‘ SGS-THOMSON AN931
Y7 ichoELECTRONIES — APPLICATION NOTE

ON-CHIP HARDWARE EEPROM EMULATION
versus FLASH MEMORY SOFTWARE SOLUTIONS

by Y. BAHOUT

INTRODUCTION

The new FLASH+0 products from SGS-THOMSON offer single chip solutions which combine Flash and
EEPROM memory functionality. Based on Flash memory technology, the devices integrate all the control
logic to provide a large block of Flash memory and a smaller block which is able to emulate in hardware a
full flexibility EEPROM. The first product in this FLASH+ family is the M39432 which features a single supply
4 Mb Flash memory combined with a 256 Kb EEPROM in a TSOP40 package. The Flash and EEPROM
blocks can be addressed in a concurrent mode, so that the EEPROM block can be written using an internal
algorithm, while the Flash block is being read. This enables parameter data to be updated in the EEPROM
concurrently with program code execution in the Flash memory, thus offering the same functionality as
separate Flash and EEPROM devices.

The FLASH+ family, of which the M39432 is the first member, is modular and will offer Flash blocks from
1 Mb to 8 Mb and EEPROM blocks from 64 Kb to 256 Kb. The M39432 is the first family member to be
available and offers two independant blocks of 4 Mb Flash (512K x 8) and 256 Kb EEPROM (32K x 8).

Using software algorithms and additional external SRAM memory, it is possible to emulate an EEPROM
in Flash memory, but this solution has considerable disadvantages compared to a full hardware emulation
such as the FLASH+ devices. FLASH+ EEPROM block offers the cell density of Flash memory with the
functionality of EEPROM, that is the ability to re-write the memory at the byte level, a write (Erase + Write)
operation taking under 10ms.

Moreover the FLASH+ EEPROM write operation can procede concurrently with reading of the Flash block.

Figure 1. The FLASH+ Solution

MICROPROCESSOR -“
(MPU) /ZASH ™

FLASH + EEPROM

Al02125

July 1997 1/9

ANO931 - APPLICATION NOTE

FLASH MEMORY WITH EXTERNAL SOFTWARE EMULATION OF EEPROM

This solution uses one large Flash memory, split logically into two areas: the executable code is stored in
one area - typically all the memory space except two sectors - and the remaining memory is dedicated to
EEPROM emulation.

Flash memory may be written byte-by-byte, but cannot be erased, and so cannot be re-written, at the byte
level. Flash memory can only be erased by sector, sector sizes in general ranging from 8K byte up to the
whole chip size. The inflexibility of the sector erase limitation can be overcome by writing data sequentially
in one sector and, when this is filled, copying the latest data written into a second sector. This way of
providing EEPROM emulation is based on two Flash memory sectors, the first being the one in use and
the second a spare one ready to receive a copy of the latest data and take over the emulation while the
first sector is erased. The byte program and sector erase operation in a Flash memory cannot run
concurrently with other operations and so the Flash memory code blocks are not available to be read while
these operations are proceding.

In more detail, at first power-up the two Flash memory sectors are erased (to FFh for a Flash memory).
The first write to the emulated EEPROM programs the Parameter-1 at address 0000h of Sector-1. When
the application needs to update this parameter with a new value, the emulation software will program three
bytes: a 16 bit pointer to the new value and the new Parameter-1 value itself. This is shown graphically in
Figure 2.

Parameter-1 was first programmed at location 0000h, it was then modified and re-programmed at location
000Ch and finally its third value was programmed at 001Eh. The value at location 001Eh is the last update
which is indicated by the fact that the following 16 bit address pointer value is still blank (FFFFh at locations
001Fh & 0020h). Parameter-2 was programmed at 0003h, then 000Fh and 0015h; Parameter-3 was
programmed at 0006h, 0012h and 0021h; Paramter-4 was programmed at 0009h and 001Bh.

The content of the Flash memory sector is a stack of three byte values or parameter/address pointer pairs,
forming a linked list whose last value is the latest update of the parameter.

During the application’s life time, the parameters are updated many times and the Flash memory sector-1
will be filled. When it is full the application software must copy the latest parameter values to Sector-2 and
erase Sector-1 in order to be ready for the reverse order next copy.

Figure 2. Example of a Flash Memory Sector Emulating EEPROM

FLASH SECTOR
0000h PARAMETER-1, ADDRESS POINTER = 000Ch <t— First value of Parameter-1
0003h PARAMETER-2, ADDRESS POINTER = 000Fh
0006h PARAMETER-3, ADDRESS POINTER = 0012h
0009h PARAMETER-4, ADDRESS POINTER = 001Bh
000Ch PARAMETER-1, ADDRESS POINTER = 001Eh 7= go.0nd value of Parameter-1
000Fh PARAMETER-2, ADDRESS POINTER = 0015h
0012h PARAMETER-3, ADDRESS POINTER = 0021h
0015h PARAMETER-2, ADDRESS POINTER = FFFFh
001Bh PARAMETER-4, ADDRESS POINTER = FFFFh
001Eh PARAMETER-1, ADDRESS POINTER = FFFFh <1— Third value of Parameter-1
0021h PARAMETER-3, ADDRESS POINTER = FFFFh
0024h

Al02126

%)

2/9

ANO931 - APPLICATION NOTE

System Requirements. Flash memory cannot be read while programming another location or while being
erased, even if the program/erase is in different sectors. This is because the internal algorithms of the Flash
memory are busy controlling the execution of the program or erase. This means that the software code
controlling the programming of bytes in one of the sectors emulating the EEPROM has to be stored
OUTSIDE the Flash memory itself.

This means the application hardware design must include an additional memory, often a small SRAM, to
store the device drivers for this operation.

The executable code for the EEPROM software emulation is stored in the Flash memory. This code is the
software driver for sequencing all the tasks of emulation including the specific "program a byte in Flash
memory" driver which has to be copied to the SRAM before execution.

Typical the EEPROM emulation software code is 16K bytes and the part needed to be copied to the SRAM
is 4K bytes.

Figure 3. Memories Required for the External Software Emulation of EEPROM in Flash Memory

A A A 4
FLASH MEMORY SRAM

MICROPROCESSOR

4K BYTE
(MPU)

APPLICATION CODE

EMULATION SOFTWARE
(4K to 16K BYTE)

Al02127

[S72 319

ANO931 - APPLICATION NOTE

HARDWARE VERSUS SOFTWARE EMULATION

The emulation of EEPROM can be done in two ways:

— Using FLASH+ devices which provide hardware EEPROM emulation, based on Flash memory technol-
ogy

— Using standard Flash memory with a small external SRAM, with software emulation of the EEPROM in
two Flash memory sectors.

In the comparison which follows hardware emulation will be referred to as OHE (On-chip Hardware
Emulation) and the software emulation as ESE (External Software Emulation).

Access Time

The access times for the two different emulations are not the same, and that for ESE varies with the number
of times a parameter is updated.

OHE Access Times. Read and write times for On-chip Hardware Emulation are identical to the access
times for a standard parallel access EEPROM, that is treap is one MPU cycle and twriTe is is one MPU
cycle plus a write latency of 10ms during which the EEPROM performs its internal write cycle (and during
which the Flash memory may continue to be read).

So the OHE access time is constant and is not weighted by the number of updates performed for each
parameter. The 10ms latency between byte writes can be significantly reduced using the page mode write
which allows up to 64 bytes to be written during a single 10ms write cycle.

ESE Access Times. For ESE, as shown in Figure 2, each parameter byte is associated with a two byte
address pointer in a linked list. Reading or writing a new value implies a sequence of MPU read cycles to
find the end of the relevant parameter list. Thus, for example, the time to read the last value of the
Parameter-1 means performing the following operations:

— read the first address pointer at 0001h, 0002h
— if this pointer is not FFFFh, then
—read the 2nd pointer at 000Ch, 000Eh
— if this pointer is not FFFFh, then
— read the 3rd pointer at 001Fh, 0020h
— if this 3rd pointer is not FFFFh, then
—...and so on...
— else read the latest parameter-1 value

From this example the general rule for the access time can be derived:
Time to read last value in list = (N + 1) * (2 MPU read cycles + MPU conditional test)

where N is the number of parameter updates. Table 1 summarises the access times for a few extreme
cases of sector configurations.

%)

4/9

ANO931 - APPLICATION NOTE

Table 1. ESE Access Times

1 EEPROM byte 100 EEPROM bytes 2730 EEPROM bytes @
Maximum number of updates
possible, N @) 2730 27 1
treap (N): read time for one (N+1) * (2 read cycles + (N+1) * (2 read cycles + (N+1) * (2 read cycles +
byte conditional test cycle) conditional test cycle) conditional test cycle)

twriTe (N): write time for one

byte treap(N) + 3 write cycles treap(N) + 3 write cycles | treap(N) + 3 write cycles

Time to swap last update tg

new Flash memory sector ©) trean(2730) + 3 write cycles | trean(27) + 3 write cycles | treap(1) + 3 write cycles

Notes: 1. 2730 is the maximum number of bytes that can be emulated with a Flash memory sector of 8K byes.
2. Assuming each byte is updated the same number of times.
3. When swapping data additional time is required to download the executable drivers to the SRAM and to do the sector erase.

Table 1 shows the cases for an application with only one parameter, for 100 parameters and for the
maximum that can be stored in a Flash memory sector of 8K bytes (8K bytes/3 bytes per parameter = 2730
parameters without copying to the alternate sector). If the application MPU can perform a read/write and
conditional test in 200ns then we get the following limits for the access times:

For one parameter:

First parameter update takes

— treap = (N+1) * (2 * read + conditional test) = 1.2us

— twrire = (N+1) * (2 * read + conditional test) + 3 * write = 31.8us
(assuming the Flash memory byte write time is 10us).

The 2730th parameter update takes
— treap = 1.638ms
— twriTE = 1.669ms

Each 2730 updates the application software has also to copy the last updated values to the alternate Flash
memory sector, the Flash memory sector erase takes about 1 second at the beginnig of life but becomes
longer with more erase/write cycles, and so the application will freeze for some seconds every 2730
updates.

For 100 paramters:

First parameter update takes
— treap = 1.2us

— twriTE = 31.8s

The 27th parameter update takes
— treap = 16.8ps
— twriTE = 47.4s

And in this case the application software has to copy the last updates to the alternate Flash memory sector
after only 27 updates and the application will freeze for some seconds to erase the Flash memory sector
every 27 updates.

For 2730 parameters the read and write times are absurdly high as each update means using a new Flash
memory sector and freezing the application for some seconds to erase the alternate.

[S72 519

ANO931 - APPLICATION NOTE

Table 2. Read and Write Times after Several Updates

Number of Updates 1 27 2730
tREAD 1.2us 16.8us 1.638ms
twRITE 31.8ps 47.4pus 1.669ms

The read and write times for ESE are always larger than for OHE, the worst case being for the last updates
within the same Flash memory sector. The long read access time is a weakness of ESE when compared
to the 200ns read access time for a parallel access EEPROM offered by OHE.

In addition, the seconds delay for ESE Flash memory sector erase freezes the entire application. The sector
erase can be suspended and resumed, but this requires the external drivers in the additional SRAM and
prolongs the operation.

This is particularly inappropriate in an application where interrupt requests have to be serviced in aminimum
time. If the interrupt request rate is high and parameter refresh is also high, there is a possibility that a
catastrophic scenario could develop where the first EEPROM emulation sector is not yet erased before the
second sector is full and needs to be erased also.

Figure 4 summarises the access times and the update number.

Figure 4. Access Times and the Update Number

Access Time
A
1s 4
100ms 4 Latency between 2 successive
/ OHE Writes (Byte or Pages of 64 bytes)
N R RS R —— ---
1ms 4

100ps -
31.8us 4
10us + Read or Write OHE Byte = 200ns
1.2us -+
ZOOHS - --
1 2730 Number of updates

Al02128

%)

6/9

ANO931 - APPLICATION NOTE

Power Consumption

The power consumption of any single power supply memory is dependent on three parameters: the Icc
operating current, the lcc standby current and the time ratio between operating and standby conditions.

Adevice is active (Icc = operating current) when accessed. The access time of the ESE case can be several
times longer than for OHE, and so the active time for ESE is much larger than for OHE. As the standby
current value is much less than the operation value, the ratio of power consumption between OHE and
ESE concepts depends mostly on the operating current values and active times.

Table 2 shows that the ESE access time is 6 to more than 8000 times longer than the OHE access time.
Thus the ESE concept requires considerably more energy than the OHE one.

Memory Size for Emulation

Two factors are important when comparing the External Software Emulation and the On-chip Hardware
Emulation solutions: the number of parameters to be stored and the number of updates.

For OHE the memory size chosen is simply determined by the number of parameters to be stored. The
number of updates that can be made is determined by the technology which is able to sustain over 100,000
re-write cycles for the emulated EEPROM.

For ESE, the evalutation is not a simple matter. First is the case where the data is updated a few times,
say 1 to 10 times. Most applications that modify data only a few times can accept that they will be frozen
during for a few seconds needed for Flash memory sector erase.

During the freeze they will offer limited functionality with most interrupts disabled and no real time operations
possible. Table 3 shows the memory size requirements for this case.

Table 3. Memory Size Required for 1 to 10 Updates

Emulated EEPROM Size 16Kb 64Kb 256Kb
. ESE Size @ 3*2*16Kb = 96Kb 3*2*64Kb = 384Kb 3*2*256Kb = 1.536Mb
ESE solution
SRAM Size 32Kb 32Kb 32Kb
. OHE Size 16Kb 64Kb 256Kb
OHE solution
SRAM Size none none none

Note: 1. One EEPROM byte = 3 ESE bytes, ESE solution requires 2 Flash memory sectors.

If the number of updates is higher, in the range 100 to 1000 times, this is typical of applications that require
a more flexible access to the EEPROM. The main concern is to spread the long Flash memory sector erase
time into many small Erase Suspend/Resume slots in such a way as this operation does not impact on the
applications real time tasks. If we consider an application that cannot afford to be slowed down by the
Erase Suspend/Resume except after each 10th parameter update, then this will have to use a Flash
memory sector size to emulate the EEPROM which is ten times larger than the data size in order to offer
fast access time for the first 10 updates. The values are shown in Table 4.

Table 4. Memory Size Required for 100 to 1000 Updates, Delay at each 10th Update

Emulated EEPROM Size 16Kb 64Kb 256Kb
. ESE Size @ 3*2*10*16Kb = 960Kb 3*2*10*64Kb = 3.84Mb 3*2*10*256Kb = 15.36Mb
ESE solution
SRAM Size 32Kb 32Kb 32Kb
. OHE Size 16Kb 64Kb 256Kb
OHE solution
SRAM Size none none none

Note: 1. One EEPROM byte = 3 ESE bytes, ESE solution requires 2 Flash memory sectors, each sector is 10 times the EEPROM size.

Lyy 719

ANO931 - APPLICATION NOTE

Memory Size for Emulation (cont'd)

In the last case where the parameters are updated thousands of times, say 1000 to 100,000, the application
is typically one that requires fast data aquisition of at least 100 parameter updates before it can be slowed
to erase the Flash memory sector. In this case to Flash memory sector emulating the EEPROM has to be
100 times larger than the EEPROM memory. This results in huge and impractical Flash memory size
requirements (of up to 153.6Mb to emulate an EEPROM of just 256Kb).

In all cases the OHE solution requires just the EEPROM size needed by the application.

Emulation Software Drivers

No software drivers are needed for the OHE solution as the EEPROM part of the FLASH+ device is
accessed directly in the memory address space for read and write. The ESE solution requires software
drivers which must be stored in the Flash memory and downloaded to an SRAM of the order of 4K to 16K
bytes.

Hardware Environment and Concurrent Mode
The ESE solution cannot access both Flash memory and ESE blocks concurrently because a write to the
ESE has to be controlled by software running outside the Flash memory in the additional SRAM.

The OHE solution however allows reading the Flash memory during the internal EEPROM write cycle. It
does not require any addtional external memory.

CONCLUSION

When developing new applications requiring parameter storage, two important issues have to be taken in
to account: the access time and the number of parameter updates forecasted during the application’s life.

When these two parameters are known, the designer can evaluate the two competing solutions: External
Software Emulation of the EEPROM in Flash memory or the On-Chip Hardware Emulation. The ESE
solution will be found to be suitable only for those applications where the the software development costs
can be spread over large volume production, where the updates are small (< 100) and freezing of the
application for one or more seconds is acceptable. The OHE solution has none of these restrictions and
offers all types of application an ideal solution.

Table 5 summarises the two solutions

Table 5. Summary of the ESE and OHE Solutions

ESE solution OHE solution
Read access time Increases in proSS(rjt;otgsto the number of Fixed, 200ns typical or one MPU read cycle
Write time 30us in addition to the read access time 10ms for 1 up to 64 Bytes
Power consumption 6*loHe <lese <8000*IoHE loHE
Memory size Flash memory at least 6 times larger than Equal to EEPROM size

EEPROM emulated

Flash memory around 16K bytes + SRAM

around 4K bytes None

Software drivers

Hardware requiremetns SRAM of around 4K bytes None

%)

8/9

ANO931 - APPLICATION NOTE

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No
license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned
in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.
SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express
written approval of SGS-THOMSON Microelectronics.

© 1997 SGS-THOMSON Microelectronics - All Rights Reserved
0 FLASH+ is a trademark of SGS-THOMSON Microelectronics

SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands -
Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

[S72 919

