application Note, June 28, 1993.

• ETT/AN93016, UMA1015M Low Power Dual 1 GHz Frequency Synthesizer, Application Note, November 18,
1993.

1.6 Organization of this document
Chapter 2 contains a description of how to generate an executable system. It provides information about how to
use the assembler, compiler and linker. It also gives information about how to configure the operating system and
the PSD312L device.

Chapter 3 contains a description about the usage of the software. In chapter 4 one can find a general description
about the operating system together with the specific implementations used in the software.

Chapter 5 contains a complete description of the software. In section 1 all tasks are explained. In section 2 the
messages sent via mailboxes are described. In section 3 the sequence of messages sent via the mailboxes is
described, and in section 4 the drivers are explained.

2. Generating an executable system
To generate an executable system the batch file genall.bat has to be executed. This batch file calls several
other batch files. A list of all batch files used to generate an executable system is given below:

assemble.bat To assemble a given file.

compile.bat To compile a specific C-file, the extension .c must be omitted.

genall.bat To generate an executable system.

link.bat To link all objects to one executable system.

The file amps.lnk contains a link script for the application. Before generating an executable system the next
paragraphs should be read.

2.1 Requirements
To be able to generate an executable system the following software must be installed on your local disk:

• KEIL/Franklin RTX-51, Real-Time Multitasking Executive

OM4754 EAMPS Software User Guide

Philips Semiconductors

11

Application Note
AN95030

• KEIL/Franklin BL51, Banked Linker Locator

• KEIL/Franklin C51 Compiler, Standard Edition

• KEIL/Franklin A51 Assembler, 8051 Macro Assembler

• PSD-Gold/PSD-Silver Development System

Details on the installation of the KEIL/Franklin or PSD-Gold/PSD-Silver packages are not given in this document
for these are included in the manuals which accompany these packages. It is therefore assumed in the following
description of the set-up procedure that the packages have been installed.

For more details about the Macro assembler, C compiler, Object linker, Translation utilities and the PSD-Gold/
PSD-Silver Development system please consult the appropriate manuals.

2.2 Macro Assembler
In order to assemble the assembler file example.asm the (marco) assembler should be called like:

a51 example.asm NOMOD51

The assembler control NOMOD51 causes all 8051 symbols to be unknown to the assembler. This allows the user
to define definition files for other processors in the 8051 family (e.g. 83CL580). The definition file can be included
using the INCLUDE control. The definition file for this application is called reg580.inc and must be included in
all assembler files.

To assemble the above example the batch file assemble.bat can also be used like:

assemble example.asm

2.3 C compiler
In order to compile the C file example.c the compiler should be called like:

c51 example.c code objectextend define(PRODUCTION_PHONE) large symbols rom(large)

The compiler directives used are explained below:

code Appends an assembly mnemonics list to the listing file.

objectextend The generated code will contain additional information about variables.

define(PRODUCTION_PHONE) Set’s the compiler switch PRODUCTION_PHONE.

large Selects the LARGE memory model.

symbols Generates a list of symbols used in and by the module being compiled.

rom(large) Forces the CALL and JMP instructions to be coded as LCALL and LJMP.

The compiler switch PRODUCTION_PHONE is used to enable the IDLE mode of the micro controller and to disable
the I2C bus for other masters than the micro controller. For further details about the IDLE mode and how to disa-
ble the I2C bus please refer to the chapters about the Idle task and the I2C driver respectively.

To compile the above example the batch file compile.bat can also be used like:

compile example

In addition the compiler directive debug can be used to generate code for debugging.

2.4 Object Linker
In order to link an application from a link script example.lnk the linker should be called like:

bl51 @example.lnk

The file example.lnk is shown below:

12

OM4754 EAMPS Software User Guide

Philips Semiconductors

Application Note
AN95030

cstartup.obj, /* Initialization of RAM at startup */

rtxconf.obj, /* RTX-51 configuration file */

example.obj /* A simple example program */

to example.abs /* Output file-name */

map /* Generate memory map-file */

nooverlay /* No Overlay on local segments */

publics /* Public symbols in map-file */

symbols /* Local symbols in map-file */

ramsize(256) /* Set 83CL580 on-chip RAM size */

rtx51 /* Use RTX-51 operating system */

The example above links the three object files cstartup.obj , rtxconf.obj and example.obj to an abso-
lute file example.abs using the RTX-51 operating system.

2.5 Translation utilities
In order to convert an absolute file example.abs to an Intel hex file example.hex the translator utility oh51
should be called like:

oh51 example.abs

The output file example.hex can now be used to be programmed in the PSD312L device.

2.6 Configurating RTX-51
To configure the RTX-51 Operating system the files cstartup.asm and rtx_conf.asm must be configured.

The file cstartup.asm initializes all stack pointers, reserves code memory for the interrupt routines and sets
the PWM0 output to zero (PWM0=0xFF). Table 1 contains a list of variables and their values used in the file
cstartup.asm . For more details about the variables please refer to paragraph 6.10 CONFIGURATION FILES
of the C51 Compiler User’s Guide[3].

The RTX-51 operating system can be adapted to various members of the 8051 processor family and to applica-
tion specific requirements by means of the file rtx_conf.asm . The following system values can be configured:

TABLE 1 Variables in cstartup.asm
Variable name Value

IDATALEN 0x0100

XDATASTART 0x0000

XDATALEN 0x8000

PDATASTART 0x0000

PDATALEN 0x0000

IBPSTACK 0x0000

IBPSTACKTOP 0x0100

XBPSTACK 0x0000

XBPSTACKTOP 0x8000

PBSTACK 0x0000

PBSTACKTOP 0x8000

PPAGEENABLE 0x0000

PPAGE 0x0000

OM4754 EAMPS Software User Guide

Philips Semiconductors

13

Application Note
AN95030

• Size of the standard and re-entrant task stack

• 8051 hardware timer to be used for the system clock

• Task switching with or without round-robin scheduling

• Type of the 8051 processor used

The variable PROC_TYP sets the processor type used. The processor types that can be used and the corre-
sponding values of PROC_TYP are shown in table 2, other values of PROC_TYP are invalid.

Note: When another processor type (than 83CL580) is used please change the reg580.inc file accordingly.

Table 3 contains a list of system constants and their values as defined in rtx_conf.asm , for more details about
the system constants please see chapter 9 CONFIGURATION of the RTX-51 User’s Guide[4].

TABLE 2 Processor types in rtx_conf.asm
PROC_TYP Processor

1 8051, 8031, 8751, 80C31, 80C51, 87C51

2 80C521, 80C32

3 80515, 80C515, 80535, 80C535

4 80C517, 80C537

5 80C51FA/FB, 83C51FA/FB, 87C51FC

6 80C552, 83C552

7 80C592, 83C592, 87C592

8 80C152, 83C152

9 80C517A, 80C517A-5

10 80C652, 83C652

11 86C410, 86C610

12 80C550, 83C550, 87C550

13 80C51GB, 83C51GB, 87C51GB

14 88F51FC, 83F51FC

15 80512/80532

20 83CL580

TABLE 3 System constants in rtx_conf.asm
System Constant name Value Meaning

?RTX_SYSTEM_TIMER 0 Use Timer 0 as system timer

?RTX_IE_INIT 0 All bits used

?RTX_IEN1_INIT 0 All bits used

?RTX_IEN2_INIT 0 All bits used

?RTX_INTSTKSIZE 64 Internal RAM

?RTX_EXTSTKSIZE 64 External RAM

?RTX_EXTRENTSIZE 50 External RAM (not used)

?RTX_TIMESHARING 0 Do not use round robin scheduling

?RTX_BANKSWITCHING 0 Code-Bank-Switching is disabled

14

OM4754 EAMPS Software User Guide

Philips Semiconductors

Application Note
AN95030

2.7 Configurating the PSD312L
The PSD312L contains 64k bytes ROM, 2k bytes RAM and has 16 bidirectional I/O ports. Of these 16 bidirec-
tional I/O ports 8 are used to follow A0 until A8 which are connected to the external 32k bytes RAM. The external
RAM memory map of the system is shown in figure 1.

Fig.1 External RAM Memory map

To configure the PSD312L so that it can be connected to the 83CL580 the next items must be initialized using
the PSD-Gold/PSD-Silver software:

• Mixed Address/Data Mode

• 8 bit Data Bus Size

• LOW reset polarity (always when using the L version)

• HIGH ALE polarity

• PSEN is used

• Use separate Data and Program Address spaces

• Port A to addressed I/O, all CMOS and PA0 corresponds to A0, PA1 to A1, PA2 to A2, PA3 to A3, PA4 to A4,
PA5 to A5 PA6 to A6 and PA7 to A7

• Port B to I/O, all CMOS

• A19 is used for Chip Select Input (CSI)

• RAM memory address (RS0) is 0x8000

• PSD I/O address (CSP or CSIOPORT) is 0xF800

In Table 4 the PSD312L configuration bits and their values are shown.

TABLE 4 PSD312L Configuration bits
Configuration bit Value

CDATA 0

CADDRDAT 1

CA19/CSI 0

CALE 0

COMB/SEP 1

CPAF2 0

RAM

32k RAM

2k PSD RAM

2k PSD I/O

0000

8000

8800

F800
FFFF

OM4754 EAMPS Software User Guide

Philips Semiconductors

15

Application Note
AN95030

3. Using the OM4754 software
The OM4754 software consists of a library file (amps.lib) and several source files. Table 5 gives an alphabet-
ical list of files delivered as source and their contents.

CADDHLT 0

CLOT 0

CRRWR 0

CEDS 0

CADLOG19 0

CPAF1 11111111

CPBF 11111111

CPCF 111

CPACOD 00000000

CPBCOD 00000000

CADLOG 000

TABLE 5 Delivered source files
File name Contents

3wire.c Three wire bus driver

3wire.h Three wire bus driver definition file

aproc.c SA5752/53 APROC driver

aproc.h SA5752/53 APROC driver definition file

aud_tsk.c Audio control Task main routine

audio.c Audio Task

audio.h Audio Task definition file

bindef.h Binary definition file

car_m_k.h Car mounting kit definition file

cstartup.asm Initialization of RAM at start-up

disp_tsk.c Display driver Task

dproc.c UMA1000LT DPROC driver

dproc.h UMA1000LT DPROC driver definition file

dprocint.c UMA1000LT DPROC driver interrupt routine

eeprom.c EEPROM driver

eeprom.h EEPROM driver definition file

idle_tsk.c Idle Task

iic.c I2C driver

iic.h I2C driver definition file

iic_int.c I2C driver interrupt routine

int_def.h Interrupt definition file

io_utl.c General I/O utilities file

io_utl.h General I/O utilities definition file

TABLE 4 PSD312L Configuration bits
Configuration bit Value

16

OM4754 EAMPS Software User Guide

Philips Semiconductors

Application Note
AN95030

kb_tsk.c Keyboard Task

lcd_drv.c LCD driver

lcd_drv.h LCD driver definition file

mail_box.h Definition of messages sent via mailboxes

main.c Main program to start RTX-51

mmi_disp.c User Task display routines

mmi_disp.h User Task display routines definition file

mmi_edit.c User Task edit routines

mmi_edit.h User Task edit routines definition file

mmi_func.c User Task function mode routines

mmi_func.h User Task function mode routines definition file

mmi_tsk.c User Task

mmi_tsk.h User Task definition file

on_off.h ON/OFF definition file

p83cl580.c P83CL580 initializations

p83cl580.h P83CL580 initializations definition file

psd312.c PSD312L driver

psd312.h PSD312L driver definition file

random.c Random generator

reg580.inc P83CL580 special function register definition file

rtx_conf.asm RTX-51 configuration

scnd_tsk.c Second Task

sstm_tsk.c System Task main routine

starttsk.c Start-up Task

stateutl.h Definition file for Standard routines for the System task

std_def.h Standard definition file included in all C-files

synt.h Synthesizer driver definition file

synt1015.c UMA1015M Synthesizer driver

sysinit.c Initialization routine for the System Task

sysvar.h Definition file of the Global variables for the System Task

task_def.h Task Identifier definition file

test.c Test mode routines

test.h Test mode routines definition file

timer.c Timer driver

timer.h Timer driver definition file

timerint.c Timer driver interrupt routines

version.h Version number definition file

vox_int.c SA5752/53 APROC driver interrupt routine for VOX

TABLE 5 Delivered source files
File name Contents

OM4754 EAMPS Software User Guide

Philips Semiconductors

17

Application Note
AN95030

Table 6 gives in alphabetical order, the contents of the library amps.lib .

3.1 Starting the system
In order to start the system a programmed PSD312L has to be inserted in the appropriate socket. The power can
be switched on by pressing the ON/OFF key once. To switch the power off the ON/OFF key has to be pressed for
about 1 second.

After the ON/OFF key has been pressed the system executes the cstartup.asm file which initializes all varia-
bles to zero and then calls the main program.

The main program (see main.c) initializes the PSD312L device and takes over the ON/OFF key by setting the
PWR_ON bit. Then it initializes the micro controller specific registers (calling p83cl580_INIT() in
p83cl580.c), the I2C driver, the synthesizer driver and the random generator. When all these initializations are
finished the RTX-51 operating system is started and the start-up task (see starttsk.c) is activated. When an
error occurs during start-up of the RTX-51 operating system the system is switched off (calling ms_turn_off()
in main.c) .

The start-up task sets the RTX-51 system clock, enables the I2C interrupt, initializes the timer driver, initializes
the DRPOC driver and reads the complete EEPROM contents to the RAM shadow area. Then the start-up task
starts the idle, audio, display, second, keyboard, system and user tasks. When all tasks are started the start-up
task will delete itself. If an error occurs when starting a task the system is switched off (calling ms_turn_off()
in main.c) .

3.2 MMI description
For a complete description of the MMI please refer to the User Manual of the EAMPS demonstration and emula-
tion unit[2].

4. Multitasking operating system
There are two fundamental problems for modern microprocessor applications:

• A task must be executed within a relative short time frame.

• Several tasks are time- and logic dependent from one another and should therefore execute simultaneously,
but are executed on a single processor.

The first problem is also referred to the requirement for guaranteed response time, also designated as “real-
time”. The second problem designates the typical situation of multitasking operation. In this case, the individual
tasks are organized as independent processes (also designated as tasks).

TABLE 6 Files in library amps.lib
File name Contents

access.obj AMPS specification Chapter 2.6.3 System Access

convers.obj AMPS specification Chapter 2.6.4 Mobile station Control on Voice Channel

idle.obj AMPS specification Chapter 2.6.2 Idle

initial.obj AMPS specification Chapter 2.6.1 Initialization

stateutl.obj Standard routines for the System task

sysstat.obj State machine for the System task

sysvar.obj Global variables used by the System task

version.obj Version number of the EAMPS software

18

OM4754 EAMPS Software User Guide

Philips Semiconductors

Application Note
AN95030

Therefore a multitasking operating system allows a group of tasks to cooperate in accomplishing an activity that
can be parcelled into smaller concurrent activities. The multitasking operating system distributes the available
micro processor time among the various tasks.

4.1 Tasks
During its existence a task goes through a series of discrete states. Various events can cause a task to change
states. A process is said to be running if it currently has the CPU. A process is said to be ready if it could use a
CPU if one were available. A process is said to be blocked if it is waiting for some event to happen (e.g. an I/O
completion) before it can proceed.

On a single CPU system, only one task can be running at a time but several tasks may be ready, and several
may be blocked. Therefore a ready list for ready tasks and a blocked list for blocked tasks is established.

When a task switches from one state to another a state transition has occurred. The states and transitions are
displayed in figure 2.

Fig.2 Task states transitions

As seen in the figure 2 there are four state transitions possible:

• Blocked; when a task waits for an event which is pending.

• Wakeup; when an event occurs for a task which was waiting for that event.

• Dispatch; when a task has a higher priority than the running task or when the running task blockes itself.

• Timerunout; when a task with a higher priority is put in the ready list.

When using the RTX-51 operating system the priority of a task can be 0, 1, 2 or 3. Value 0 corresponds to the
lowest possible priority, value 3 corresponds to the highest possible priority. Priority 3 can only be used for fast
task and is not used in this application.

4.2 Interrupt routines
The management and processing of hardware interrupts is one of the major jobs of the operating system. In this
application standard C51 interrupt routines are used to interrupt the system. When an interrupt occurs, a jump is

Running

Ready Blocked

Blocked

Wakeup

Dispatch

Timerunout

OM4754 EAMPS Software User Guide

Philips Semiconductors

19

Application Note
AN95030

made to the corresponding interrupt routine directly and independent of the currently running task. The interrupt
is processed outside of the operating system and therefore independent of the task scheduling rules.

However when an interrupt occurs a task would like to be informed that the interrupt has occurred. The task is
informed via an event which is sent to that specific task. For the RTX-51 operating system the event is either a
signal or a message.

Signals represent the simplest and fastest way of communication. When sending a signal no data is exchanged.
The task number of the receiving task is used for identifying the signals for the individual operations.

By means of a mailbox concept, messages can be exchanged. Messages are exchanged in words (2 bytes). In
this case, a message can represent the actual data to be transferred or the identification of a data buffer. In com-
parison to the signals, mailboxes are not assigned to a fixed task, but can be used freely by all tasks and interrupt
routines.

4.3 Inter process communication
The policy of having an event driven operating system requires flexible means of inter process communication.
The capability to move data from task to task is at the heart of the system functionality. Inter process communica-
tion is implemented via mailboxes.

Mailboxes are the interface between tasks which send messages to each other. Consequently, it is not neces-
sary for a sender task to know anything about a receiver task’s internal structure, or vice versa. This promotes a
very clean and efficient mechanism for passing data.

The RTX-51 operating system provides a fixed number of eight mailboxes with a size of 2 bytes. If a task has to
send more than 2 bytes, either a pointer has to be sent or the data should be stored in a global data array and a
message should be sent to inform that the data has arrived. In the application there are 2 cases where the inter
process communication is used to exchange data via a global data array, these cases are:

• send a received frame from DRPOC to the System task; A DPROC frame is 28 bits (4 bytes). A DPROC frame
is stored in a global variable received_frame and a message is sent to the System task to inform the Sys-
tem task of the arrival of the DPROC frame.

• send the dialled number from the User task to the System task; A dialled number can be up to 32 digits. A
dialled number is stored into a global variable ddm_data and a message is sent to the System task to inform
the System task of the arrival of the dialled number.

The disadvantage of this method is that when a task is to slow in copying the data to his own local buffer the glo-
bal data array could already be over written and thus corrupted.

20

OM4754 EAMPS Software User Guide

Philips Semiconductors

Application Note
AN95030

5. The OM4754 software
The OM4754 software is designed to operate on a mobile that is build around the 83CL580 microcontroller, the
SA5752/53 audio processor (APROC), the UMA1000LT data processor (DPROC), the ST25C02A EEPROM, the
LP3800-A LCD and a RF system containing a.o. the UMA1015M synthesizer. The PSD312L programmable
microcontroller peripheral is required to give the system the required amount of ROM. Figure 3 shows the
mobile’s hardware architecture. The relevant hardware parts with their ‘connections’ to the software are shown.

Fig.3 Hardware architecture

The OM4754 software uses 6 interrupt sources, in table 7 these interrupt sources are listed together with the
interrupt number, vector address and file name. In table 7 the interrupt sources are listed in order of priority, the
highest priority is the first interrupt listed, the lowest priority is the last interrupt listed.

TABLE 7 Interrupt sources
Interrupt source Interrupt number Interrupt vector File name

I2C port 5 (S1) 0x002B iic_int.c

Timer 0 RTX-51 clock 1 (T0) 0x000B

Timer 2 fast (1mS) timer 6 (T2) 0x0033 timerint.c

External 7 DPROC rx_line 12 (X7) 0x0063 dprocint.c

Timer 1 slow (20mS) timer 3 (T1) 0x001B timerint.c

External 3 VOXout 8 (X3) 0x0043 vox_int.c

TIMER

I2CADCch. 0
ch. 1

DPROC

APROC

EEPROM

LCD

PSD312L

RF module

Battery

Keyboard

port 1 bit 1

port 3 bit 2
port 1 bit 3..5

port 1 bit 0port 3 bit 3..5 PWM port 1 bit 2

port 4 83CL580 microcontroller

OM4754

SOFTWARE

TXDIS NRES ‘2*2WIRE’

VOX

audio amplifier powerON/OFF key

LED_ENABLEpower

battery level

fieldstrength

‘3WIRE’ tx power level

OM4754 EAMPS Software User Guide

Philips Semiconductors

21

Application Note
AN95030

5.1 Software Tasks
The OM4754 software uses 8 different tasks. The Start-up task, is only used to start-up the system and deletes
itself after it has started the other tasks. In table 8 the task names, their priorities, the mailbox names and if
needed their special usage are listed.

All task definitions can be found in the file task_def.h . In the next sections the individual task are described in
more details.

5.1.1 The Start-up task

The Start-up task is the first task that is called after the RTX-51 operating system has started and can be found in
the file starttsk.c . The start-up task sets the RTX-51 system clock, enables the I2C interrupt, initializes the
timer driver, initializes the DRPOC driver and reads the complete EEPROM contents to the RAM shadow area.
Then the Start-up task starts the Idle, Audio, Display, Second, Keyboard, System and User tasks. When all tasks
are started the Start-up task will delete itself. If an error occurs when starting a task the system is switched off (by
calling ms_turn_off() in the file main.c) .

5.1.2 The System task

This task contains the state machine of the signalling software according the AMPS specification[1]. The System
task can be found in the source files sstm_tsk.c and sysinit.c and the library file amps.lib .

The four main functions of a mobile in respect to signalling are registration, order response, page response and
origination.

When the mobile is powered on, it searches for the strongest control channel, tunes to that channel and starts
receiving and processing messages on that channel.

When a registration id message is received, the mobile checks to see whether a (autonomous) registration is
required. This is required when the mobile roamed to another area since the last time it registered and when the
registration id received in the registration message has been increased 'registration increment' times since the
last registration. To register, the mobile accesses the reverse control channel and replies to the land station. It
then waits for a registration confirmation message.

When the phone enters a service area where the registration bit is ‘1’, and when the registration bit received from
the land station is changed from ‘0’ to ‘1’, the phone initiates a (non-autonomous) registration.

When an audit order is received, the mobile accesses the reverse control channel and replies to the land station.

When a page message is received, the mobile is being called. It accesses a reverse control channel and replies
to the land station. The land station then supplies a voice channel number. The mobile changes to that voice

TABLE 8 Task priorities
Task name priority Mailbox Special Usage

Idle task 0

Display task 1 MBX_DISPLAY

Second task 1 MBX_SECOND

Keyboard task 1 MBX_KEYBOARD

Start-up task 2

Audio task 2 MBX_AUDIO

User task 2 MBX_USER
IIC_SR_MBX EEPROM driver

System task 2 MBX_SYSTEM
MBX_SYSTEM_TIMEOUT DPROC driver

22

OM4754 EAMPS Software User Guide

Philips Semiconductors

Application Note
AN95030

channel and starts ringing. When the user accepts the call, the audio is switched through and the connection has
been established.

When the user wants to start a call, the mobile accesses a reverse control channel. The number to be called is
sent to the land station. The land station supplies a voice channel number. The mobile changes to that voice
channel and the audio is switched through.

When the user wants to start an outgoing call while the mobile is accessing the reverse control channel for
another reason (answering an incoming call, registration, order reply), the outgoing call gets priority and is made.

While a call is in progress, (the mobile is on a voice channel,) the SAT colour code (SCC) is checked. When it is
not the expected SCC, the audio is muted. When the SCC remains wrong for more than 5 seconds, the call is
aborted.

When a call is in progress it can be released by the user (mobile release) or from the land station (land release.)

When the mobile is on a voice channel, hand-off messages received are processed. The mobile switches to the
new voice channel received in the hand-off message.

When a new power level is received from the land station, the mobile is set to transmit with the new power level.

Flash requests from the user during calls are executed.

The next items should be taken into account:

• The variables NXTREG_sp and SID_sp are stored in RAM, whenever the mobile is switched on these varia-
bles are initialized to 0, although section 2.3.4 of the AMPS specification[1] states that these variables should
be stored at least for 48 hours after the mobile is switched off.

• The version number of the signalling software is always present in the character array VS_array ; when an
user program wants to obtain the version number the file version.h has to be included.

• The system task is not delivered as source but is present in the library file amps.lib .

• All system variables can be obtained when the file sysvar.h is included; The variable names in the AMPS
specification[1] are the same as used in sysvar.h .

• The System task is set-up in the file sstm_tsk.c , this file is therefore delivered in source.

• The mobile is set-up in the file sysinit.c , this file is therefore delivered in source.

In sysinit.c the Station Class Mark of the mobile is set to binary 1110 which means that the mobile is a power
class 3, discontinuous, 25MHz bandwith mobile. The variable PA_switch_on_time is read from EEPROM.
This variable specifies the time the System task waits after the power amplifier is switched on before a message
is sent (see AMPS specification[1] section 2.1.2.1). This time is only used when accessing the system (see also
page 2-18 of the AMPS specification[1]). The variables PREFSYS_p, FIRSTCHC_p and ALTCHC_p in the file
sysinit.c define whether the system type of the mobile is either A preferred, B preferred, A only or B only. In
Table 9 the system type and the corresponding value of the variables PREFSYS_p, FIRSTCHC_p and
ALTCHC_p are shown.

When the home only option is enabled, only the system corresponding to the least significant bit of the home sys-
tem id is scanned, and service from other areas than the home area is rejected.

TABLE 9 System types
System type PREFSYS_p FIRSTCHC_p ALTCHC_p

A Preferred 1 333 334

B Preferred 0 334 333

A Only 1 333 0

B Only 0 334 0

OM4754 EAMPS Software User Guide

Philips Semiconductors

23

Application Note
AN95030

5.1.3 The User task

Although the display of data and the reading of the keyboard is done in the display and keyboard task respec-
tively this task performs the dialog with the user. The User task can be found in the file mmi_tsk.c . The User
task calls several routines which are located in the files mmi_disp.c , mmi_edit.c , mmi_func.c and test.c
and their corresponding include files (like mmi_disp.h).

There are four points in the user task which are vital, these points are:

• Send DTMF tones

• Mute the Audio

• Start and stop the System task

• Send the dialled number from the User task to the System task

In order to send DTMF tones the event EV_DTMF has to be sent. The task where it should be sent to depends
on the state in which the mobile is. If the mobile is in the conversation state the event EV_DTMF must be sent to
the System task in order to power up the transmitter when the mobile is in discontinues transmission. The Sys-
tem task will send the EV_DTMF to the Audio task after the transmitter is powered up. In all other cases the event
EV_DTMF must be sent directly to the Audio task.

When the user wants to mute the audio the event EV_SPEECH_PATH with the parameter value
AUDIO_TX_MUTE for the transmitter or AUDIO_RX_MUTE for the receiver must be sent to the Audio task. To
unmute the audio the event EV_SPEECH_PATH with the parameter value AUDIO_TX_UNMUTE for the trans-
mitter or AUDIO_RX_UNMUTE for the receiver must be sent. The parameter values AUDIO_MUTE and
AUDIO_UNMUTE are reserved by the System task to mute the audio and should therefore not be used by any
other task.

To start or stop the System task the events EV_HALT_SYSTEM and EV_TURN_OFF_REQUEST can be used.
The EV_HALT_SYSTEM halts the system task until a signal is received, the EV_TURN_OFF_REQUEST stops
the System task completely the only way out is to reboot the system. When the User task wants to stop the Sys-
tem task the mobile must not be in conversation. If the mobile is in conversation first an event
EV_END_PRESSED must be sent to the system task, the User task must than wait for the event
EV_CONVERSATION with the parameter value CONV_END or NO_CONNECT before it can stop the System
task.

When the user presses the SEND key an origination or a flash request is made. The User task copies the dialled
number in the ddm_data buffer and sends a message EV_SND_PRESSED to the System task. The dialled
number in the ddm_data buffer is presented in ASCII characters, the System task will convert the ASCII charac-
ters to the required digit code as described in table 2.7.1-2 of the AMPS specification[1].

A complete list of all events and their parameter values are given in chapter 5.2.

For a complete description of the MMI please refer to the User Manual of the EAMPS demonstration and emula-
tion unit[2].

5.1.4 The Audio task

The Audio task controls the generation of sounds, audio volume, setting of the audio path and the audio ampli-
fier. Sounds that are generated include alarms and dtmf sounds. Generation of sounds and controlling both the
audio path and volume is done by setting registers in the audio processor. The Audio task can be found in the file
aud_tsk.c , the main audio routine can be found in audio.c .

The mobile can operate hand-held or hands-free and can be connected to a car kit. For each of these 'modes' the
volume has individual settings. A full car kit implementation is not given.

Audio is received from and transmitted to the land station using a pair of voice channels; a forward voice channel
and a reverse voice channel. The audio path is the path between user and voice channel. The audio path can be
muted independently in the transmit direction (tx-path) and in the receive direction (rx-path).

24

OM4754 EAMPS Software User Guide

Philips Semiconductors

Application Note
AN95030

When the mobile is operated hand-held or is connected to the car kit, the audio is output to the earpiece. When
the mobile is operated hands-free the audio is output to the loudspeaker. When a car kit is not connected, the
audio amplifier is turned on.

The volume can be changed between its minimum (0) and its maximum (15) value and is stored for each one of
the four possible audio modes: hand-held, hands-free, car-kit and internal. Whenever the audio mode is
changed, the volume level is restored to the volume level of the previous audio mode. When the mobile is turned
on the volume level for all four modes is set to their defaults.

Alarms and dtmf tones are generated using the dtmf generator in the audio processor. When an alarm or dtmf
tone is generated, the audio is output to the loudspeaker when the car kit is not connected. When the car-kit is
connected, the audio is output to the earpiece. When the alarm or dtmf tone finishes, the audio is output again to
where it was output before the alarm. During generation of alarms the tx-path is muted.

All alarms have a priority. When an alarm is started, first a check is done to see whether an alarm with a higher
priority is already active. When an alarm with a higher priority is active the new alarm is not started. In Table 10
the different alarms and their duration are given. The alarms are listed in order of priority, the highest priority is
the first alarm listed, the lowest priority is the last alarm listed.

Note 1: Depending on the setting of the malfunction_loudness . The malfunction_loudness can be
changed using the event EV_MALFUNCTION_LOUDNESS. The default value of malfunction_loudness is
HIGH which corresponds to volume 8.

For all toggle time’s listed the alarm is switched on/off for the specified toggle time period. For the ringing alarm
the tone is switched between the three listed tone’s for every toggle time period.

5.1.5 The Keyboard task

The Keyboard task can be found in the file kb_tsk.c . The Keyboard task scans every 40 milli seconds the key-
board for pressed keys. Keys found to be pressed are sent to the User task. The CLEAR key is repeated when
pressed longer than 400 milli seconds, the ON/OFF key is repeated as soon as it stays pressed. The keyboard
has a higher priority than the ON/OFF key, which means that when a key is pressed together with the ON/OFF
key the key pressed is processed. As soon as a repeated key is released a key release message is sent to the
User task. The keyboard is connected to port 4 of the microcontroller. The ON/OFF key is connected to the
PSD312L.

5.1.6 The Display task

The Display task displays the information received from System, Second and User task on the LCD display. It
computes the events received to function calls of the LCD driver. The Display task can be found in the file
disp_tsk.c and the LCD driver in the file lcd_drv.c . The LCD driver is not explained here but in section 5.4.

TABLE 10 Audio alarms
Alarm type Toggle time Duration Tone Volume

malfunction 300 mS 3 Seconds DTMF_MALFUNCTION 4/8 (See note 1)

ringing 50 mS 65 Seconds DTMF_HIGH/LOW_TONE/SPACE Ringing volume

low_voltage 50 mS 1 Second DTMF_LOW_VOLTAGE 8

wake_up 100 mS 1 Second DTMF_WAKE_UP 8

key_beep/DTMF 100 mS Depending on key pressed Key volume

call_setup 200 mS DTMF_WAKE_UP 4

service_area 200 mS DTMF_WAKE_UP 4

OM4754 EAMPS Software User Guide

Philips Semiconductors

25

Application Note
AN95030

5.1.7 The Second task

The (one) Second task preforms tasks that can be considered 'continuous', but do not have a high priority. The
Second task can be found in the file scnd_tsk.c . Every second the Second task measures the fieldstrength of
the received signal for display purposes, and monitors the battery level. When the battery level drops below the
warning or turn off threshold for at least 3 consecutive measurements, a message is sent to the User task.

5.1.8 The Idle task

The Idle task is the task that is active when all other tasks are blocked. The Idle task is the task which has the
lowest priority possible. The Idle task can be found in the file idle_tsk.c . When this task is activated the micro
controller is switched to IDLE mode. The micro controller can only wake up from the IDLE mode via an interrupt.
The IDLE mode is only entered if the file idle_tsk.c is compiled with the compiler switch
PRODUCTION_PHONE. The reason is that when using an emulator the bond out chip P85CL001 will only work till
3.7 Volts at 9.6 MHz, the 83CL580 however is supplied with 3.5 Volts. Therefore it is important that the IDLE
mode is not used when using an emulator otherwise the system performance will degrade to an undesired level!

5.2 Message types and formats
Events are sent using the os_send_message or isr_send_message system call. The arguments to these calls
are described in the RTX-51 documentation. The 2 byte message contains the event (first byte) and optionally a
parameter (second byte). The events and optional parameters can be found in the file mail_box.h and are
described in the next paragraphs.

5.2.1 Events sent to the User task.

EV_KEYPRESS
The EV_KEYPRESS is sent when the user presses a key on the keyboard.

From : Keyboard task
To : User task
Parameter : key
Description : this byte contains the key that the user has pressed on the keyboard.
Values : KEY_EMPTY = ‘ ‘ KEY_ZERO = ‘0’

KEY_ON_OFF = ‘O’ KEY_ONE = ‘1’
KEY_CLEAR = ‘C’ KEY_TWO = ‘2’
KEY_MUTE = ‘M’ KEY_THREE = ‘3’
KEY_STORE = ‘S’ KEY_FOUR = ‘4’
KEY_RECALL = ‘R’ KEY_FIVE = ‘5’
KEY_SEND = ‘W’ KEY_SIX = ‘6’
KEY_END = ‘E’ KEY_SEVEN = ‘7’
KEY_FUNCTION = ‘F’ KEY_EIGHT = ‘8’
KEY_UP = ‘+’ KEY_NINE = ‘9’
KEY_DOWN = ‘-’ KEY_STAR = ‘*’
KEY_OK = ‘K’ KEY_HASH = ‘#’

Comments :
See also : EV_KEYREPEAT, EV_KEYRELEASE

EV_KEYREPEAT
The EV_KEYREPEAT is sent when a key is pressed longer than its initial delay. An EV_KEYREPEAT is gener-
ated repetitive until the key is released.

From : Keyboard task
To : User task

26

OM4754 EAMPS Software User Guide

Philips Semiconductors

Application Note
AN95030

Parameter : key
Description : This byte contains the ASCII code for the key that has been repeated.
Values : see values for EV_KEYPRESS
Comments : Only the KEY_CLEAR and the KEY_ON_OFF are repeated. The initial delay for KEY_CLEAR is 400 msec,

for KEY_ON_OF there is no initial delay. The repeat rate is 25 per second.
See also : EV_KEYPRESS, EV_KEYRELEASE

EV_KEYRELEASE
The EV_KEYRELEASE is sent when the user releases a key that has been pressed on the keyboard.

From : Keyboard task
To : User task
Parameter : key
Description : This byte contains the ASCII code for the key that has been released on the keyboard.
Values : see values for EV_KEYPRESS
Comments : this event is only generated when an EV_KEYREPEAT has been sent for the key released.
See also : EV_KEYPRESS, EV_KEYREPEAT

EV_LOW_VOLTAGE
The EV_LOW_VOLTAGE is sent when the battery voltage drops below the warning threshold for 3 seconds and
is repeated every 3 seconds as long as it stays below that threshold.

From : Second task
To : User task
Parameter : battery_alarm_level
Description : The threshold which was reached.
Values : enum { LOW_VOLTAGE_WARNING,

LOW_VOLTAGE_TURN_OFF } ;
Comments :
See also :

EV_CONVERSATION
From : System task
To : User task
Parameter : conversation_status
Description : The conversation status the mobile has entered.
Values : enum { RINGING_CALL,

SILENT_CALL,
CONV_START,
CONV_END,
MOBILE_RELEASE,
LAND_RELEASE,
SYSTEM_BUSY,
NO_CONNECT,
INTERCEPT,
IGNORED,
FLASH_SEND };

Comments :
See also :

OM4754 EAMPS Software User Guide

Philips Semiconductors

27

Application Note
AN95030

5.2.2 Events sent to the System task.

EV_FRAME_RECEIVED
The EV_FRAME_RECEIVED is sent whenever a frame is received from the DPROC.

From : DPROC interrupt routine
To : System task
Parameter : frame_type
Description : The type of frame received.
Values : enum { Abb_add_word = 1,

Ext_add_word_1,
Ext_add_word_2_order,
Ext_add_word_2_order_wrong_min,
Ext_add_word_2_chan,
Ext_add_word_2_chan_wrong_min,
Sys_par_over_mess_1,
Sys_par_over_mess_2,
Global_action_mess,
Reg_id_mess,
Control_filler_mess };

Comments : The frame received is put at the global memory location designated during initialisation
of the DPROC driver.

See also :

EV_VOICE_DETECT
The EV_VOICE_DETECT is sent whenever a change in the presence of voice has been detected.

From : VOX interrupt routine
To : System task
Parameter : detected
Description : The change in the presence of voice.
Values : enum { VOICE_DETECTED,

SILENCE_DETECTED };
Comments :
See also :

EV_SND_PRESSED
From : User task
To : System task
Parameter : none
Description :
Comments : When doing an origination or a flash, the dialled number must be stored in the dialled number

buffer, ddm_data.
See also :

EV_END_PRESSED
From : User task
To : System task
Parameter : none
Description :
Comments :
See also :

28

OM4754 EAMPS Software User Guide

Philips Semiconductors

Application Note
AN95030

EV_ALLOW_DTX
From : User task
To : System task
Parameter : dtx_setting
Description : The setting of DTX which was changed.
Values : enum { ALLOW_DTX,

INHIBIT_DTX };
Comments :
See also :

EV_INIT_SYSTEM
From : User task
To : System task
Parameter : none
Description :
Comments : Used to restart the signalling part. Can be used when changing country.
See also :

EV_HALT_SYSTEM
From :
To : System task
Parameter : none
Description :
Comments : The system task will be resumed when a signal is sent to it.
See also :
Example : To halt the system task : RTX_send_message(MBX_SYSTEM, EV_HALT_SYSTEM, 0, 0);

To resume the system task : RTX_send_signal(SYSTEM_TASK);

EV_TURN_OFF_REQUEST
From : User task
To : System task
Parameter : none
Description :
Comments : Turns the system task off. The system task only gets active again after a ‘reboot’ of the system.
See also :

5.2.3 Events sent to the Audio task

EV_VOLUME
From : User task
To : Audio task
Parameter : direction
Description : The direction in which the volume has to be changed in.
Values : enum { VOLUME_UP,

VOLUME_DOWN };
Comments :
See also :

EV_VOLUME_ABS
From : User task
To : Audio task

OM4754 EAMPS Software User Guide

Philips Semiconductors

29

Application Note
AN95030

Parameter : volume level
Description : Defines the absolute volume level.
Values : 0x00...0x0F
Comments :
See also :

EV_AUDIO_POWER
From : System task
To : Audio task
Parameter : audio_power
Description : Switches the TDA7050 Audio Amplifier ON/OFF.
Values : enum { ON,

OFF } ON_TYPE;
Comments :
See also :

EV_SPEECH_PATH
From : System task, User task
To : Audio task
Parameter : speech path control
Description : Defines the audio speech path.
Values : enum { AUDIO_MIC_MUTE,

AUDIO_HANDHELD,
AUDIO_HANDSFREE,
AUDIO_MUTE,
AUDIO_UNMUTE,
AUDIO_RX_MUTE,
AUDIO_RX_UNMUTE,
AUDIO_TX_MUTE,
AUDIO_TX_UNMUTE };

Comments :
See also :

EV_RINGING
Generates a standard length ringing tone.

From : System task
To : Audio task
Parameter : none
Description :
Comments : The standard length for a ringing tone is 65 seconds.
See also :

EV_TIMELENGTH_RINGING
Generates a ringing tone of the specified length.

From : System task
To : Audio task
Parameter : time length
Description : The time length of the tone to be generated.
Values : 0...254, DEFAULT_PARM
Comments : When time length is in the range of 0...254, a ringing tone is generated for a time of (time length * 20ms)

Otherwise a ringing tone of 65 seconds is generated.
See also :

30

OM4754 EAMPS Software User Guide

Philips Semiconductors

Application Note
AN95030

EV_MALFUNCTION
Generates a standard length malfunction tone.

From : User task
To : Audio task
Parameter : none
Description :
Comments : The standard time length for a malfunction tone is 3 seconds.
See also :

EV_TIMELENGTH_MALFUNCTION
Generates a malfunction tone of the specified length.

From : User task
To : Audio task
Parameter : time length
Description : The time length of the tone to be generated.
Values : 0...254, DEFAULT_PARM
Comments : When time length is in the range of 0...254, a malfunction tone is generated for a time of (time length * 20ms).

 Otherwise a malfunction tone is generated for 3 seconds.
See also :

EV_DTMF
Generates a standard length dtmf tone.

From : User task
To : Audio task, System task
Parameter : tone
Description : The dtmf tone to generate.
Values : KEY_ONE = ‘1’ : 1209 Hz 697 Hz

KEY_TWO = ‘2’ : 1336 Hz 697 Hz
KEY_THREE = ‘3’ : 1477 Hz 697 Hz
KEY_FOUR = ‘4’ : 1209 Hz 770 Hz
KEY_FIVE = ‘5’ : 1336 Hz 770 Hz
KEY_SIX = ‘6’ : 1477 Hz 770 Hz
KEY_SEVEN = ‘7’ : 1209 Hz 852 Hz
KEY_EIGHT = ‘8’ : 1336 Hz 852 Hz
KEY_NINE = ‘9’ : 1477 Hz 852 Hz
KEY_ZERO = ‘0’ : 1336 Hz 941 Hz
KEY_STAR = ‘*’ : 1209 Hz 941 Hz
KEY_HASH = ‘#’ : 1477 Hz 941 Hz
DTMF_MALFUNCTION = ‘m’ : 2000 Hz -
DTMF_LOW_VOLTAGE = ‘v’ : 2273 Hz -
DTMF_HIGH_TONE = ‘h’ : 1010 Hz -
DTMF_LOW_TONE = ‘l’ : 800 Hz -
DTMF_SPACE = ‘c’ : - -
DTMF_WAKE_UP = ‘w’ : 1000 Hz -
DTMF_STOP = ‘s’ : - -
‘A’ : 1633 Hz 697 Hz
‘B’ : 1633 Hz 852 Hz
‘C’ : 1633 Hz 852 Hz
‘D’ : 1633 Hz 941 Hz
“anything else” : 1209 Hz -

Comments : The dtmf tones are generated for 96 ms. When the phone is in conversation and a DTMF tone has to be sent
to the land station, the EV_DTMF has to be sent to the System task. In all other cases, the EV_DTMF can be
sent to the Audio task.

OM4754 EAMPS Software User Guide

Philips Semiconductors

31

Application Note
AN95030

See also :

EV_TIMELENGTH_DTMF
Generates a standard length dtmf tone.

From : User task
To : Audio task
Parameter : tone
Description : The tone to be generated.
Values : See values EV_DTMF
Comments : The dtmf tones are generated for 100 ms.
See also :

EV_TIMELENGTH_KEY_BEEP
Generates a standard length dtmf tone.

From : User task
To : Audio task
Parameter : tone
Description : The dtmf tone to generate.
Values : See values EV_DTMF
Comments : Identical to EV_TIMELENGTH_DTMF
See also : EV_TIMELENGTH_DTMF

EV_TIMELENGTH_CALL_SETUP_TONE
Generates a call setup tone of the specified length.

From : System task, Audio task
To : Audio task
Parameter : time length
Description : The time length of the tone to be generated.
Values : 0...254, DEFAULT_PARM
Comments : When time length is in the range of 0...254, a call setup tone is generated for a time of (time length * 20ms).

Otherwise a call setup tone is generated for 200 ms.
See also :

EV_TIMELENGTH_SERVICE_AREA_ALERT
Generates a service area alert tone of the specified length.

From :
To : Audio task
Parameter : time length
Description : The time length of the tone to be generated.
Values : 0...254, DEFAULT_PARM
Comments : When time length is in the range of 0...254, a service area alert tone is generated for a time of (time length *

20ms). Otherwise a service area alert tone is generated for 200 ms.
See also :

EV_TIMELENGTH_WAKE_UP_ALARM
Generates a wake-up alarm of the specified length.

From : System task
To : Audio task
Parameter : time length

32

OM4754 EAMPS Software User Guide

Philips Semiconductors

Application Note
AN95030

Description : The time length of the tone to be generated.
Values : 0...254, DEFAULT_PARM
Comments : When time length is in the range of 0...254, a wake-up alarm is generated for a time of (time length * 20ms).

Otherwise a wake-up alarm is generated for 1 second.
See also :

EV_TIMELENGTH_LOW_VOLTAGE
Generates a low voltage tone of the specified length

From : User task
To : Audio task
Parameter : time length
Description : The time length of the tone to be generated.
Values : 0...254, DEFAULT_PARM
Comments : When time length is in the range of 0...254, a low voltage alarm is generated for a time of (time length * 20ms).

Otherwise a low voltage alarm is generated for 200 ms.
See also :

EV_STOP_AUDIO_ALARM
Stops generating the specified alarm.

From : System task, User task
To : Audio task
Parameter : alarm_type
Description : The alarm type to stop generating.
Values : enum { AUDIO_STOP_RINGING,

AUDIO_STOP_MALFUNCTION,
AUDIO_STOP_KEYBEEP,
AUDIO_STOP_SERVICE_AREA_ALERT,
AUDIO_STOP_CALL_SETUP_TONE,
AUDIO_STOP_WAKE_UP_ALARM,
AUDIO_STOP_LOW_VOLTAGE,
AUDIO_STOP_DTMF,
AUDIO_STOP_ALL };

Comments :
See also :

EV_VOX_ON
Turns on detection of voice presence.

From : System task
To : Audio task
Parameter : none
Description :
Comments :
See also : EV_VOX_OFF, EV_VOICE_DETECT

EV_VOX_OFF
Turns off detection of voice presence.

From : System task
To : Audio task
Parameter : none
Description :
Comments :

OM4754 EAMPS Software User Guide

Philips Semiconductors

33

Application Note
AN95030

See also : EV_VOX_ON, EV_VOICE_DETECT

EV_RINGING_LOUDNESS
Sets the ringing volume.

From : System task
To : Audio task
Parameter : loudness
Description : The ringing loudness is set LOW/HIGH.
Values : enum { LOW,

HIGH };
Comments :
See also :

EV_MALFUNCTION_LOUDNESS
Sets the malfunction loudness.

From :
To : Audio task
Parameter : loudness
Description : The malfunction loudness is set LOW/HIGH.
Values : enum { LOW,

HIGH };
Comments :
See also :

EV_EXTERNAL_EQUIPMENT_CHANGED
From :
To : Audio task
Parameter : external_equipment
Description : The external equipment the mobile is now connected to.
Values : enum { AUDIO_CHANGE_TO_HANDHELD,

AUDIO_CHANGE_TO_CARKIT,
AUDIO_CHANGE_TO_LINEINTERFACE,
AUDIO_CHANGE_TO_EXT_ANTENNA };

Comments : This event is not implemented.
See also :

EV_POWER_OFF
Powers down the task.

From :
To : Audio task
Parameter : none
Description :
Comments : The system is about to power down, finish any jobs and save information.
See also :

5.2.4 Events sent to the Display task

EV_UPDATE_DISPLAY
Updates the alpha-numeric part of the display.

34

OM4754 EAMPS Software User Guide

Philips Semiconductors

Application Note
AN95030

From : User task
To : Display task
Parameter :
Description :
Comments :
See also :

EV_UPDATE_SYMBOL
From : System task, User task
To : Display task
Parameter : symbol
Description : The symbol together with a modifier attribute.
Values : /* The symbols */

enum { MENU_SYMBOL,
BOOK_SYMBOL,
ROAM_SYMBOL,
NO_SYMBOL,
SERV_SYMBOL,
IN_USE_SYMBOL,
LOCK_SYMBOL,
A_SYMBOL,
B_SYMBOL,
VOX_SYMBOL,
HANDS_FREE_SYMBOL,
FUNC_SYMBOL,
ALPHA_SYMBOL,
MUTE_SYMBOL,
SIG_SYMBOL };

/* The modifier attributes */
enum { OFF_MODE = 0x00,

FLASH_MODE = 0x40,
FLASH_REVERSE_MODE= 0x80,
ON_MODE = 0xC0 };

Comments :
Example : RTX_send_message(MBX_DISPLAY, EV_UPDATE_SYMBOL, ROAM_SYMBOL | ON_MODE, 0);
See also :

EV_UPDATE_FS_VALUE
Updates the field strength value.

From : Second task
To : Display task
Parameter : field strength
Description : The (relative) field strength of the received signal.
Values : 0...255
Comments :
See also :

EV_UPDATE_BATT_VALUE
From : Second task
To : Display task
Parameter : battery_value
Description : The (relative) battery value.
Values : 0...255
Comments : A value of 0 corresponds with 0 Volt and a value of 255 with 14.1 Volt. This event is not implemented.
See also :

OM4754 EAMPS Software User Guide

Philips Semiconductors

35

Application Note
AN95030

5.2.5 Events sent to the Second task

EV_DISPLAY_RSSI
Disables or enable measurement of the RSSI.

From : System task
To : Second task
Parameter : rssi_enable
Description : Enable/Disable the RSSI update.
Values : typedef enum { DISABLE = 0,

 ENABLE } ENABLE_TYPE;
Comments :
See also :

5.2.6 Events sent by drivers

EV_TIMEOUT
Expiration of a timer.

From : FAST TIMER and SLOW TIMER interrupt routines
To : any mailbox
Parameter : timer_handle
Description : The handle of the timer expired.
Values : 0...255
Comments : The mailbox the message is sent to was specified when the timer was started.
See also :

EV_IIC_TX_COMPLETE
The I2C interrupt routine completed transmission of data on the I2C bus.

From : I2C interrupt routine
To : any mailbox
Parameter :
Description :
Comments :
See also :

EV_IIC_RX_COMPLETE
The I2C interrupt routine received data on the I2C bus.

From : I2C interrupt routine
To : any mailbox
Parameter :
Description :
Comments :
See also :

36

OM4754 EAMPS Software User Guide

Philips Semiconductors

Application Note
AN95030

5.3 Message scenarios
The following scenarios show the interactions between tasks in the OM4754 Software.

5.3.1 Initialisation

 (1) When scanning system A symbol is B_SYMBOL, else symbol is A_SYMBOL.
(2) When scanning system A symbol is A_SYMBOL, else symbol is B_SYMBOL.
 (3) When roaming mode is ON_MODE, else mode is OFF_MODE.

5.3.2 Finding Service

User System Audio SecondDisplay

EV_UPDATE_SYMBOL
(ROAM_SYMBOL/OFF_MODE)

EV_UPDATE_SYMBOL
(SERV_SYMBOL/ON_MODE)

EV_UPDATE_SYMBOL
(note 1/OFF_MODE)

EV_UPDATE_SYMBOL
(note 2/ON_MODE)

EV_UPDATE_SYMBOL
(NO_SYMBOL/ON_MODE)

EV_UPDATE_SYMBOL
(IN_USE_SYMBOL/OFF_MODE)

EV_UPDATE_SYMBOL
(ROAM_SYMBOL/note 3)

User System Audio SecondDisplay

EV_UPDATE_SYMBOL
(NO_SYMBOL/OFF_MODE)

OM4754 EAMPS Software User Guide

Philips Semiconductors

37

Application Note
AN95030

5.3.3 Paging

Successful Paging

Ringing Call / Silent Call

(1) When Silent Call this message is EV_CONVERSATION/SILENT_CALL.
 (2) When Silent Call this message is not sent.

Paging Failed on Voice Channel

(1) The status can be SYSTEM_BUSY or NO_CONNECT.

User System Audio SecondDisplay

EV_AUDIO_POWER (ON)

EV_UPDATE_SYMBOL
(IN_USE_SYMBOL/ON_MODE)

EV_STOP_AUDIO_ALARM
(AUDIO_STOP_RINGING)

EV_CONVERSATION
(RINGING_CALL)(note 1) EV_RINGING_LOUDNESS

(HIGH)(note 2)

EV_TIMELENGTH_RINGING
(DEFAULT_PARM)(note 2)

EV_SND_PRESSED

EV_CONVERSATION
(CONV_START)

EV_SPEECH_PATH
(AUDIO_UNMUTE)

EV_SPEECH_PATH
(AUDIO_MUTE)

Ringing state

Idle state

Conversation state

User System Audio SecondDisplay

EV_STOP_AUDIO_ALARM
(AUDIO_STOP_RINGING)

EV_CONVERSATION
(note 1)

EV_AUDIO_POWER (OFF)
EV_UPDATE_SYMBOL

(IN_USE_SYMBOL/OFF_MODE)

Ringing state

Idle state

38

OM4754 EAMPS Software User Guide

Philips Semiconductors

Application Note
AN95030

User Declined Paging

5.3.4 Origination

Successful Origination

User System Audio SecondDisplay

EV_STOP_AUDIO_ALARM
(AUDIO_STOP_RINGING)

EV_CONVERSATION
(MOBILE_RELEASE)

EV_AUDIO_POWER (OFF)

EV_UPDATE_SYMBOL
(IN_USE_SYMBOL/OFF_MODE)

EV_END_PRESSED

EV_CONVERSATION
(CONV_END)

Ringing state

Idle state

User System Audio SecondDisplay

EV_AUDIO_POWER (ON)

EV_UPDATE_SYMBOL
(IN_USE_SYMBOL/ON_MODE)

EV_TIMELENGTH_CALL_SETUP_TONE
(DEFAULT_PARM)

EV_SND_PRESSED

EV_CONVERSATION
(CONV_START)

EV_SPEECH_PATH
(AUDIO_UNMUTE)

EV_SPEECH_PATH
(AUDIO_MUTE)

Idle state

Conversation state

Calling state

OM4754 EAMPS Software User Guide

Philips Semiconductors

39

Application Note
AN95030

Failed Origination

 Ongoing signalling

Connection Failure or System Busy

(1) The status can be SYSTEM_BUSY, NO_CONNECT or INTERCEPT.

 User Declined Origination

User System Audio SecondDisplay

EV_SND_PRESSED

EV_CONVERSATION
(CONVERSATION_IGNORED)

Idle state

Idle state

User System Audio SecondDisplay

EV_AUDIO_POWER
(OFF)

EV_CONVERSATION
(note 1)

Calling state

Idle state

User System Audio SecondDisplay

EV_UPDATE_SYMBOL
(IN_USE_SYMBOL+OFF_MODE) EV_AUDIO_POWER

(OFF)

EV_END_PRESSED

Calling state

Idle state

EV_CONVERSATION
(MOBILE_RELEASE)

40

OM4754 EAMPS Software User Guide

Philips Semiconductors

Application Note
AN95030

5.3.5 Conversation

Mobile Release

Successful Flash Request

(1) Message is sent when the number in the ddm_data buffer has been sent to the land station.

User System Audio SecondDisplay

EV_UPDATE_SYMBOL
(IN_USE_SYMBOL+OFF_MODE)

EV_AUDIO_POWER
(OFF)

EV_END_PRESSEDConversation state

Idle state

EV_CONVERSATION
(MOBILE_RELEASE)

EV_SPEECH_PATH
(AUDIO_MUTE)

EV_CONVERSATION
(CONV_END)

User System Audio SecondDisplay

EV_SND_PRESSED

Conversation state

EV_CONVERSATION
(FLASH_SEND)(note 1)

Conversation state

OM4754 EAMPS Software User Guide

Philips Semiconductors

41

Application Note
AN95030

Knock On

Ringing Call / Silent Call

(1) In case of Silent Call this message is not sent.
(2) When Silent Call this status is SILENT_CALL.

Land Release

Change DTX Setting

User System Audio SecondDisplay

EV_STOP_AUDIO_ALARM
(AUDIO_STOP_RINGING)

EV_CONVERSATION
(RINGING_CALL)(note 2)

EV_TIMELENGTH_RINGING
(DEFAULT_PARM)(note 1)

EV_SND_PRESSED

EV_CONVERSATION
(CONV_START)

EV_SPEECH_PATH
(AUDIO_UNMUTE)

EV_SPEECH_PATH
(AUDIO_MUTE)

Conversation state

Conversation state

User System Audio SecondDisplay

EV_AUDIO_POWER
(OFF)

Conversation state

Idle state

EV_CONVERSATION
(LAND_RELEASE)

EV_SPEECH_PATH
(AUDIO_MUTE)

EV_CONVERSATION
(CONV_END)

EV_STOP_AUDIO_ALARM
(AUDIO_STOP_RINGING)

EV_UPDATE_SYMBOL
(IN_USE_SYMBOL+OFF_MODE)

EV_UPDATE_SYMBOL
(IN_USE_SYMBOL+OFF_MODE)

User System Audio SecondDisplay

Conversation state

Conversation state

EV_ALLOW_DTX
(note 1)

42

OM4754 EAMPS Software User Guide

Philips Semiconductors

Application Note
AN95030

(1) dtx_setting is either INHIBIT_DTX or ALLOW_DTX.

Discontinuous Transmission

(1) Reason to go to DTX-low has occurred. Reasons are a.o. dtx holdoff period expired and silence detected.
(2) Reason to go to DTX-high has occurred. Reasons are a.o. mobile needs to send something and voice detected.

5.3.6 MMI

Battery Low

Battery below Warning Level

Battery below Turn Off Level

User System Audio SecondDisplay

EV_VOX_OFF

Conversation state

EV_VOX_ON

EV_UPDATE_SYMBOL
(IN_USE_SYMBOL+FLASH_MODE)

EV_UPDATE_SYMBOL
(IN_USE_SYMBOL+ON_MODE)

DTX-high

DTX-low

DTX-high

(note 1)

(note 2)

User System Audio SecondDisplay

Any state

EV_LOW_VOLTAGE
(LOW_VOLTAGE_WARNING)

Any state

EV_TIMELENGTH_LOW_VOLTAGE
(DEFAULT_PARM)

User System Audio SecondDisplay

Turned off

EV_LOW_VOLTAGE
(LOW_VOLTAGE_TURN_OFF)

Any state

EV_HALT_SYSTEM
(note 3)

EV_END_PRESSED
(note 1)

EV_CONVERSATION
(note 2)

OM4754 EAMPS Software User Guide

Philips Semiconductors

43

Application Note
AN95030

(1) This message is only to be sent when the mobile is in conversation state. After sending this message, the User task must
wait for the EV_CONVERSATION message before sending the EV_HALT_SYSTEM message.

(2) This message is only to be expected when the mobile is in conversation state. The value in the message can be
CONV_END or NO_CONNECT.

(3) After this message is sent, the User task can turn off the mobile.

RSSI level

Keypress

(1) These messages are sent for the keys that have automoatic key repeat.

User System Audio SecondDisplay

EV_UPDATE_FS_LEVEL
(fieldstrength)

UserKeyboard

EV_KEYPRESS
(key)

EV_KEYREPEAT
(key)(note1)

EV_KEYREPEAT
(key)(note1)

EV_KEYREPEAT
(key)(note 1)

EV_KEYREPEAT
(key)(note 1)

EV_KEYRELEASE
(key)(note 1)

initial delay

44

OM4754 EAMPS Software User Guide

Philips Semiconductors

Application Note
AN95030

5.4 Software Drivers
Software drivers are added to enable tasks to correctly address the different hardware components. The soft-
ware drivers are shown in figure 4. This figure shows which drivers are called by the OM4754 software and/or by
other drivers.

Fig.4 OM4754 driver software

Drivers are implemented as routines to be called by the tasks and/or as interrupt routines. The tasks and interrupt
routines communicate through mailboxes and global variables. In the next sections all relevant drivers are
described.

5.4.1 The APROC driver

The APROC driver can be found in the files aproc.c , aproc.h and vox_int.c . The SA5753 APROC is con-
trolled through 9 registers. These registers can only be written to via the I2C bus. To simulate a read on these
registers the values written via I2C are also saved in shadow registers. There are several routines available to
control specific functions in the APROC. All the functions can be controlled by (re)setting appropriate bits in the
registers. Because more than one function can be controlled by one register it is necessary to first read the cur-
rent value from the register, set the appropriate bits and then write the resulting value back in to the register. Only
2 functions in the file aproc.c are used by the EAMPS software. These 2 functions are described below, all
other functions are not but can be used. To use a function the compilation switch TEST_HARNESS has to be set.
The use of the compilation TEST_HARNESS switch is here only used to limit the amount of code in the application
and to give the user some idea of how such a routine can be programmed.

The file aproc.c contains 2 routines which are used by the EAMPS software these are:

data_io_aproc This routine has four parameters. The first parameter identifies the command
given. The command is either AP_READ for read, AP_WRITE for write, AP_INIT
to initialize APROC or AP_RESTORE to restore the values of the shadow regis-
ters into APROC. The second parameter is the first register to read from or to
write to. The third parameter identifies the number of registers that has to be
read/written. The last parameter is the buffer in which the registers are/must be
stored. For the commands AP_INIT and AP_RESTORE the whole APROC regis-
ter contents is updated and all other parameters are ignored.

OM4754
SOFTWARE

PWM
driver

3-wire
driver

ADC
driver

DPROC
driver

LCD
driver

EEPROM
driver

APROC
driver

Keyboard
driver

Synthesizer
driver

Timer
driver

I 2C
driver

PSD312
driver

PA
driver

OM4754 EAMPS Software User Guide

Philips Semiconductors

45

Application Note
AN95030

aproc_set_vox This routine has one parameter which identifies whether the VOX should be
switched on or off. The VOX is controlled by the VOXctl bit of the SA5753. First
this routine disables the VOX interrupt to avoid glitches, then the VOXctl bit is
switched on/off and when the VOX is switched on, the VOX interrupt polarity is
set and the VOX interrupt is enabled. The VOX interrupt polarity is set according
the VOXOUT signal which goes from the SA5752 pin 5 to port 1 bit 1 (P1.1) of
the micro controller. If VOXOUT is high the interrupt will be generated on a fall-
ing edge (low polarity) otherwise on a rising edge (high polarity).

The VOX interrupt routine can be found in the file vox_int.c . The VOX interrupt is connected to port 1 bit 1
(P1.1) of the micro controller, therefore the VOX interrupt is identified as external interrupt 3. When a VOX inter-
rupt is generated the vox_int() interrupt routine is activated. This routine checks the polarity of the VOXOUT
signal and sends the event EV_VOICE_DETECT with the indication VOICE_DETECTED for a high polarity inter-
rupt and SILENCE_DETECTED for a low polarity interrupt. Then the polarity is changed from low to high or from
high to low. In figure 5 the VOXOUT signal, the indication of the event EV_VOICE_DETECT and the polarity are
given.

Fig.5 The VOXOUT signal

5.4.2 The DPROC driver

The UMA1000LT DPROC driver can be found in the files dproc.c , dproc.h and dprocint.c . The DPROC
transmits and receives frames in AMPS or TACS signalling format. Frames can be in control channel format or
voice channel format. Frames received are read from the DPROC using two lines (RXLINE and RXCLK). Frames
to be sent are written to the DPROC using two other lines (TXLINE and TXCLK). The data is clocked into or out
off the DPROC. The data processor has a status and a control register that can be accessed via the I2C bus. The
status register can be read and the control register can be written. The value written to the control register is
saved in a shadow register to make it possible to control only one of the functions in the control register while
leaving the other functions unchanged. The following routines can be used to control DPROC:

dproc_send_dummy_frame This routine performs a TXRESET on DPROC and sends a dummy frame to it.
After the dummy frame is sent a second TXRESET is performed to ensure that
DPROC is in a defined state.

init_dproc_driver This routine is called from the Start-up task to reset DPROC and to initialize the
DPROC driver. A DPROC reset is given by pulsing NRES. The DPROC is set
via I2C to support the AMPS protocol and then a dummy frame is sent by calling
the routine dproc_send_dummy_frame() .

enable_dproc_rx This routine enables the DPROC receive interrupt routine.

disable_dproc_rx This routine disables the DPROC receive interrupt routine.

send_frame This routine sends one frame which is given as a parameter. The type of the
frame is TX_FRAME which is defined in the file dproc.h .

wait_for_tx_ready This routine waits until the next frame can be sent to DPROC. The next frame
can be sent when the TXLINE goes high.

VOXOUT

VOICE_DETECTED SILENCE_DETECTED

low polarity interrupt

high polarity interrupt

46

OM4754 EAMPS Software User Guide

Philips Semiconductors

Application Note
AN95030

wait_for_tx_complete This routine waits until a transmission is completed. A transmission is completed
when bit 2 (TXIP) of the DPROC I2C status register is set to 0.

dproc_control With this routine the DPROC control register is programmed. This routine has
two parameters, the first indicates which bits must be set and the second param-
eter indicates which bits must be reset. The values and names of the DPROC
control register bits are defined in the file dproc.h . An I2C transmission is only
done when the control register is changed. This routine returns the new value of
the control register when the I2C is completed.

dproc_status With this routine the DPROC status register is read. The parameter given identi-
fies which status register bit(s) should be checked.The values and names of the
DPROC status register bits are defined in the file dproc.h . This routine returns
the value of the specified bit(s) in the status register.

Frames received by the DPROC must be processed quickly. When the DPROC receives a frame it pulls down
the received data line (RXLINE). The RXLINE is connected to port 1 bit 5 (P1.5) of the micro controller, therefore
the DPROC interrupt is identified as external interrupt 5. The RXLINE causes an interrupt that activates the
DPROC interrupt routine dproc_rx_int() . This routine clocks out the received frame, stores it at designated
memory location, sends a message to the system task indicating a frame is ready to be processed. The interrupt
routine checks if the mobile is on a voice or a control channel and calls the routine check_FVC_frame() or
check_FOCC_frame() respectively, to determine the frame type. The DPROC interrupt routine and the rou-
tines described above can be found in the file dprocint.c .

5.4.3 The Synthesizer driver

The Synthesizer driver can be found in the files synt1015.c and synt.h . The first IF frequency used is at
86.85 MHz, the channel spacing is 15 kHz, synthesizer A is the transmit synthesizer and synthesizer B is the
receive synthesizer.

The synthesizer driver controls the UMA1015M dual synthesizer that is used to tune the mobile to the correct
receive and transmit frequencies. The synthesizer driver converts the channel numbers used into divider values
and loads these into the synthesizer via a three wire control interface. When the mobile is not transmitting, the
transmit synthesizer can be turned off to save the battery. The synthesizer driver is initialized when executing the
macro SYNT_INIT() . This macro calls the routines synt_init_test() , synt_load_config() ,
synt_load_ref() and synt_powerdown_tx() respectively . The following routines can be found in the
file synt1015.c :

synt_init_test This routine initializes the UMA1015M test register to avoid unwanted values in
the test register due to power up. This routine is called at system start-up.

synt_powerdown_tx This routine puts the UMA1015M transmit synthesizer in power down mode and
port P3 of the UMA1015M is set to disable the transmit VCO and the power con-
trol loop. It also reset’s the flag synt_config_loaded_flag to indicate that
the configuration register of the UMA1015M has to be loaded when a transmit
channel is programmed.

synt_load_config This routine loads the configuration register of the UMA1015M synthesizer and
sets the flag synt_config_loaded_flag to 1. The transmitter is now pow-
ered up and ready for use.

synt_load_ref This routine loads the reference divider of the UMA1015M synthesizer and sets
the flag synt_ref_loaded_flag to 1.

synt_load_rx This routine loads the reference divider if it was not loaded and then programs
the receive synthesizer to the desired channel. The channel number should be
given as a parameter.

OM4754 EAMPS Software User Guide

Philips Semiconductors

47

Application Note
AN95030

synt_load_tx This routine loads the configuration register and the reference divider if they
were not loaded and then programs the transmit synthesizer to the desired chan-
nel. The channel number should be given as a parameter.

5.4.4 The Timer driver

The Timer driver can be found in the files timer.c , timer.h and timerint.c . The timer driver supplies slow
timers and fast timers. A fast timer can be set in increments of 1 ms, a slow timer in increments of 20 ms. When
a timer is started, the driver puts information about the timer in a global structure. A timer handle that identifies
the timer is returned. The following routines and macro’s are present in the files timer.c and timer.h :

init_timers This routine initializes the amount of fast and slow timers, then hardware timer 1
and 2 and their corresponding interrupt routines are initialized. This routine is
called from the Start-up task.

start_fast_timer This macro calls the routine start_a_fast_timer() with the last parameter
set to ONE_SHOT. The two parameters given are supplied as the first two
parameters to the routine start_a_fast_timer() .

start_fast_cont_timer This macro calls the routine start_a_fast_timer() with the last parameter
set to RELOADABLE. The two parameters given are supplied as the first two
parameters to the routine start_a_fast_timer() .

start_a_fast_timer This routine is called with 3 parameters. The first parameter is the time in milli
seconds which the timer should run, the second is the mailbox where the mes-
sage should be sent to when the timer expires. If the mailbox is NO_MBX a sig-
nal is sent to the invoking task when the timer expires. The third parameter is
either ONE_SHOT or RELOADABLE. If the timer could not be started 0 is
returned otherwise the timer handle is returned.

start_slow_timer This macro calls the routine start_a_slow_timer() with the last parameter
set to ONE_SHOT. The two parameters given are supplied as the first two
parameters to the routine start_a_slow_timer() .

start_slow_cont_timer This macro calls the routine start_a_slow_timer() with the last parameter
set to RELOADABLE. The two parameters given are supplied as the first two
parameters to the routine start_a_slow_timer() .

start_a_slow_timer This routine is called with 3 parameters. The first parameter is the number of 20
milli second intervals for which the timer should run, the second is the mailbox
where the message should be sent to when the timer expires. If the mailbox is
NO_MBX a signal is sent to the invoking task when the timer expires. The third
parameter is either ONE_SHOT or RELOADABLE. If the timer could not be
started 0 is returned otherwise the timer handle is returned.

reload_slow_timer This routine reloads a slow timer. As parameters the time, the mailbox and the
timer handle are given. If the timer was not found the timer is started for the
given period. If the timer was found and the remaining delay is greater than the
specified time nothing will be done, otherwise the timer is reloaded with the new
specified time. The timer handle of the (new) timer is always returned.

stop_timer This macro calls the routine stop_a_timer() and sets the timer handle to 0 so
that the timer handle is forgotten. It is better to use this macro instead of using
the routine stop_a_timer() .

stop_a_timer This routine stops the timer identified by the given timer handle. If the timer is
unknown ERROR is returned otherwise SUCCESS will be returned.

48

OM4754 EAMPS Software User Guide

Philips Semiconductors

Application Note
AN95030

stop_timer_category This routine stops all timers that the invoking task has running when the first
parameter is STOP_TSK, otherwise (first parameter is STOP_MBX) it stops all
running timers which send a message to the mailbox identified by the second
parameter. In either way the number of timers that have been stopped will be
returned.

restart_timer This routine restarts any fast or slow timer identified by the parameter timer han-
dle. If the timer was restarted it returns SUCCESS otherwise it returns ERROR.

The timer interrupt routines go through the global timer structures and decrease the remaining time till expiration.
When a timer expires a message or a signal is sent to the mailbox/task specified for that timer. A message is sent
when the mailbox identifier is not equal NO_MBX, otherwise a signal is sent. When the timer is a reloadable timer
it is started again. The timer interrupt routine can be found in the file timerint.c . The fast 1 milli second timer
uses timer 2, the slow 20 milli second timer uses timer 1. Timer 0 is used for the system clock of the RTX-51
operating system.

In Table 11 is a list of timers which can be used simultaneously by a tasks, which does not mean that these tim-
ers are actually in use. In order to see the maximum amount of timers in use the variables max_fast for all fast
timers and max_slow for all slow timers can be checked.

Currently the maximum number of slow timers is set to 15 and the maximum number of fast timers is set to 10
(see timer.h).

5.4.5 The EEPROM driver

The EEPROM driver can be found in the files eeprom.c and eeprom.h . The EEPROM consists of pages which
are 16 (EE_PAGE_SIZE) bytes long. The EEPROM contents is kept in RAM to speed up an EEPROM read
access because the EEPROM is connected to the I2C bus. At system start-up the EEPROM contents is read and
stored in RAM. All read actions on the EEPROM are done in RAM, all write actions are first written in RAM and
then the corresponding EEPROM write action is done. It is also possible that the EEPROM contents is written
back to EEPROM at the moment the system is switched off but this implementation is not chosen to minimize the
chance of data loss in case of a battery disconnection. The EEPROM structure eeprom_shadow is defined in
the file eeprom.h and is a union of an array shadow_array which has the length of the EEPROM and a struc-
ture shadow in which the appropriate EEPROM variables are defined. In this structure (shadow) the variable
ETACS_system_used defines if the EEPROM was initialized for EAMPS or ETACS. When this variable equals
1 the EEPROM was initialized for ETACS, when it equals 0 the EEPROM was initialized for EAMPS. The first
byte of the EEPROM identifies the state of the EEPROM. When this byte contains 0xAA the EEPROM was initial-
ized, when this byte contains 0x55 the EEPROM driver is busy writing to the EEPROM. Any other value of this
byte indicate that the EEPROM is empty and needs to be initialized. The following routines are available in the
EEPROM driver:

TABLE 11 Maximum number of timers simultaneously used by a task
Task Number of Slow timers Number of Fast timers

Idle task 0 0

Display task 1 1

Second task 1 0

Keyboard task 1 0

Start-up task 0 0

Audio task 1 1

User task 1 1

System task 7 3

OM4754 EAMPS Software User Guide

Philips Semiconductors

49

Application Note
AN95030

eeprom_read_bytes This routine performs the actual read on the EEPROM. First the read address is
set and than the bytes are read. This routine is called from the two routines
below.

eeprom_read_page This routine reads one complete page from EEPROM to the shadow area in
RAM.

eeprom_read_to_shadow This routine reads the whole EEPROM contents to the RAM shadow area. If the
variable ETACS_system_used equals 1 or the first byte in EEPROM indicates
that the EEPROM is empty the RAM shadow area is cleared, some EEPROM
variables are initialized and the whole shadow area is written back to the EEP-
ROM. At the end of this routine the EEPROM check-sum is also checked.

eeprom_write_bytes This routine performs the actual write to the EEPROM. During this routine the
I2C bus is enabled. First the first byte in EEPROM is set to write in progress then
the bytes are written, a new check-sum is calculated and stored in EEPROM and
then the first byte in EEPROM is set to normal operation. This routine is called
from one of the four routines below.

eeprom_write_page This routine writes one page from the RAM shadow area to the EEPROM.

eeprom_write_sys_pages This routine writes one system page from the RAM shadow area to the EEP-
ROM. The system pages are the first 8 (SYS_SIZE) pages in EEPROM.

eeprom_write_tel_no This routine writes the telephone number from the RAM shadow area to the
EEPROM. The telephone numbers are stored after the system pages until the
end of the EEPROM.

eeprom_write_last_no_pages This routine writes the last number dialled pages from the RAM shadow area to
the EEPROM. The last number pages are currently only in RAM, however in the
EEPROM driver a provision is made to be able to store the last dialled numbers
in EEPROM.

All EEPROM routines return after the EEPROM access is completed.

5.4.6 The I2C driver

The I2C driver can be found in the files iic.c , iic.h and iic_int.c . The I2C driver controls the I2C hardware
that is part of the microcontroller. It provides functions to read and write data from and to the I2C bus. Writing data
to another I2C device on the I2C bus is done by sending the I2C address with a write indication and then writing
the data on the bus. Writing data to another I2C device in this way is called a master transmit. Reading data from
another I2C device in the I2C bus is done by sending the I2C address with a read indication and then reading the
data written on the bus by the addressed I2C device. Reading data from another device in this way is a called
master receive.

Data to be written to the I2C bus is put in a structure. When the I2C hardware is not busy transmitting previous
data on the I2C bus a start condition is initiated. When the start condition has been sent an interrupt is generated.
The I2C interrupt triggers the I2C interrupt routine. This routine checks the status of the I2C hardware and takes
appropriate action. When another data byte is to be sent or received, a start or stop condition is initiated, and the
data is sent or received. When a complete stream of data has been sent/received, a message is sent to the mail-
box specified in the global structure by the task that wanted to send or receive the data.

The I2C interrupt routine is also programmed to react on slave receive mode. This means that the I2C driver sup-
ports multiple masters on the I2C bus. The I2C address of the 83CL580 micro controller is set to 6 in the file
iic.h . When a slave receive is completed the data is stored in a global buffer and a message is sent to the
IIC_SR_MBX mailbox. Please note that the IIC_SR_MBX is also used by the User task to synchronize with the
EEPROM driver (see Table 8). The slave receive part of the I2C driver is not used by this application and is also
not thoroughly tested. However when using the slave receive mode the I2C bus must be enabled. When the files
iic.c and iic_int.c are compiled with the compiler switch PRODUCTION_PHONE set the I2C bus will be disa-

50

OM4754 EAMPS Software User Guide

Philips Semiconductors

Application Note
AN95030

bled after an I2C transmission by pulling the SCL line low. If the I2C bus must be enabled the routine
iic_bus_enable() must be called. When using an emulator the variable iic_disable can be set to 0.

In the file iic.h the I2C slave addresses are defined. In this file the macro IIC_SETUP() is defined. This macro
is called from the file p83cl580.c and initializes the I2C hardware. The following routines are available in the file
iic.c :

iic_module_init This routine initializes the I2C driver. This routine does not initializes the I2C
hardware, this is done by the macro IIC_SETUP() . During this routine all inter-
rupts are disabled.

iic_bus_enable This routine enables the I2C bus so that an outside party can access the I2C bus.

iic_bus_disable This routine disables the I2C bus so that no outside party can access the I2C
bus.

set_iic_SR_task This routine tells the I2C interrupt routine which task will receive a message
when data is received in slave receive mode.

iic_put_byte This routine puts one byte on the I2C bus. This routine has three parameters, the
first is the slave address of the I2C device which should be accessed, the second
is the mailbox to which the confirmation should be sent to. When this parameter
equals NO_MBX no confirmation is sent. The third parameter is the byte which
should be sent.

iic_put_string This routine puts a complete string on the I2C bus. This routine has four parame-
ters, the first is the slave address of the I2C device which should be accessed,
the second is the mailbox to which the confirmation should be sent to. When this
parameter equals NO_MBX no confirmation is sent. The third parameter is the
pointer to the string which should be sent and the fourth parameter is the number
of bytes to be sent.

iic_read_byte This routine reads one byte from the I2C bus. This routine has three parameters,
the first is the slave address of the I2C device which should be accessed, the
second is the mailbox to which the confirmation should be sent to. When this
parameter equals NO_MBX no confirmation is sent. The third parameter is the
pointer to the byte which should be read. Please note that when reading from the
I2C bus the calling routine must always wait for confirmation to be sure that the
data is valid.

iic_read_string This routine reads a complete string from the I2C bus. This routine has four
parameters, the first is the slave address of the I2C device which should be
accessed, the second is the mailbox to which the confirmation should be sent to.
When this parameter equals NO_MBX no confirmation is sent. The third param-
eter is the pointer to the string which should be read and the fourth parameter is
the number of bytes which should be read. Please note that when reading from
the I2C bus the calling routine must always wait for confirmation to be sure that
the data is valid.

5.4.7 The Keyboard driver

The Keyboard driver can be found in the file kb_tsk.c . The keyboard is connected to port 4 of the micro control-
ler, except for the ON/OFF key which is connected to the PSD312L. On order to read a key from the keyboard
the routine get_key() must be called which returns the (debounced) key pressed. All keys have a higher prior-
ity than the ON/OFF key, which means that when a key is pressed together with the ON/OFF key the key
pressed is processed, but when two other keys are pressed together no key is processed. When a key is pressed
and stays pressed the key is only seen once, only the CLEAR and ON/OFF key are repeated. The CLEAR key is

OM4754 EAMPS Software User Guide

Philips Semiconductors

51

Application Note
AN95030

repeated when pressed longer than 400 milli seconds, the ON/OFF key is repeated as soon as it stays pressed
(and no other key is pressed). The keyboard driver contains the next routines:

kboard_scan This is the actual keyboard scanning routine. It scans port 4 of the micro control-
ler to see if a key was pressed, if no key was pressed the ON/OFF key is
checked.

debounce This routine debounces a key read from the keyboard by checking it again the
next time this routine is called. The keyboard is read by calling the routine
kboard_scan() .

convert_key This routine converts a key read from the keyboard into a key number used by
the mailbox software.

get_key This routine gets a key number from the keyboard having debounced it. It calls
the above routines in the order listed.

5.4.8 The LCD driver

The LCD driver can be found in the file lcd_drv.c . The LCD used is a LP3800-A, which has 3 lines of 12 char-
acters. Line 1 and 3 are used for status information, line 2 is used to display telephone numbers. In figure 6 the
LCD layout shown.

Fig.6 LCD layout

In figure 6 the mobile is roaming on system A, because the text “ROAM A” is displayed, for system B the A is
changed in B. The text ROAM can change to NSVC when the mobile is out of service or when the mobile is in its
home area A or B is displayed. In conversation mode the In Use symbol will appear on the LCD, when the In Use
symbol starts flashing the DTX mode is entered. The RSSI symbol is a bucket which can be filled, when the
bucket is full a strong RSSI is measured, when it is empty almost no RSSI is measured. The RSSI is not dis-
played when the mobile is out of service, hence when the text NSVC is displayed on the first line. The text SIG is
put in front of the RSSI symbol to indicate that it is the signal strength and not e.g. the battery level. The MUTE
symbol will appear when in conversation the mute key is pressed, however currently the keyboard does not sup-
port a mute key. The LCD driver contains the following routines:

Display_Init This function initializes the LP3800-A LCD display to function set 8 bit, 4 lines
Vgen off, display on, cursor off, blink off, increment entry mode, no shift and
clears the display.

Display_Update_Line1 This function updates line 1 of the LCD with the data stored in the global array
display_prompt_line . Any symbol displayed on this line is hidden, if the glo-
bal array is empty the symbols are restored in this line.

Display_Update_Line2 This function updates line 2 of the LCD with the data stored in the global array
display_num_line . If the global array is empty nothing is displayed.

Display_Icon This routine has 2 parameters. The first parameter identifies the icon, the second
the RSSI level. Icons are divided in 2 nibbles, one nibble is either OFF_MODE,
ON_MODE, FLASH_MODE or FLASH_REVERSE_MODE. The other nibble

Symbols
MUTE
In Use
RSSI

ROAM A
01234567890_

SIG

52

OM4754 EAMPS Software User Guide

Philips Semiconductors

Application Note
AN95030

identifies the symbol as shown in table 12. The RSSI level is only updated if the
icon type is SIG_SYMBOL ored with ON_MODE.

5.4.9 The 3-wire driver

The 3-wire driver can be found in the files 3wire.c and 3wire.h . The 3-wire interface is a write only interface
that uses an enable line, a clock line and a data line. The 21 data bits are output on the data line clocked by the
clock line. The enable line indicates when valid data is present. The 3-wire driver contains one routine:

three_wire_write This routine performs a complete write on the 3-wire bus. The length of a mes-
sage is 21 bits which means that the message has a length of 3 bytes. The first 3
bits of the message are ignored. The message is given as a parameter.

5.4.10 The PSD312L driver

The PSD312L driver can be found in the files psd312.c and psd312.h . The PSD312L is a single chip program-
mable peripheral. Its offers additional 64k bytes ROM, 2k bytes RAM and 16 I/O ports. The PSD312L driver con-
trols the I/O ports on the PSD312L device. Several outputs and one input are connected to the PSD312L on the
mobile. The following routines can be used to access the PSD312L driver:

psd312_init This routine initializes the data direction register of port A to 1, since port A is
programmed to track A0 until A7. Then it initializes the data register B and data
direction register B. Bit 1 of port B (PB1) is used for input, all other bits of port B
are set for output. The data register is programmed before the direction register
to avoid glitches due to previous data.

psd312_read This routine reads the I/O port and returns it value to the calling process. An
input port is read from the pin register and an output port is read from the data
register. The I/O port is identified by the parameter given, the definitions of all I/O
ports are given in the file psd312.h .

TABLE 12 Symbol types
Symbol name Meaning

ROAM_SYMBOL The mobile is roaming

NO_SYMBOL No service found

SERV_SYMBOL Service found

IN_USE_SYMBOL The mobile is in conversation mode

LOCK_SYMBOL The mobile is locked (not implemented)

A_SYMBOL The mobile is currently switched to system A

B_SYMBOL The mobile is currently switched to system B

VOX_SYMBOL The VOX is switched on (not implemented)

DTMF_SYMBOL The DTMF dialling is enabled (not implemented)

FUNC_SYMBOL The function mode is entered (not implemented)

ALPHA_SYMBOL The alpha mode is entered (not implemented)

MUTE_SYMBOL The mobile is muted

SIG_SYMBOL The RSSI must be updated

RECALL_SYMBOL A memory recall is done (not implemented)

STORE_SYMBOL A memory store is done (not implemented)

OM4754 EAMPS Software User Guide

Philips Semiconductors

53

Application Note
AN95030

psd312_write This routine writes to the corresponding I/O port. The first parameter identifies
the action (SET or RESET), the second parameter identifies the I/O port, the def-
initions of the I/O ports are given in the file psd312.h .

5.4.11 The ADC driver

The ADC driver can be found in the library amps.lib and is therefore not delivered in source. Channel 0 of the
ADC must therefore always be connected to the RSSI output of the RF system. The ADC driver consists of one
routine, the prototype of this routine can be found in the file stateutl.h .:

read_ad_converter This routine starts a conversion on a given ADC channel. The ADC channel (0,
1, 2, or 3) is identified by the given parameter. The ADC value read is returned.

5.4.12 General utilities

All general utilities can be found in the files io_utl.c and io_utl.h . These files contain routines for turning
the power amplifier, the transmit synthesizer and the back lighting on or off and one routine to set the PWM
power level, these routine are:

tx_syn_on This routine powers up the transmit synthesizer by calling the routine
synt_load_config() of the synthesizer driver.

tx_syn_off This routine powers down the transmit synthesizer by calling the routine
synt_powerdown_tx() of the synthesizer driver.

pa_on This routine switches the power amplifier on by setting the TXDIS line (micro
controller port 1 bit 2) to 1.

pa_off This routine switches the power amplifier off by setting the TXDIS line (micro
controller port 1 bit 2) to 0.

light_on This routine switches the back lighting on by setting the LED_ENABLE line con-
nected to the PSD312L device by calling the routine psd312_write() .

light_off This routine switches the back lighting off by resetting the LED_ENABLE line
connected to the PSD312L device by calling the routine psd312_write() .

tx_power_level This routine sets the transmitter power to the level indicated by the parameter
level . The PMW power table used is set in EEPROM and resides in the array
mid_power_lev . When an RF system is used which uses more than one PWM
power table the variable channel_number (see sysvar.h) can be used to
determine the power table to be used.

	Abstract
	APPLICATION NOTE
	Summary
	CONTENTS
	1. Introduction
	1.1 Purpose
	1.2 Scope
	1.3 Abbreviations
	1.4 References
	1.5 Applicable documents
	1.6 Organization of this document

	2. Generating an executable system
	2.1 Requirements
	2.2 Macro Assembler
	2.3 C compiler
	2.4 Object Linker
	2.5 Translation utilities
	2.6 Configurating RTX-51
	2.7 Configurating the PSD312L

	3. Using the OM4754 software
	3.1 Starting the system
	3.2 MMI description

	4. Multitasking operating system
	4.1 Tasks
	4.2 Interrupt routines
	4.3 Inter process communication

	5. The OM4754 software
	5.1 Software Tasks
	5.2 Message types and formats
	5.3 Message scenarios
	5.4 Software Drivers

